ВАРИАНТ БИФУРКАЦИИ ЧЕТЫРЕХКРАТНОГО СОСТОЯНИЯ РАВНОВЕСИЯ С ДВУМЯ НУЛЕВЫМИ СОБСТВЕННЫМИ ЧИСЛАМИ

Е. П. ВОЛОКИТИН, С. А. ТРЕСКОВ

Рассмотрим плоскую динамическую систему обыкновенных дифференциальных уравнений

$$\dot{x} = y,$$

$$\dot{y} = \varepsilon_1 + \varepsilon_2 x + \varepsilon_4 x^2 + a x^4 + y \left(x + \varepsilon_3 \right) \left(b + c x + d x^2 \right),$$
(1)

правая часть которой зависит от четырех параметров ε_1 , ε_2 , ε_3 , ε_4 . По мнению авторов, система (1) служит модельной системой [1] для изучения вырождения коразмерности 4 — бифуркации четырехкратного состояния равновесия с двумя нулевыми собственными числами. С бифуркацией такого типа мы столкнулись при изучении системы дифференциальных уравнений, описывающей динамику каталитического окисления [2].

Параметрический портрет системы (1) существенно зависит от соотношений между коэффициентами a, b, c, d. В настоящей статье рассмотрен один из вариантов общего положения, которому отвечают значения коэффициентов a = 1/32, b = 3, c = -1/2, d = 1/32, и дано полное описание параметрической окрестности нуля U в пространстве параметров $\varepsilon = (\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4)$ системы (1) при этих значениях коэффициентов.

Терминология, используемая для описания бифуркаций, в основном заимствована из [1, 3].

При $\varepsilon = 0$ система (1) имеет единственное положение равновесия (0, 0), которое является четырехкратным седло-узлом с двумя нулевыми собственными числами [4]. На рис. 1 изображены траектории системы (1) при $\varepsilon = 0$, окружность отвечает экватору сферы Пуанкаре^{*)}.

Полное описание четырехмерной параметрической окрестности нуля U состоит в перечислении всех бифуркационных множеств, расположенных в этой окрестности, указании взаиморасположения этих мно-

жеств и областей в пространстве параметров, отвечающих грубым фазовым портретам системы (1). Мы опишем типичные трехмерные сечения окрестности U гиперилоскостями вида $\varepsilon_4 = \text{const}$, достаточно близкими к точке $\varepsilon = 0$. Такими типичными будут три сечения, отвечающие значениям $\varepsilon_4 > 0$, $\varepsilon_4 = 0$, $\varepsilon_4 < 0$.

При любом фиксированном $\varepsilon_4 > 0$ такое сечение, расположенное в пространстве параметров $\varepsilon = (\varepsilon_1, \varepsilon_2, \varepsilon_3) \in \mathbb{R}^3$, выглядит сравнительно просто (рис. 2). Опишем его основные элементы. Координаты положений равновесия системы (1) удовлетворяют системе уравнений y = 0, $\varepsilon_1 + \varepsilon_2 x + \varepsilon_4 x^2 +$ $+ ax^4 = 0$. Количество стацио-

 ^{*)} Поведение траекторий на бесконечности не меняется, если ε ≠ 0.

наров и их взаиморасположение не зависят от ε_3 . Поэтому поверхность кратности S, отвечающая существованию в системе (1) двукратного положения равновесия, будет цилиндром с образующей, параллельной оси $O\varepsilon_3$. Направляющей поверхности S служит кривая, параметрические уравнения которой суть

$$\varepsilon_1 = \varepsilon_4 x^2 + 3ax^4, \quad \varepsilon_2 = -2\varepsilon_4 x - 4ax^3, \\ \varepsilon_3 = 0, \quad x \in \mathbf{R}.$$
(2)

