О ЛИНЕЙНЫХ РАСШИРЕНИЯХ ЧАСТИЧНО УПОРЯДОЧЕННЫХ МНОЖЕСТВ *)

А. Д. Коршунов

Введение

Пусть T — конечное частично упорядоченное множество. Для любых a и b из T вероятность $\mathbf{P}_T(a < b)$ определяется как доля линейных расширений множества T, в которых a < b. Настоящая статья появилась после обсуждения с И. Райвелом следующей гипотезы М. Фредмана [1] (см. также [2]): любое конечное частично упорядоченное множество, не являющееся цепью, содержит несравнимые элементы a и b такие, что $1/3 \leqslant \mathbf{P}_T(a < b) \leqslant 2/3$ (частично упорядоченное трехэлементное множество, содержащее цепь длины 2 и независимый элемент, должно быть экстремальным примером). Дж. Кан и М. Сакс [3] доказали следующий ослабленный вариант гипотезы Фредмана: в любом конечном частично упорядоченном множестве T, не являющемся цепью, имеются элементы a и b такие, что $3/11 \leqslant \mathbf{P}_T(a < b) \leqslant 8/11$. Они также высказали предположение, что для некоторых a и b из T вероятность $\mathbf{P}_T(a < b)$ близка к 1/2, если T содержит большую антицепь.

Я. Комлош [4] доказал следующее утверждение: если T является двудольным порядком на n-элементном множестве и $n>n_0(\varepsilon)$, то в T имеются элементы a и b такие, что $1/2-\varepsilon<\mathbf{P}_T(a< b)<1/2+\varepsilon$.

В настоящей статье мы доказываем, что почти в каждом частично упорядоченном n-элементном множестве T приблизительно для $(3/16)n^2$ пар элементов a и b из T вероятность $\mathbf{P}_T(a < b)$ близка к 1/2 и приблизительно для $(5/16)n^2$ пар элементов a и b из T вероятность $\mathbf{P}_T(a < b)$ близка к 1 (теорема и следствие).

§ 1. Формулировка основных результатов

Прежде чем переходить к точной формулировке результатов введем необходимые понятия и обозначения. Обозначим через T_n множество всех частичных порядков на помеченном n-элементном множестве S. Любой порядок $T \in T_n$ единственным способсм задается диаграммой, которую обозначим через G(T). Диаграмма G(T) есть ориентированный граф, вершинами которого являются элементы из S. В G(T) имеется единственная дуга, исходящая из вершины a и заходящая в вершину b, если и только если a покрывает b (a покрывает b, если a > b и $a > c \geqslant b$ влечет c = b). Различные порядки задаются различными диаграммами.

^{*)} Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 93-011-1484).

^{© 1994} Коршунов А. Д.

Ясно, что ориентированный граф является диаграммой подходящего частичного порядка, если и только если граф не содержит дуг $e_0, e_1, e_2, \ldots, e_k$ таких, что конечная вершина для e_i является начальной для $e_{i+1}, 1 \leqslant i \leqslant k-1$, и e_0 инцидентна инициальной вершине для e_1 и конечной вершине для e_k (в любом направлении).

• Вершины a и b называются смежными, если имеется дуга, инцидентная вершинам a и b (т. е. либо a покрывает b, либо b покрывает a).

Для произвольного множества $S'\subseteq S$ через C(S') будем обозначать множество всех вершин $a\in S$ таких, что a смежна по крайней мере с одной вершиной из S'.

• Вершина a называется минимальной a G(T), если a не покрывает других вершин, и максимальной a G(T), если в G(T) нет вершины a такой, что a < b.

Слои в диаграмме G(T) определяются так. Первому слою принадлежат все минимальные вершины из G(T). Далее, если из G(T) удалить все вершины (с инцидентными им дугами), находящиеся в 1-, ..., (i-1)-м слоях, то множество всех минимальных вершин в полученной диаграмме образует i-й слой в G(T). Ясно, что все вершины одного слоя попарно несравнимы. Множество вершин i-го слоя диаграммы G(T) обозначим через $L_i(T)$, $i=1,2,\ldots$

