СЛОЖНОСТЬ СЕТЕВОЙ ЗАДАЧИ О МЕДИАНЕ НА ПЛОСКИХ РЕШЕТКАХ

А. А. Агеев

Пусть $P(\Gamma)$ — некоторая задача (оптимизационная или распознавания), вход которой содержит граф из некоторого фиксированного множества неориентированных графов Γ . Выбирая произвольное подмножество $\Gamma' \subseteq \Gamma$ и рассматривая задачу $P(\Gamma)$ на этом подмножестве, мы получаем ее подзадачу $P(\Gamma')$. Если задача $P(\Gamma)$ является NP-трудной (NP-полной), то при надлежащем выборе множества Γ' подзадача $P(\Gamma')$ может оказаться полиномиально разрешимой. Наибольший интерес как в теоретическом плане, так и с точки зрения приложений представляет проблема полной характеризации семейств графов, на которых данная NP-трудная (NP-полная) задача полиномиально разрешима. В общей постановке она, по-видимому, очень трудна и на сегодняшний день не решена ни для одной задачи. Проблема может быть существенно упрощена, если вместо произвольных подмножеств Γ' ограничиться рассмотрением подмножеств, удовлетворяющих некоторым дополнительным условиям. Таким естественным условием во многих случаях оказывается минорная замкнутость.

- Минором графа G называют граф, который может быть получен из подграфа графа G стягиванием некоторых ребер (говорят, что ребро графа стягивается, если оно удаляется, а инцидентные ему вершины отождествляются).
- Множество графов называется минорно-замкнутым, если вместе с любым графом G оно содержит все миноры графа G.

Многие хорошо известные множества графов (лесов, планарных, последовательно-параллельных, внешнепланарных и др.) минорно-замкнутые.

- Н. Робертсону и П. Д. Сеймуру [1] принадлежит теорема, устанавливающая фундаментальную связь между понятием минора графа и одним из его параметров древесной шириной.
 - Пусть G неориентированный граф. Пара $(T, \{X_t : t \in V(T)\})$, где T дерево, а $\{X_t : t \in V(T)\}$ некоторое семейство подмножеств V(G), называется древесным разложением графа G, если выполнены следующие условия:
 - $\circ \ \bigcup (X_t: t \in V(T)) = V(G);$
 - о для любого ребра $e \in E(G)$ найдется вершина $t \in V(T)$ такая, что оба конца e принадлежат X_t ;
 - о для любых $t,t',t''\in V(T)$ если вершина t' лежит на пути в T, связывающем вершины t и t'', то $X_t\cap X_{t''}\subseteq X_{t'}.$
 - Величина $\max(|X_t|-1:t\in V(T))$ называется шириной древесного разложения $(T,\{X_t:t\in V(T)\})$.

^{© 1994} Arees A. A.

• Древесной шириной графа G называют минимальное целое q (далее обозначаемое через tw(G)) такое, что существует древесное разложение графа G ширины q.

Следующая теорема эквивалентна основному результату работы [1] (см. также [2]).

Теорема 1. Пусть Γ — минорно-замкнутое множество графов, не содержащее всех планарных графов. Тогда существует целое число q такое, что для любого графа $G \in \Gamma$ древесная ширина tw(G) не превосходит q.

Следствие 1. Пусть задача P является NP-трудной на множестве планарных графов. Предположим также, что для любого фиксированного q задача P полиномиально разрешима на множестве графов древесной ширины не превосходящей q. Пусть Γ — некоторое минорно-замкнутое множество графов. Тогда

- (a) если Γ не содержит всех планарных графов, то P полиномиально разрешима;
- (б) если Γ содержит все планарные графы, то P является NP-трудной.

Известно, что многие NP-трудные на произвольных графах задачи оказываются полиномиально разрешимыми на графах ограниченной древесной ширины [3–6]. Некоторые из них NP-трудны (NP-полны) на планарных графах (задача о вершинном покрытии, задача о доминирующем множестве, задача Штейнера и др.) [7]. Согласно следствию 1 (утверждения (а), (б)) для этого класса задач справедлив легко проверяемый критерий полиномиальной разрешимости. Впервые эти соображения были использованы в [2] применительно к сетевой задаче о медиане (СЗМ).