При $\varepsilon_4 > 0$ кривая (2) является параболой, поверхность S разбивает пространство \mathbf{R}^3 на две части, отвечающие либо наличию двух стационаров у исследуемой системы, либо их отсутствию. Поверхность нейтральности N, отвечающая существованию в системе (1) положения равновесия с двумя собственными числами на мнимой оси (поверхность бифуркации Андронова — Хопфа), задается соотношениями

$$\varepsilon_1 = \varepsilon_2 \varepsilon_3 - \varepsilon_4 \varepsilon_3^2 - a \varepsilon_3^4, \ \varepsilon_2 < 2\varepsilon_3 \varepsilon_4 + 4a \varepsilon_3^3. \tag{3}$$

Поверхности S и N отвечают бифуркациям коразмерности 1 и касаются друг друга в точках кривой l_{sn} , соответствующей бифуркации коразмерности 2 и отвечающей наличию у системы (1) двукратного положения равновесия с двумя нулевыми собственными числами; кривая l_{sn} является границей поверхности N и задается условиями

$$\varepsilon_1 = \varepsilon_3^2 \varepsilon_4 + 3a\varepsilon_3^4, \ \varepsilon_2 = 2\varepsilon_3\varepsilon_4 + 4a\varepsilon_3^3.$$

Кривая l_{sN} служит границей также и для бифуркационной поверхности P, соответствующей бифуркации коразмерности 1 и отвечающей наличию в системе (1) петли сепаратрисы седла. Поверхность P, как и поверхность N, касается поверхности S. Первая и вторая ляпуновские величины сложного фокуса, вычисленные согласно [5], даются выражениями

$$\begin{split} L_1 &= -\frac{\pi}{4r} \left(\left(\varepsilon_2 - 2\varepsilon_3 \varepsilon_4 - 4a\varepsilon_3^3 \right) \left(c - 2d\varepsilon_3 \right) - \left(b - c\varepsilon_3 + d\varepsilon_3^2 \right) \left(\varepsilon_4 + 6a\varepsilon_3^2 \right) \right), \\ L_2 &= \frac{\pi}{24r} \left(3ab - 7ad\varepsilon_3^2 + 17ac\varepsilon_3 + 5d\varepsilon_4 \right), \\ r &= \left(2\varepsilon_3 \varepsilon_4 + 4a\varepsilon_3^2 - \varepsilon_2 \right)^{3/2}. \end{split}$$

Поверхность нейтральности N содержит кривую l_{NC} , соответствующую бифуркации коразмерности 2 и отвечающую наличию у системы (1) сложного фокуса кратности два. В точках этой кривой обращается в нуль величина \hat{L}_{i} , т. е.

$$l_{NC} = \{ \varepsilon: \varepsilon_1 = \varepsilon_2 \varepsilon_3 - \varepsilon_3 \varepsilon_4^2 - a \varepsilon_3^4, \varepsilon_2 = 2\varepsilon_3 \varepsilon_4 + 4a\varepsilon_3^3 + \frac{(b - c\varepsilon_3 + dc_3^2)(\varepsilon_4 + 6a\varepsilon_3^2)}{c - 2d\varepsilon_3} \}.$$
(4)

Отметим, что $l_{NC} \cap S = \emptyset$, если $\varepsilon_4 > 0$.

Величина L₂ положительна всюду в изучаемой нами окрестности U. Поэтому поверхность C кратного цикла, границей которой служит кри-

вая l_{NC} , соответствует бифуркации коразмерности 1 и отвечает наличию у системы (1) двукратного цикла, устойчивого изнутри.

Существование граничных кривых l_{sn} , l_{nc} и поведение поверхностей P, C вблизи этих кривых следуют из общих результатов теории бифуркаций [3]; общий вид поверхностей P, C был выяснен нами в результате численных расчетов. При расчетах использовались программы [6].

Поверхность P петли сепаратрисы пересекает поверхность N в точках кривой l_{NP} , соответствующей бифуркации коразмерности 1 + 1.

Взаиморасположение многообразий $S, N, P, C, l_{s_N}, l_{NP}, l_{NC}$ ясно из рис. 2. Рядом с бифуркационной диаграммой изображены соответствующие грубые фазовые портреты системы (1).