Пусть n-элементное множество S произвольным способом разбито на три подмножества $S_1,\ S_2,\ S_3$ такие, что $|S_1|=n_1,\ |S_2|=n_2,\ |S_3|=n_3=n-n_1-n_2$. Обозначим через $T(n_1,n_2,n_3)$ множество всех трехслойных порядков T на S таких, что $L_1(T)=S_1,\ L_2(T)=S_2,\ L_3(T)=S_3,$ а любой элемент из $L_3(T)$ покрывает только элементы из $L_2(T)$. Далее, пусть

$$\mathcal{T}_{n,3} = \cup^1 \cup^2 \mathcal{T}(n_1, n_2, n_3),$$

где \cup^1 берется по всем наборам (n_1,n_2,n_3) таким, что

$$n/4 - n^{1/2} \ln n \le n_1 \le n/4 + n^{1/2} \ln n,$$

$$n/2 - \ln n \le n_2 \le n/2 + \ln n,$$
(1.1)

а \cup^2 берется по всем разбиениям множества S на подмножества S_1 , S_2 , S_3 такие, что $|S_1|=n_1,\,|S_2|=n_2,\,|S_3|=n_3.$

Д. Клейтман и Б. Ротшилд [5] показали, что при $n \to \infty$

$$|\mathcal{T}_n| \sim |\mathcal{T}_{n,3}|. \tag{1.2}$$

Ниже доказывается следующее утверждение.

Теорема. Если n_1 и n_2 удовлетворяют (1.1), то при $n \to \infty$ почти любое частично упорядоченное множество $T \in \mathcal{T}(n_1, n_2, n_3)$ обладает следующими свойствами:

- (i) для любых элементов a и b из $L_i(T)$, $1 \leqslant i \leqslant 3$, справедливо $\mathbf{P}_T(a < b) \sim 1/2$;
- (ii) для любых элементов $a \in L_i(T), i = 1, 2,$ и $b \in L_j(T), j > i,$ справедливо $\mathbf{P}_T(a < b) \sim 1.$

Если n_1 и n_2 удовлетворяют (1.1), то при $n \to \infty$

$$\binom{n_1}{2} + \binom{n_2}{2} + \binom{n_3}{2} \sim (3/16)n^2$$
, $n_1n_2 + n_1n_3 + n_2n_3 \sim (5/16)n^2$.

Пользуясь этим фактом, а также (1.2) и теоремой, получаем

Следствие. На помеченном n-элементном множестве почти любой порядок T обладает следующим свойством: число пар элементов a и b из T таких, что $\mathbf{P}_T(a < b) \sim 1/2$, асимптотически равно $(3/16)n^2$, а число пар элементов a и b из T таких, что $\mathbf{P}_T(a < b) \sim 1$, асимптотически равно $(5/16)n^2$.

§ 2. Вспомогательные утверждения

Обозначим через $T_1(n_1, n_2, n_3)$ множество таких частичных порядков T из $T(n_1, n_2, n_3)$, в каждом из которых содержатся по крайней мере два несравнимых элемента a и b таких, что $a \in L_1(T)$, $b \in L_3(T)$.

Лемма 2.1 [6, теорема 4.1]. *Если* n_1 и n_2 удовлетворяют (1.1), то при $n \to \infty$

$$|\mathcal{T}_1(n_1, n_2, n_3)| = o(|\mathcal{T}(n_1, n_2, n_3)|).$$

Положим

$$k_i^0 = \lfloor (1/2)n_i - (2n\ln n)^{1/2} \rfloor. \tag{2.1}$$

Обозначим через $T_2(n_1,n_2,n_3)$ множество частичных порядков $T\in T(n_1,n_2,n_3)$ таких, что при некотором i (i=1,2) в $L_i(T)$ имеется элемент, который покрывается не более чем k_{i+1}^0 элементами из $L_{i+1}(T)$.

Лемма 2.2. Если n_1 и n_2 удовлетворяют (1.1), то при $n \to \infty$

$$|\mathcal{T}_2(n_1, n_2, n_3)| = o(|\mathcal{T}(n_1, n_2, n_3)|).$$

Доказательство. Ясно, что

$$|\mathcal{T}(n_1, n_2, n_3)| = (2^{n_1} - 1)^{n_2} (2^{n_2} - 1)^{n_3} \sim 2^{n_1 n_2 + n_2 n_3} = 2^{n_2 (n - n_2)}.$$
 (2.2)

Обозначим через $T(n_1,n_2,n_3,i,k)$ множество частичных порядков T из $T(n_1,n_2,n_3)$ таких, что в $L_i(T)$ имеется элемент v_i , который покрывается точно k элементами из $L_{i+1}(T)$.