Сетевая задача о медиане. По заданному связному неориентированному графу G, вершинам которого приписаны неотрицательные веса c(v) и $\varphi(v)$, $v \in V(G)$, а ребрам — неотрицательные длины l(e), $e \in E(G)$, требуется найти непустое подмножество вершин $X \subseteq V(G)$, минимизирующее выражение

$$\Phi(X) = \sum_{v \in X} c(v) + \sum_{w \in V} \varphi(w) \min_{v \in X} d_{vw},$$

где d_{vw} — матрица кратчайших расстояний графа G в метрике l.

Теорема 2 [2]. Пусть Γ — минорно-замкнутое множество графов. Тогда

- (a) если Γ не содержит всех планарных графов, то сетевая задача о медиане полиномиально разрешима;
- (б) если Г содержит все планарные графы, то сетевая задача о медиане является NP-трудной.

Минорная замкнутость класса графов естественна для СЗМ: легко понять, что приписывание ребру бесконечной (достаточно большой) длины эквивалентно его удалению, а приписывание нулевой длины — стягиванию. Тем не менее далеко не все возникающие в приложениях множества графов оказываются минорно-замкнутыми. Таковыми не являются, к примеру, регулярные графы любой степени, плоские решетки.

- 1. Основной результат работы. Пусть Γ некоторое множество графов. Определим минорное замыкание $\overline{\Gamma}$ как пересечение всех минорно-замкнутых множеств, содержащих Γ . Пусть P некоторая задача на графах, а $P(\Gamma)$ ее подзадача, определенная на Γ . Тогда если $P(\overline{\Gamma})$ полиномиально разрешима, то полиномиально разрешима также и $P(\Gamma)$. Если же $P(\overline{\Gamma})$ является NP-трудной (NP-полной), то ничего определенного о сложности $P(\Gamma)$, вообще говоря, сказать нельзя. Это замечание, в частности, справедливо, когда P удовлетворяет условиям следствия 1, а Γ содержит все планарные графы.
 - Плоской n-решеткой (n-grid по терминологии, принятой в [1]) называется неориентированный граф G с множеством вершин $\{v_{ij}:1\leqslant i,j\leqslant n\}$, в котором вершины v_{ij} и $v_{i'j'}$ смежны, если и только если |i-i'|+|j-j'|=1.

Иными словами, плоская n-решетка есть граф смежности целочисленной решетки размеров $n \times n$.

• Плоской решеткой называется граф, изоморфный подграфу плоской n-решетки при некотором n.

Известно, что минорное замыкание множества плоских решеток совпадает с множеством планарных графов (см. [8]). Таким образом, рассматривая СЗМ на плоских решетках, мы имеем дело с описанной выше ситуацией. К сожалению, в рассматриваемом случае задача труднорешаема.

Теорема 3. Сетевая задача о медиане является NP-трудной на множестве плоских n-решеток.

Следствие 2. Сетевая задача о медиане является NP-трудной на множестве плоских решеток.

Теорема 3 доказывается в п. 3. Доказательство основано на трех леммах, приводимых в следующем пункте.

2. Вспомогательные утверждения. Рассматриваемые ниже графы являются неориентированными и не имеют петель. Если G — граф, то через V(G) обозначается множество вершин G, а через E(G) — множество ребер.

Подмножество X вершин графа G называется domunupyouum, если любая вершина графа G либо принадлежит X, либо смежна некоторой вершине из X.

Простая цепь (цикл) с множеством вершин $\{v_1,\ldots,v_p\}$ обозначается через (v_1,\ldots,v_p) $((v_1,\ldots,v_p,v_1))$.

Известно, что СЗМ является NP-трудной на произвольных графах [7, 9]. Можно показать, что СЗМ остается NP-трудной на планарных графах [2]. Для доказательства теоремы 3 нам потребуется следующее усиление этого утверждения.

Лемма 1. Сетевая задача о медиане является NP-трудной на множестве планарных кубических графов.

Доказательство. Используя тот факт, что задача о доминирующем множестве минимального веса (ЗДМ) является NP-трудной на кубических

планарных графах [10], построим полиномиальное сведение последней задачи к СЗМ на кубических планарных графах.