При изучении сечения окрестности U гиперплоскостью $\varepsilon_4 = 0$ мы не обнаруживаем параметрических областей, отличных от 1-6. Новым здесь является то обстоятельство, что кривая l_{NC} имеет теперь одну общую точку с поверхностью $S: \varepsilon = 0$. Через эту же точку проходят кривые l_{SN} , l_{NP} .

Рассмотрим сечение параметрической окрестности U гиперплоскостью $\varepsilon_4 = \text{const}$ при $\varepsilon_4 < 0$. Поверхность кратности S по-прежнему будет цилиндром. Ее направляющая (2) будет теперь кривой, имеющей две точки возврата и точку самопересечения. Ребра возврата l_1 , l_2 поверхности S соответствуют бифуркациям коразмерности 2 и отвечают наличию у системы (1) трехкратных состояний равновесия: ребро l_1 — трехкратных седел, ребро l_2 — трехкратных неседел. Ребро самопересечения l_3 соответствует бифуркации коразмерности 1+1 и отвечает наличию у системы одновременно пары двукратных состояний равновесия,

$$\begin{split} l_1 &= \{ \varepsilon: \ \varepsilon_1 = - \ \varepsilon_4^2 / 12a, \ \varepsilon_2 = (-4/3) \ \varepsilon_4 \ (- \ \varepsilon_4 / 6a)^{3/2}, \ \varepsilon_3 \Subset \mathbf{R} \}_3 \\ l_2 &= \{ \varepsilon: \ \varepsilon_1 = - \ \varepsilon_4^2 / 12a, \ \varepsilon_2 = 4/3 \varepsilon_4 \ (- \ \varepsilon_4 / 6a)^{3/2}, \ \varepsilon_3 \Subset \mathbf{R} \}, \\ l_3 &= \{ \varepsilon: \ \varepsilon_1 = \ \varepsilon_4^2 / 4a, \ \varepsilon_2 = 0, \ \varepsilon_3 \Subset \mathbf{R} \}. \end{split}$$

Поверхность S разбивает пространство \mathbb{R}^3 на три части, отвечающие отсутствию положений равновесия у системы (1) или наличию двух или четырех положений равновесия. Четыре состояния равновесия имеют место в том случае, когда точка є лежит внутри трехгранной «призмы» с ребрами l_1 , l_2 , l_3 . Эти состояния равновесия расположены на оси Oxв следующем порядке: крайнее слева — неседло, которое мы обозначим o_1 , затем седло s_1 , затем неседло o_2 и, наконец, седло s_2 . В этих обозначениях ребро l_1 , отвечает трехкратному седлу $s_1o_2s_2$, ребро l_2 — трехкратпому неседлу $o_1s_1o_2$. От поверхности S по-прежнему отходят с касанием вдоль кривой l_{sN} поверхность нейтральности N и поверхность петли сепаратрисы седла P. Кривая нулей первой ляпуновской величины l_{NC} теперь служит частью границы поверхности C двукратного цикла и состоит из двух компонент: к соотношениям (4) добавляется условие $\varepsilon_4 + 6a\varepsilon_3^2 > 0$. Если $\varepsilon_4 + 6a\varepsilon_3^2 < 0$, то у соответствующего сложного фокуса (o_2) первая ляпуновская величина отрицательна.

Представление о том, как выглядит изучаемое трехмерное сечение окрестности U при достаточно удаленных от нуля значениях ε_3 , дает рис. 3. При промежуточных значениях это сечение устроено уже более сложным образом. Кроме перечисленных бифуркационных множеств мы сталкиваемся здесь с бифуркационными множествами, отвечающими нелокальным бифуркациям, связанным с поведением сепаратрис седел s_1 , s_2 . Мы опишем строение трехмерного сечения окрестности U, рассмотрев его двумерные срезы плоскостями вида $\varepsilon_3 = \text{const.}$

На рис. 4 эти срезы изображены по периферии, движение по часовой стрелке отвечает постепенно уменьшающимся значениям є₃. В середине изображены соответствующие грубые фазовые портреты; пунктирные линии отвечают неустойчивым циклам.