Все частичные порядки из $T(n_1, n_2, n_3, i, k)$ (и некоторые другие) могут быть получены следующим способом.

- 1. В S_i отбирается вершина v, а в S_{i+1} k-элементное подмножество S'. Имеется $n_i \binom{n_{i+1}}{k}$ возможностей.
- 2. Вершина v соединяется дугами (ориентированными к v) со всеми вершинами из S' (однозначно).
- 3. Каждая вершина из $S_i \setminus \{v\}$ соединяется дугами (ориентированными к вершинам из $S_i \setminus \{v\}$) с произвольными вершинами из S_{i+1} . Имеется $2^{(n_i-1)n_{i+1}}$ возможностей.
- 4. Если i=1, то вершины из S_2 произвольно соединяются дугами (ориентированными к вершинам из S_2) с вершинами из S_3 . Имеется $2^{n_2n_3}$ возможностей.
- 5. Если i=2, то вершины из S_1 произвольно соединяются дугами (ориентированными к вершинам из S_1) с вершинами из S_2 . Имеется $2^{n_1n_2}$ возможностей.

Следовательно,

$$\begin{split} \sum_{k=0}^{k_2^0} |\mathcal{T}(n_1, n_2, n_3, 1, k)| &< n \sum_{k=0}^{k_2^0} \binom{n_2}{k} 2^{(n_1-1)n_2+n_2n_3} \\ &= n 2^{n_2(n-n_2)-n_2} \sum_{k=0}^{k_2^0} \binom{n_2}{k} = o \left(2^{n_2(n-n_2)} - n^{-2} \right) = (\text{cm. } (2.2)) \\ &= o \left(|\mathcal{T}(n_1, n_2, n_3)| \right), \\ \sum_{k=0}^{k_2^0} |\mathcal{T}(n_1, n_2, n_3, 2, k)| &< n \sum_{k=0}^{k_2^0} \binom{n_3}{k} 2^{(n_2-1)n_3+n_1n_2} = o \left(|\mathcal{T}(n_1, n_2, n_3)| \right). \end{split}$$

Лемма 2.2 доказана.

Обозначим через $T_3(n_1,n_2,n_3)$ множество частичных порядков T из $T(n_1,n_2,n_3)$ таких, что при некотором i (i=2,3) в $L_i(T)$ имеется элемент, который покрывает не более чем k_{i-1}^0 элементов из $L_{i-1}(T)$, где k_{i-1}^0 определено в (2.1).

Лемма 2.3. Если
$$n_1$$
 и n_2 удовлетворяют (1.1) , то при $n \to \infty$ $|\mathcal{T}_3(n_1,n_2,n_3)| = o(|\mathcal{T}(n_1,n_2,n_3)|).$

Доказательство леммы 2.3 аналогично доказательству леммы 2.2 и поэтому опускается.

Положим

$$j_0 = \lfloor 3 \log n \rfloor, \quad m_i = n_i - j_0, \quad i = 1, 2, 3.$$
 (2.3)

Обозначим через $\mathcal{T}_4(n_1,n_2,n_3)$ множество частичных порядков T из $\mathcal{T}(n_1,n_2,n_3)$ таких, что при некоторых i и j, i=1,2, а $j>j_0,$ в $L_i(T)$ имеется j-элементное подмножество, которое покрывается не более чем m_{i+1} элементами из L_{i+1} .

Лемма 2.4. Если
$$n_1$$
 и n_2 удовлетворяют (1.1) , то при $n \to \infty$ $|\mathcal{T}_4(n_1,n_2,n_3)| = o(|(\mathcal{T}(n_1,n_2,n_3)|).$

Доказательство. Обозначим через $T(n_1,n_2,n_3,i,j,k)$ множество порядков $T \in T(n_1,n_2,n_3)$ таких, что $L_i(T)$ содержит j-элементное подмножество S', удовлетворяющее условию $|C(S') \cap L_{i+1}(T)| = k$. Все частичные порядки из $T(n_1,n_2,n_3,i,j,k)$ (и некоторые другие) могут быть получены следующим способом.