Пусть кубический планарный связный граф G на n вершинах и функция $w:V(G)\to \mathbf{R}_+$ составляют вход индивидуальной ЗДМ. Рассмотрим индивидуальную СЗМ с входом:

$$\operatorname{rpa} G, \quad \varphi(v) = 1, \quad c(v) = \Delta + w(v), \quad l(e) = \Delta, \quad v \in V(G), \quad e \in E(G),$$

где Δ — любое число, превосходящее $\sum_{v \in V} w(v)$. Пусть X — оптимальное решение построенной индивидуальной СЗМ. Покажем, что X — доминирующее множество минимального веса, т. е.

$$\sum_{v \in X} w(v) = \min \{ \sum_{v \in Y} w(v) \colon Y - \text{доминирующее множество } G \}.$$

Действительно, заметим, что $\Phi(Y)\geqslant n\Delta$ для любого непустого подмножества вершин $Y\subseteq V(G)$. Далее, ясно, что неравенство

$$\Phi(Y) < (n+1)\Delta \tag{1}$$

выполняется тогда и только тогда, когда Y — доминирующее множество. Ввиду оптимальности X отсюда сразу следует, что X доминирующее. В силу выбора величины Δ неравенство (1) эквивалентно равенству

$$\Phi(Y) = n\Delta + \sum_{v \in Y} w(v),$$

из которого заключаем, что X имеет минимальный вес.

Замечание 1. В доказательстве леммы 1 не использовались особые свойства графа G — кубичность и планарность. Это означает следующее: если установлено, что ЗДМ является NP-трудной на каком-то множестве графов, то на том же множестве NP-трудна и СЗМ.

- Граф H называется подразделением графа G, если H может быть получен из G заменой некоторых ребер попарно не пересекающимися простыми путями.
- Граф H топологически содержит граф G, если H имеет подграф, изоморфный некоторому подразделению G. Очевидно, что если H топологически содержит G, то G минор H.
 - Пару инъективных отображений (φ, ψ) назовем изображением графа H, если $\varphi \colon V(H) \to \mathbf{Z}^2$ ставит в соответствие вершинам графа H целые точки плоскости, а ψ каждому ребру $e = v_1 v_2 \in E(H)$ сопоставляет простую ломаную с концами $\varphi(v_1)$ и $\varphi(v_2)$, состоящую из горизонтальных и вертикальных отрезков, соединяющих соседние целые точки плоскости.

Лемма 2. Для любого заданного кубического планарного графа G за полиномиальное время можно найти изображение (φ, ψ) такое, что

- (a) расстояния между образами вершин (в метрике l_{∞}) при отображении φ ограничены сверху величиной O(|V(G)|);
- (б) ломаные образы ребер графа G при отображении ψ попарно не пересекаются во внутренних точках.

Замечание 2. Очевидно, что всякое изображение графа G, удовлетворяющее условиям (a), (б), однозначно определяет подразделение G^* графа G такое, что G^* есть подграф плоской O(|V(G)|)-решетки H. Ясно также, что имея такое изображение, мы можем за линейное время достроить G^* до H.

Доказательство леммы 2. Пусть G — кубический планарный граф. Нетрудно видеть, что за линейное время можно построить связный кубический граф G', не имеющий мостов и такой, что G топологически содержится в G', |V(G')| = |V(G)| + 2r + 4(q-1), где r и q соответственно число мостов и число компонент в графе G. Поэтому без потери общности можно считать, что граф G связный и в нем нет мостов. Следовательно, в любой плоской укладке графа G каждая его грань ограничена циклом.

Предположим, что фиксирована некоторая плоская укладка графа G (напомним, что она может быть найдена за линейное время [11]), и пусть $\{C_1,\ldots,C_p\}$ — множество циклов, ограничивающих грани графа G в этой укладке и занумерованных в таком порядке, что

$$\bigcup_{j=1}^{i} V(C_j) \cap V(C_{i+1}) \neq \emptyset$$
 для любого $i \in \{1, \dots, p-2\}.$ (2)

Обозначим через H_i $(i=1,\ldots,p-1)$ подграф графа G с множеством вершин $V(H_i)=\bigcup_{j=1}^i V(C_j)$ и множеством ребер $E(H_i)=\bigcup_{j=1}^i E(C_j)$. Очевидно, что графы H_i $(i=1,\ldots,p-1)$ плоские, $H_1=C_1$ и $H_{p-1}=G$. Обозначим через B_i цикл, ограничивающий внешнюю грань графа H_i . Предположим, что циклы занумерованы в таком порядке, что кроме условия (2) выполняется следующее:

для любого
$$i=1,\ldots,p-2$$
 граница циклов $B_i,\,C_{i+1}$ состоит из одной общей дуги. (3)

Легко понять, что нумерация, удовлетворяющая условиям (2), (3) существует и может быть найдена за полиномиальное (даже линейное) время. Поэтому сделанное выше предположение не ограничивает общности.