Дадим краткие пояснения к рис. 4. Бифуркационные поверхности и кривые пересекаются с плоскостями $\varepsilon_3 = \text{const по кривым и точ-}$ кам, за которыми мы сохраним введенные обозначения. Срез, отвечающий достаточно большим значениям $\epsilon_3 >$ >0, расположен в левом верхнем углу рисунка. От кривой кратности S в точке *l*_{вм} отходят с касанием кривые N, P^{*} ; от кривой N в точке l_{NC} отходит кривая кратного цикла С; кривые N, P. пересекаются в точке $l_{\scriptscriptstyle NP}$, точка $l_{\scriptscriptstyle NC}$ лежит между точками l_{sN} , l_{NP} . По мере уменьшения значений єз точка l_{sn} скользит по кривой S по направлению к точке l₂. При $\varepsilon_3 = (-3\varepsilon_4/2a)^{1/2}$ кривая нейтральности Ќ пройдет через острие l_1 , после чего эта кривая будет пересекать треугольник $l_1 l_2 l_3$. На параметрическом портрете появляется не встреченная на-

ми ранее область 8. Затем при некотором $\varepsilon_3 = \alpha$ через острие l_1 пройдет кривая P. Этому событию отвечает точка $\overline{\varepsilon}_{\alpha} = (-\varepsilon_4^2/12a, (-4/3)(-\varepsilon_4/6a)^{3/2}, \alpha)$ в пространстве параметров ε_1 , ε_2 , ε_3 , лежащая одновременно на поверхности P и ребре l_1 , соответствующая бифуркационная ситуация на фазовом портрете изображена на рисунке и заключается в наличии неустойчивой сепаратрисной петли трехкратного седла $s_1o_2s_2$.

Небольшое шевеление параметров в окрестности точки ε_{α} приведет, с одной стороны, к бифуркациям трехкратного стационара, а с другой к бифуркациям гомоклинической структуры. В общем случае трехкратное седло либо заменится на невырожденное седло, либо распадется на три стационара (седла s_1 , s_2 и узел o_2); α -предельным множеством входящей сепаратрисы седла s_1 , которая в точке ε_{α} образовывала петлю, при этом может служить либо неустойчивый цикл, окружающий точку o_1 , либо источник o_2 , либо бесконечно удаленная точка. Ситуации первой степени негрубости сводятся к наличию седло-узлов s_1o_2 , s_2o_2 , либо петли сепаратрисы, либо сепаратрисы, идущей из седла s_2 в седло s_1 .

Точки, отвечающие сепаратрисе из s_2 в s_1 , образуют в пространстве параметров поверхность Q_1 бифуркационных точек коразмерности 1. Соответствующая кривая Q_1 продолжает линию петли внутрь треугольника $l_1 l_2 l_3$ и разделяет на бифуркационной диаграмме области 9, 10.

По мере уменьшения значений ε_3 точка l_{sN} продолжает приближаться к точке l_2 . При некотором $\varepsilon_3 = \beta$ правый конец кривой Q_1 пройдет через точку l_3 . Мы имеем здесь дело с бифуркацией коразмерности 3, соответствующей на фазовом портрете наличию двух седло-узлов, связанных сепаратрисой.

При $\varepsilon_3 = \gamma = (-\varepsilon_4/6a)^{1/2}$ точки l_{sN} и l_2 сливаются, туда же приходят и концевые точки всех бифуркационных кривых, лежащих внутри тре-

*) Кривая N в сечении плоскостью $\varepsilon_3 = \text{const}$ будет лучом (см. (3)).

Puc. 4.

угольника $l_1 l_2 l_3$ (сами кривые при этом стягиваются в точку), а также точки l_{NC} , l_{NP} (последние никогда не попадают внутрь треугольника). Точке ε_{τ} отвечает наличие в системе (1) трехкратного состояния равновесия $o_1 s_1 o_2$ с двумя нулевыми собственными числами, которое в нашем случае будет состоянием равновесия с эллиптической областью. Кроме того, на фазовом портрете имеется гиперболическое седло s_2 , при этом сепаратрисы седла образуют границу эллиптической области (в последнем можно убедиться, построив подходящие кривые без контакта). Описанный фазовый портрет изображен непосредственно рядом с бифуркационной диаграммой, отвечающей $\varepsilon_3 = \gamma$.