- 1. Отбираются j-элементное подмножество S' в S_i и k-элементное подмножество S'' в S_{i+1} . Имеется $\binom{n_i}{j}\binom{n_{i+k}}{k} < n^j\binom{n_{i+1}}{k}$ возможностей.
- 2. Каждая вершина из S' соединяется дугами (ориентированными к вершинам из S') с произвольными вершинами из S''. Имеется 2^{jk} возможностей.
- 3. Каждая вершина из $S_i \setminus S'$ соединяется дугами (ориентированными к вершинам из $S_i \setminus S'$) с произвольными вершинами из S_{i+1} . Имеется $2^{(n_i-j)n_{i+1}}$ возможностей.

- 4. Если i=1, то каждая вершина из S_2 соединяется дугами (ориентированными к вершинам из S_2) с произвольными вершинами из S_3 . Имеется $2^{n_2n_3}$ возможностей.
- 5. Если i=2, то каждая вершина из S_1 соединяется дугами (ориентированными к вершинам из S_1) с произвольными вершинами из S_2 . Имеется $2^{n_1n_2}$ возможностей.

Следовательно, при i=1,2

$$|\mathcal{T}(n_1, n_2, n_3, i, j, k)| < \binom{n_2}{k} n^j 2^{n_2(n-n_2)-j(n_{i+1}-k)}.$$

Отсюда следует, что

 $|\mathcal{T}_4(n_1,n_2,n_3)|$

$$<2^{n_2(n-n_2)}\Big\{\sum_{k=0}^{m_2}\sum_{j\geqslant j_0}\binom{n_2}{k}n^j2^{-j(n_2-k)}+\sum_{k=0}^{m_3}\sum_{j\geqslant j_0}\binom{n_3}{k}n^j2^{-j(n_3-k)}\Big\}$$

$$= o\left(2^{n_2(n-n_2)}n^{-\log n}\right) = (\text{cm. } (2.2)) = o\left(|\mathcal{T}(n_1,n_2,n_3)|\right).$$

Лемма 2.4 доказана.

Обозначим через $T_5(n_1,n_2,n_3)$ множество частичных порядков T из $T(n_1,n_2,n_3)$ таких, что для некоторых i и $j,\ i=1,2,\ a\ j\geqslant j_0,\ B\ L_i(T)$ имеется j-элементное подмножество, которое покрывает не более чем m_{i-1} элементов из $L_{i-1}(T),$ где m_{i-1} определено в (2.3).

Лемма 2.5. Если
$$n_1$$
 и n_2 удовлетворяют (1.1) , то при $n \to \infty$ $|\mathcal{T}_5(n_1, n_2, n_3)| = o(|\mathcal{T}(n_1, n_2, n_3)|).$

Доказательство леммы 2.5 аналогично доказательству леммы 2.4 и поэтому опускается.

Пусть $\mathcal{T}_1^*(n_1,n_2,n_3)=\mathcal{T}(n_1,n_2,n_3)\setminus\bigcup_{j=1}^5\mathcal{T}_i(n_1,n_2,n_3).$ Тогда, пользуясь леммами 2.1–2.5, получаем

Утверждение 2.1. Если n_1 и n_2 удовлетворяют (1.1), то при $n \to \infty$ $|\mathcal{T}_1^*(n_1,n_2,n_3)| \sim |\mathcal{T}(n_1,n_2,n_3)|$

и любой частичный порядок $T\in\mathcal{T}_1^*(n_1,n_2,n_3)$ обладает следующим свойством:

о если E произвольное линейное расширение порядка T, то a < b для любых $a \in L_1(E)$ и $b \in L_3(E)$.

Пусть $T^*(n_1,n_2,n_3)$ обозначает множество порядков T из $\mathcal{T}(n_1,n_2,n_3)$ таких, что

- а) каждый элемент $a \in L_1(T)$ сравним с каждым элементом $b \in L_3(T)$;
- б) каждый элемент из $L_i(T)$ покрывается более чем k_{i+1}^0-2 элементами из $L_{i+1}(T)$, где i=1,2 и k_i^0 определено в (2.1);
- в) при i=2,3 каждый элемент из $L_i(T)$ покрывает более чем k_{i-1}^0 элементов из $L_{i-1}(T)$;
- г) при $j\geqslant j_0$ каждое j-элементное подмножество из $L_i(T)$ покрывается более чем $m_{i+1}-2$ элементами из $L_{i+1}(T)$, где i=1,2 и m_i определено в (2.3);
- д) при i=1,2 и $j\geqslant j_0$ каждое j-элементное подмножество из $L_i(T)$ покрывает более чем $m_{i-1}-2$ элементов из $L_{i-1}(T)$.