Ниже приводится неформальное описание алгоритма построения изображения (φ,ψ) , удовлетворяющего условиям (a), (b) леммы (a). Алгоритм состоит из p-1 шагов. На i-м шаге строится изображение (φ_i,ψ_i) графа H_i , $(\varphi,\psi)=(\varphi_{p-1},\psi_{p-1})$.

Алгоритм

Шаг 1. Пусть $C_1=(x_1,\ldots,x_k,x_1)$. Полагаем $\varphi_1(x_t)=(t,1)$. Точки (t,1) и (t+1,1) соединяются горизонтальными отрезками для любого $t=1,\ldots,k-1$. Точки (1,1) и (1,k) соединяются ломаной из пяти звеньев:

$$((1,1),(0,1)),$$
 $((0,1),(0,0)),$ $((0,0),(k+1,0)),$ $((k+1,0),(k+1,1)),$ $((k+1,1),(k,1)).$

Шаг i $(i=2,\ldots,p-1)$. В начале шага имеем искомое изображение $(\varphi_{i-1},\psi_{i-1})$ графа H_{i-1} , обладающее следующим свойством: внешний цикл \mathbf{B}_{i-1} графа H_{i-1} отображается в прямоугольник с вершинами $(0,0),\,(0,\mu),\,(\lambda+1,\mu),\,(\lambda+1,0),\,$ а вершины цикла \mathbf{B}_{i-1} — в целые точки верхнего основания этого прямоугольника $(k_1,\mu),(k_2,\mu),\ldots,(k_r,\mu),$

 $1\leqslant k_1 < k_2 < \ldots < k_r \leqslant \lambda$. Пусть $C_i=(u_1,\ldots,u_{\alpha},w_1,\ldots,w_{\beta},u_1)$, где $\alpha\geqslant 2,\,\beta\geqslant 0,\,\{w_1,\ldots,w_{\beta}\}=V(C_i)\setminus V(B_{i-1})$. Из условий $(2),\,(3)$ следует, что возможны два случая.

Случай 1: образ множества $\{u_1,\ldots,u_\alpha\}$ при отображении φ_{i-1} — это множество точек $\{(k_j,\mu)\colon s'\leqslant j\leqslant s''\}$. Изображение $(\varphi_{i-1},\psi_{i-1})$ преобразуется в изображение (φ_i,ψ_i) в два этапа:

$$(\varphi_{i-1}, \psi_{i-1}) \xrightarrow{\mathrm{I}} (\varphi_{i,1}, \psi_{i,1}) \xrightarrow{\mathrm{II}} (\varphi_{i}, \psi_{i}),$$

где $(\varphi_{i,1},\psi_{i,1})$ — некоторое изображение графа H_i . Сужение на граф H_{i-1} изображения $(\varphi_{i,1},\psi_{i,1})$ получается из изображения $(\varphi_{i-1},\psi_{i-1})$ горизонтальным растяжением плоскости

$$\sigma((x,y)) := \left\{ egin{array}{ll} (x,y), & ext{ecan} \ x \leqslant s', \ (x+eta,y), & ext{ecan} \ x > s'. \end{array}
ight.$$

Для графа H_i положим $\varphi_{i,1}(v_j)=(k_{s'}+j,\mu+1)\ (j=1,\ldots,\beta)$. Отображение $\psi_{i,1}$ доопределяется так, чтобы цепь $(u_1,w_\beta,\ldots,w_1,u_\alpha)$ в качестве образа имела ломаную $((k_{s'},\mu),(k_{s'},\mu+1),(k_{s''}+\beta,\mu+1),(k_{s''}+\beta,\mu))$.

На втором этапе («выравнивании») полагаем

$$\varphi_i(v) = \left\{ \begin{array}{ll} \varphi_{i,1}(v) + (0,1) & \text{ для } v \in V(B_{i-1}) \setminus \{u_2, \ldots, u_{\alpha-1}\}, \\ \varphi_{i,1}(v) & \text{ для остальных } v, \end{array} \right.$$

где (0,1) понимается как вектор. Далее, полагаем $\psi_i(e)=\psi_{i,1}(e)$ для всех ребер $e\in E(H_i)$ таких, что e не является инцидентным ни одной вершине цикла B_i . Для ребер графа H_i , инцидентных хотя бы одной вершине цикла B_i , отображение ψ_i определяется так: цикл B_i отображается в прямоугольник $((0,0),(0,\mu+1),(\lambda+\beta+1,\mu+1),(\lambda+\beta+1,0))$, а ломаные, соответствующие остальным ребрам, удлиняются (там, где необходимо) вверх на единичный отрезок.