Далее, при $\varepsilon_3 < \gamma$ точка l_{sN} переходит на участок $l_1 l_2$ кривой кратности S. Из этой точки с касанием выходит кривая теперь уже устойчивой петли сепаратрисы седла s_1 , окружающая неустойчивое положение равновесия o_2 . Эта кривая обрывается на стороне $l_2 l_3$ треугольника $l_1 l_2 l_3$. Внешний по отношению к треугольнику участок кривой петли сепаратрисы оканчивается в точке q_2 на стороне $l_2 l_3$ треугольника $l_1 l_2 l_3$. В параметрической точке q_2 в петлю сепаратрисы седла s_2 на ее глобальном участке «влипает» петля седло-узла $s_1 o_1$, петля седла неустойчива, а петля седло-узла устойчива. Это обстоятельство приводит к тому,

что в точке q_2 оканчивается также кривая С кратного цикла. Внутрь треугольника $l_1 l_2 l_3$ кривые P, C продолжаются кривой Q_2 , отвечающей сепаратрисе из седла s₁ в седло s₂. На бифуркационной диаграмме перечисленные поверхности служат частью границ областей 11, 12, 13.

Точки q₂ образуют бифуркационное множество коразмерности 2 в пространстве параметров и служат граничными для следующих бифуркационных поверхностей: поверхности сепаратрисы из седла в седло, поверхности кратных циклов, поверхности петли сепаратрисы седло-узла, поверхности петли сепаратрисы седла (эти две петли имеют разную устойчивость).

По мере уменьшения єз меняется поведение выходящей влево вниз сепаратрисы седла s_2 и при $\varepsilon_3 = \delta$ появляется кривая Q_3 , означающая, что мы встретили поверхность Q₃, отвечающую наличию в системе (1) сепаратрисы из седла s_2 в седло s_i , теперь уже не огибающей стационара o₁. По мере продвижения вниз по є₃ концы кривых Q₂, Q₃, лежащие на стороне $l_2 l_3$, сближаются и затем при $\varepsilon_3 = \zeta$ совпадают. Мы попадаем в бифуркационную точку є коразмерности 3, соответствующую наличию в системе (1) сепаратрисного контура, одна из вершин которого седлоузел s₁o₁, а другая — седло s₂. Затем общая точка кривых Q₂, Q₃ смещается внутрь треугольника $l_1 l_2 l_3$, ей отвечает наличие в системе (1) сепаратрисного контура, а сама эта точка является бифуркационной точкой коразмерности 2. Более детальное описание бифуркации сепаратрисного контура см. в [1]. Отметим лишь, что в точке сепаратрисного контура линии петель сепаратрис седел s₁, s₂ продолжают друг друга, кроме того, эта же точка служит концевой для кривой кратного цикла С.

Далее, при $\tilde{\epsilon}_3 = \eta = (-\epsilon_4/6a)^{1/2}$ точка l_{sN} попадает в точку l_1 . Здесь мы имеем дело с локальной бифуркацией коразмерности 3 трехкратного седла с двумя нулевыми собственными числами. Эта бифуркация происходит в полном соответствии с описанием, предложенным в [1], поэтому не будем останавливаться на ней подробно. Укажем только, что при прохождении значения $\varepsilon_3 = \eta$ на бифуркационной диаграмме пропадает кривая Q_3 .

При $\varepsilon_3 < \eta$ точка l_{sN} располагается вначале на стороне $l_1 l_3$ треугольника $l_1 l_2 l_3$, а затем выходит за вершину l_3 . Далее при некотором $\varepsilon_3 = \vartheta$ стягиваются в точку концы кривой Q2, после чего диаграмма становится такой, какой она изображена в левом нижнем углу рисунка, и в дальнейшем качественно не меняется.