Поскольку $\mathcal{T}_1^*(n_1,n_2,n_3)\subset \mathcal{T}^*(n_1,n_2,n_3),$ используя утверждение 2.1, получаем

Утверждение 2.2. Если n_1 и n_2 удовлетворяют (1.1), то при $n \to \infty$

$$|\mathcal{T}^*(n_1, n_2, n_3)| \sim |\mathcal{T}(n_1, n_2, n_3)|.$$

Положим $w_0 = \lfloor 12\log^2 n \rfloor$ и обозначим через $\mathcal{E}_1(T)$ множество линейных расширений порядка $T \in \mathcal{T}(n_1,n_2,n_3)$ таких, что в каждом расширении содержится по крайней мере один элемент из $L_2(T)$, который предшествует $w \geqslant w_0$ элементам из $L_1(T)$.

Лемма 2.6. Если n_1 и n_2 удовлетворяют (1.1) и $n\to\infty,$ то для любого $T\in\mathcal{T}^*(n_1,n_2,n_3)$

$$|\mathcal{E}_1(T)| = o(n_1! n_2! n_3!).$$

Доказательство. Пусть $S_2 = \{v_1, v_2, \ldots, v_{n_2}\}$ и T — такой частичный порядок из $T^*(n_1, n_2, n_3)$, в котором элемент v_i покрывает k_i элементов из $L_1(T)$. Обозначим через $\mathcal{E}(T, i, k_i, s)$ множество линейных расширений E порядка T таких, что в E имеется точно s элементов из $L_1(T)$, которые меньше элемента v_i . Поскольку в E все элементы из $C(v_i) \cap L_1(T)$ должны предшествовать элементу v_i , все линейные расширения из $\mathcal{E}(T, i, k_i, s)$ могут быть получены следующим способом.

1. Фиксируется полный порядок E_1 на S_1 такой, что любой элемент из $C(v_i)\cap S_1$ содержится среди первых s элементов из E_1 . Число возможностей не превосходит величины

$$\binom{s}{k_i} k_i! (n_1 - k_i)! = s! (n_1 - k_i)! / (s - k_i)!$$

$$\leq (n_1 - w_0)! (n_1 - k_i)! / (n_1 - w_0 - k_i)! \sim n_1! (n_1 - k_i)! / (n_1^{w_0} (n_1 - w_0 - k_i)!)$$

$$< n_1! (n_1 - k_i)^{w_0} / n_1^{w_0} = n_1! (1 - k_i / n_1)^{w_0}.$$

Множество последних j_0 элементов в имеющемся порядке обозначим через S^1 .

- 2. Задается общий порядок E_2 на S_2 . Имеется $n_2!$ возможностей.
- 3. Линейно упорядоченные множества E_1 и E_2 перемешиваются так, чтобы множество $L_1(T) \cup L_2(T)$ оказалось линейно упорядоченным. Оценим сверху число таких перемешиваний. Ясно, что элементы из $L_1(T) \setminus S^1$ можно перемешивать только с элементами из $L_2(T) \setminus C(S^1)$. Поскольку $|C(S^1)| \geqslant n_2 j_0$ согласно определению $\mathcal{F}^*(n_1, n_2, n_3)$, число перемешиваний элементов из $L_1(T) \setminus S^1$ с элементами из $L_2(T)$ не превосходит величины $\sum_{i=0}^{j_0} \binom{n_1}{i} < n^{j_0}/j_0!$. Далее, число перемешиваний элементов из S^1 с элементами из $L_2(T)$ не превосходит величины $\binom{n_2+j_0}{j_0} < n^{j_0}$. Следовательно, общее число перемешиваний множеств E_1 и E_2 не превосходит $n^{2j_0}/j_0!$.
 - 4. Задается общий порядок на S_3 . Имеется $n_3!$ возможностей.
- 5. Линейно упорядоченные множества $L_2(T)$ и $L_3(T)$ перемешиваются так, чтобы множество $L_1(T) \cup L_2(T) \cup L_3(T)$ оказалось линейно упорядоченным (из определений множеств $T_1(n_1,n_2,n_3)$ и $T(n_1,n_2,n_3)$ следует, что множества L_1 и L_3 не надо перемешивать). Как и в случае (2.1), убеждаемся в том, что число перемешиваний линейно упорядоченных множеств $L_2(T)$ и $L_3(T)$ меньше n^{2j_0} .