Случай 2: образ множества $\{u_1,\ldots,u_\alpha\}$ при отображении φ_{i-1} — это множество $\{(k_j,\mu): j\leqslant s',j\geqslant s''\}$. Обозначим через $(\varphi_{i-1,1},\psi_{i-1,1})$ изображение графа H_{i-1} , получающееся из изображения $(\varphi_{i-1},\psi_{i-1})$ параллельным переносом плоскости на вектор $(1+\beta,1)$. Изображение (φ_i,ψ_i) получается из изображения $(\varphi_{i-1,1},\psi_{i-1,1})$ в два этапа:

$$(\varphi_{i-1,1}, \psi_{i-1,1}) \xrightarrow{I} (\varphi_{i,1}, \psi_{i,1}) \xrightarrow{II} (\varphi_{i}, \psi_{i}),$$

где $(\varphi_{i,1},\psi_{i,1})$ — некоторое изображение графа H_i . Сужение на граф H_{i-1} изображения $(\varphi_{i,1},\psi_{i,1})$ совпадает с изображением $(\varphi_{i-1,1},\psi_{i-1,1})$. Кроме того, полагаем $\varphi(w_j)=(j,\mu+2)\ (j=1,\dots,\beta)$. Отображение $\psi_{i,1}$ доопределяем так, чтобы цепь $(u_1,w_1,\dots,w_\beta,u_\alpha)$ переводилась в ломаную

$$((k_{s'} + \beta + 1, \mu + 1), (k_{s'} + \beta + 1, \mu + 2), (0, \mu + 2,), (0, 0),$$

 $(\lambda + \beta + 2, 0), (\lambda + \beta + 2, \mu + 2), (k_{s''} + \beta + 1, \mu + 2), (k_{s''} + \beta + 1, \mu + 1)).$

Второй этап аналогичен второму этапу первого случая. Полагаем

$$\varphi_i(v) := \left\{ \begin{array}{ll} \varphi_{i,1}(v) + (0,1) & \text{ для } v \in V(B_{i-1}) \setminus \{u_2, \ldots, u_{\alpha-1}\}, \\ \varphi_{i,1}(v) & \text{ для остальных } v \end{array} \right.$$

и затем полагаем $\psi_i(e) = \psi_{i,1}(e)$ для каждого ребра $e \in E(H_i)$ такого, что e не является инцидентным ни одной вершине цикла B_i . Далее отображение ψ_i доопределяем так, чтобы цикл B_i отображался в прямоугольник с вершинами $(0,0), (\lambda+\beta+2,0), (\lambda+\beta+2,\mu+2), (0,\mu+2)$. Ломаные, соответствующие ребрам графа H_i , которые инцидентны вершинам цикла B_i , но не содержатся в нем, удлиняются вверх на отрезок единичной длины. Описание алгоритма закончено.

Нетрудно заметить, что на i-м шаге размеры прямоугольника, отвечающего внешней грани графа H_i , увеличиваются по горизонтали самое большее на $\beta+2$, по вертикали — на 2. Так как по формуле Эйлера для кубического плоского графа имеем p=1/2|V(G)|+2, длина и высота конечного прямоугольника не превосходят 2(p-1)+|V(G)|=2(|V(G)|+1). Таким образом, для построенного изображения выполняется условие (а) леммы 2. Это влечет также полиномиальность алгоритма (нетрудно видеть, что на самом деле требуемые вычисления можно провести за линейное время). С другой стороны, непосредственно из описания алгоритма видно, что условию (б) леммы 2 удовлетворяет каждое из изображений (φ_i, ψ_i) ($i=1,\ldots,p-1$), включая и искомое. Таким образом, лемма 2 доказана.

X. Бергманн [8] показал, что каждый кубический планарный граф G является минором плоской r-решетки при достаточно большом r. В его доказательстве r имеет порядок $2^{|V(G)|}$. Нетрудно заметить, что, доказывая лемму 2, мы установили утверждение, усиливающее результат Бергманна.