Замечание 1. Существование бифуркационных поверхностей Q₁, Q_2, Q_3 вытекает в основном из требований непротиворечивости построенного нами параметрического портрета и частично из результатов теории бифуркаций. Общий вид этих поверхностей и их взаиморасположение были уточнены нами на основе численного эксперимента.

Замечание 2. Остановимся подробнее на бифуркационных точ-

Ø \mathcal{Q}_{2} 3 (1) q2. P 6) 12 S

Puc. 7.

ках коразмерности 3, отвечающих значениям $\varepsilon_3 = \alpha$, $\varepsilon_3 = \gamma$, $\varepsilon_3 = \zeta$: ε_{α} — петля трехкратного седла, ε_{γ} — трехкратное состояние равновесия с двумя нулевыми собственными числами, имеющее эллиптическую область, ε_{ζ} — сепаратрисный контур, одна из вершин которого седло-узел.

Напомним принятый в [1] способ изображения параметрического портрета в окрестности бифуркационных точек коразмерности 3. Строится пересечение параметрического портрета со сферой достаточно малого радиуса с центром в собственно бифуркационной точке и затем на рисунке изображаются проекции двух дополняющих друг друга полусфер. Построенные таким образом параметрические портреты в окрестностях точек ε_{α} , ε_{γ} , $\varepsilon_{\varepsilon}$ приведены на рис. 5, 6, 7 соответственно, фазовые портреты, отвечающие указанным там областям, см. на рис. 4.

ЛИТЕРАТУРА

- 1. Базыкин А. Д., Кузнецов Ю. А., Хибник А. И. Бифуркационные диаграммы динамических систем на плоскости. Пущино, 1985. 56 с. (Информационный материал).
- 2. Волокитин Е. П., Тресков С. А. Математическая модель реакции каталитического окисления (трехпараметрический анализ).— Новосибирск, 1986.— 24 с.— (Препринт/АН СССР. Сиб. отд-ние. Ин-т математики; № 4).
- 3. Арнольд В. И. Дополнительные главы теории обыкновенных дифференциальных уравнений. М.: Наука, 1978.
- 4. Баутин Н. Н., Леонтович Е. А. Методы и приемы качественного исследования динамических систем на плоскости. — М.: Наука, 1976.
- 5. Баутин Н. Н. Поведение динамических систем вблизи границ области устойчивоспи. — М.: Наука, 1984.
- 6. Хибник А. И., Шноль Э. Э. Программы для качественного исследования дифференциальных уравнений.— Пущино, 1982.— 16 с.— (Информационный материал).

СТРУКТУРЫ, ПОРОЖДАЕМЫЕ МНОЖЕСТВАМИ МОРФИЗМОВ

В. К. ИОНИН

Рассматриваются произвольные множества A, B и произвольное множество Г отображений A в B. В настоящей статье показывается, как при помощи некоторой стандартной процедуры множество Г порождает определенные математические структуры на произвольных множествах, другими словами, как Г порождает некоторый род структуры. Например, все аффинные отображения вещественной прямой в себя порождают род аффинной структуры; все сжатия R в R — род структуры метрического пространства с внутренней метрикой; все линейные отображения двумерного векторного пространства в одномерное — род структуры векторного пространства.

§ 1. Предварительные определения

В этом параграфе будут приведены известные определения, которые можно найти в книгах [1, 2]. В некоторые определения будут внесены незначительные изменения.

1.1. Будем говорить, что задана категория *Ж*, если задан класс Оb *Ж* элементов, называемых объектами, причем

1. Для каждой пары объектов (A, B) из \mathcal{K} задано множество Нот $_{\mathcal{K}}(A, B)$, называемое множеством морфизмов A в B (вместо $u \in \operatorname{Hom}_{\mathcal{K}}(A, B)$ будем иногда писать $u: A \to B$ или $A \stackrel{u}{\to} B$); A называют областью морфизма u, а B — его кообластью. 66