Следовательно,

$$|\mathcal{E}(T, i, k_i, s)| < n_1! \, n_2! \, n_3! \, n^{4j_0} (1 - k_i/n_i)^{w_0} (j_0!)^{-1}. \tag{2.4}$$

Далее, используя определения множеств $\mathcal{E}_1(T)$ и $\mathcal{E}(T,i,k_i,s)$, имеем

$$\mathcal{E}_1(T) = \bigcup_{i=1}^{n_2} \bigcup_{s=k_i}^{n_1-w_0} \mathcal{E}(T, i, k_i, s).$$
 (2.5)

Из (2.4) и (2.5) получаем

$$|\mathcal{E}_1(T)| < n_1! \, n_2! \, n_3! \, n^{4j_0} (j_0!)^{-1} \sum_{i=1}^{n_2} \sum_{s=k_i}^{n_1-w_0} (1-k_i/n_1)^{w_0}.$$

Поскольку $T \in \mathcal{T}^*(n_1, n_2, n_3)$, имеем $k_i \geqslant k_i^0 - 2$. Поэтому

$$\begin{aligned} |\mathcal{E}_1(T)| < n_1! \, n_2! \, n_3! \, n^{4j_0} (j_0!)^{-1} (1 - (k_i^0 - 2)/n_1)^{w_0} \\ \sim n_1! \, n_2! \, n_3! \, n^{4j_0 + 2} (j_0!)^{-1} 2^{-w_0} = o(n_1! \, n_2! \, n_3!). \end{aligned}$$

Лемма 2.6 доказана.

Аналогичным способом доказываются приведенные ниже леммы 2.7–2.9. Обозначим через $\mathcal{E}_2(T)$ множество линейных расширений порядка $T \in \mathcal{T}(n_1, n_2, n_3)$ таких, что в каждом из них содержится по крайней мере один элемент из $L_1(T)$, который следует за $w \geqslant w_0$ элементами из $L_2(T)$.

Лемма 2.7. Если n_1 и n_2 удовлетворяют (1.1) и $n\to\infty,$ то для любого $T\in\mathcal{T}^*(n_1,n_2,n_3)$

$$|\mathcal{E}_2(T)| = o(n_1! n_2! n_3!).$$

Обозначим через $\mathcal{E}_3(T)$ множество таких линейных расширений порядка $T\in \mathcal{T}(n_1,n_2,n_3)$, в каждом из которых имеется по крайней мере один элемент из $L_3(T)$, который предшествует $w\geqslant w_0$ элементам из $L_2(T)$.

Лемма 2.8. Если n_1 и n_2 удовлетворяют (1.1) и $n \to \infty$, то для любого $T \in \mathcal{T}^*(n_1,n_2,n_3)$

$$|\mathcal{E}_3(T)| = o(n_1! n_2! n_3!).$$

Обозначим через $\mathcal{E}_4(T)$ множество линейных расширений порядка $T\in T(n_1,n_2,n_3)$ таких, что в каждом из них имеется по крайней мере один элемент из $L_3(T)$, который следует за $w\geqslant w_0$ элементами из $L_3(T)$.

Лемма 2.9. Если n_1 и n_2 удовлетворяют (1.1) и $n \to \infty$, то для любого $T \in \mathcal{T}^*(n_1,n_2,n_3)$

$$|\mathcal{E}_4(T)| = o(n_1! n_2! n_3!).$$

Обозначим через $\mathcal{E}(T)$ множество всех линейных расширений порядка T. Пусть для любого порядка $T\in\mathcal{T}(n_1,n_2,n_3)$

$$\mathcal{E}^*(T) = \mathcal{E}(T) \setminus \bigcup_{i=1}^4 \mathcal{E}_i(T). \tag{2.6}$$

Ясно, что величина $n_1!n_2!n_3!$ равна числу всех линейных расширений произвольного порядка $T \in \mathcal{T}(n_1,n_2,n_3)$ таких, что в каждом из них все элементы из $L_1(T)$ меньше любого элемента из $L_2(T)$ и все элементы из $L_2(T)$ меньше любого элемента из $L_3(T)$. Поэтому для любого $T \in \mathcal{T}(n_1,n_2,n_3)$

$$|\mathcal{E}(T)| \geqslant n_1! \, n_2! \, n_3!. \tag{2.7}$$

Используя (2.6), (2.7) и леммы 2.6-2.9, получаем следующее утверждение.