Следствие 3. Всякий планарный кубический граф G топологически содержится в плоской 2(|V(G)|+2r+4(q-1)+1)-решетке, где r и q соответственно число мостов и число компонент в графе G.

Пусть G и H — связные графы такие, что H топологически содержит G. Для любого ребра $e \in E(G)$ обозначим через F(e) множество ребер цепи в H, заменяющей ребро e. Обозначим через W множество всех внутренних вершин этих цепей.

Предположим теперь, что задана индивидуальная СЗМ на G с функциями $c,\varphi\colon V(G)\to \mathbf{R}_+,\ l\colon E(G)\to \mathbf{R}_+.$ Рассмотрим индивидуальную СЗМ на H с весовыми функциями $c_H,\varphi_H\colon V(H)\to \mathbf{R}_+$ и $l_H\colon E(H)\to \mathbf{R}_+,$ определенными формулами

$$arphi_H(v) = \left\{ egin{array}{ll} arphi(v) & \mbox{для } v \in V(G), \\ 0 & \mbox{для остальных } f; \end{array}
ight.$$

$$c_H(v) = \begin{cases} c(v) & \text{для } v \in V(G), \\ \Phi & \text{для } v \in W, \\ 0 & \text{для остальных } v; \end{cases} \tag{4}$$

где Φ — любое число, превосходящее $\sum_{e \in E(G)} l(e)$. Из построения вытекает следующая

- **Лемма 3.** Если $Y \subseteq V(H)$ оптимальное решение построенной индивидуальной сетевой задачи о медиане на H, то $Y \cap V(G)$ — оптимальное решение исходной индивидуальной сетевой задачи о медиане на G.
- 3. Доказательство основного результата теоремы 3. Согласно лемме 1 СЗМ на кубических планарных графах является NP-трудной. Построим полиномиальное сведение СЗМ на кубических планарных графах к СЗМ на плоских решетках. Рассмотрим индивидуальную СЗМ на кубическом планарном графе G с набором входных данных (G, c, φ, l) . По лемме 2 (см. замечание 2) за полиномиальное (даже линейное) время может быть найден граф G^* , являющийся подграфом плоской O(|V(G)|)-решетки H и подразделением графа G. Используя формулы (4), преобразуем C3M на G с входными данными (G,c,φ,l) в C3M на H с входными данными (H, c_H, φ_H, l_H) . По лемме 3 это сведение является искомым. Теорема 3 показана.

ЛИТЕРАТУРА

- 1. Robertson N., Seymour P. D. Graph minors. V. Excluding a planar graph // J. Combin. Theory. 1986. V. 41B, N 1. P. 92-114.
- 2. Ageev A. A. A criterion of polynomial-time solvability for the network location problem // Integer Programming and Combinatorial Optimization. Proc. IPCO II Conf. Campus Printing, Carnegie Mellon University, 1992. P. 237-245.
- 3. Arnborg S., Lagergen J., Seese D. Easy problems for tree-decomposable graphs // J. Algorithms. 1991. V. 12, N 2. P. 308-340.
- 4. Arnborg S., Proskurowski A. Linear time algorithms for NP-hard problems restricted to partial q-trees // Discrete Appl. Math. 1989. V. 23, N 1. P. 11-24.
- 5. Bern M. W., Lawler E. L., Wong A. L. Linear-time computation of optimal subgraphs of decomposable graphs // J. Algorithms. 1987. V. 8, N 2. P. 216-235.
- 6. Bodlaender H. L. Dynamic programming on graphs with bounded treewidth // Lecture Notes in Comput. Berlin etc.: Springer-Verl., 1988. V. 317. P. 105-118.
- 7. Гэри М., Джонсон Д. Вычислительные машины и труднорешаемые задачи. М.: Мир. 1982.
- 8. Bergmann H. Ein Planaritätskriterium für endliche Graphen // Elem. Math. 1982. Bd 37. S. 49-51.
- 9. Kariv O., Hakimi S. L. An algorithmic approach to network location problems. Part 2: The p-medians // SIAM J. Appl. Math. 1979. V. 37. P. 539-560.
- 10. Kikuno T., Yoshida N., Kakuda Y. The NP-completeness of the dominating set
- problem in cubic planar graphs // IEEE Trans. Japan. 1980. V. E64. P. 434-444.

 11. Hopcroft J. E., Tarjan R. E. Efficient planarity testing // J. Assoc. Comput. Mach. 1974. V. 21, N 4. P. 549-568.