Лемма 2.10. Если n_1 и n_2 удовлетворяют (1.1) и $n \to \infty$, то для любого $T \in \mathcal{T}^*(n_1, n_2, n_3)$

$$|\mathcal{E}^*(T)| \sim |\mathcal{E}(T)|.$$

§ 3. Доказательство теоремы

Пусть $T\in \mathcal{T}_1^*(n_1,n_2,n_3)$ и a,b — произвольные элементы из $L_1(T)$. Обозначим через T' частичный порядок на $S\setminus\{a,b\}$, который индуцируется порядком T. Ясно, что $T'\in\mathcal{T}^*(n_1-2,n_2,n_3)$. Поэтому согласно лемме 2.10 имеем $|\mathcal{E}^*(T')|\sim |\mathcal{E}(T')|$. Зафиксируем произвольное $E\in |\mathcal{E}^*(T')|$ и обозначим через R_1 и R_2 начальные отрезки в E длины n_1-w_0-2 и n_1+w_0 соответственно. Из определения $\mathcal{E}(T')$ следует, что в R_1 нет элементов из $L_2(T')$ и $L_3(T')$, а вне отрезка R_2 нет элементов из $L_1(T')$. Рассмотрим упорядочивания элементов a и b в E такие, что результирующий порядок является линейным и принадлежит множеству $\mathcal{E}^*(T)$ (такие упорядочивания a и b назовем donycmumimu). Ясно, что a и b следует упорядочивать только с элементами отрезка R_2 . Число способов таких упорядочиваний не меньше величины

$$2\binom{n_1-w_0}{2} \sim n_1^2, \tag{3.1}$$

и все получаемые упорядочения являются допустимыми. Далее, имеется менее

$$48n_1\log^2 n = o(n_1^2) \tag{3.2}$$

упорядочиваний a и b с элементами из R_2 таких, что по крайней мере один из элементов a, b больше всех элементов из R_1 . Из (3.1) и (3.2) следует, что почти все упорядочивания элементов a и b с элементами из R_2 являются такими, что a и b упорядочены с элементами из R_1 .

Ясно, что множество таких упорядочений разбивается на два равномощных подмножества таких, что a < b в любом упорядочении одного подмножества и a > b в любом упорядочении другого подмножества.

Теперь рассмотрим слой S_2 . Пусть T — произвольный порядок из $T_1^*(n_1,n_2,n_3)$ и a,b — произвольные элементы из $L_2(T)$. Обозначим через T' порядок на множестве $S\setminus\{a,b\}$, который индуцируется порядком T. Ясно, что $T'\in \mathcal{T}^*(n_1,n_2,n_3)$. Используя лемму 2.10, имеем $|\mathcal{E}^*(T')|\sim |\mathcal{E}(T')|$. Зафиксируем произвольный линейный порядок E из $E^*(T')$. Обозначим через R_1 отрезок из E, начинающийся с (n_1+w_0-1) -го элемента и оканчивающийся $(n-n_3-w_0)$ -м элементом. Через R_2 обозначим отрезок из E, начинающийся с $(n_1-\lfloor 12\log^2 n\rfloor-2)$ -го элемента и оканчивающийся $(n-n_3+\lfloor 12\log^2 n\rfloor)$ -м элементом. Из определения $E^*(T')$ следует, что в R_1 нет элементов из $L_1(T')$ и $L_3(T')$, а вне отрезка R_2 нет элементов из $L_2(T')$.

Рассмотрим такие упорядочивания элементов a,b с элементами из E, что результирующий порядок является линейным и принадлежит множеству $\mathcal{E}^*(T)$. Ясно, что a,b следует упорядочивать только с элементами из R_2 . В свою очередь, число упорядочиваний элементов a и b с элементами из R_1 не меньше $2\binom{n_2-8j_0-2}{2}\sim n_2^2$, и все полученные упорядочения являются допустимыми. Число остальных упорядочиваний элементов a и b с элементами из R_2 равно $o(n_2^2)$. Следовательно, почти всегда элементы a и b упорядочиваются с элементами из R_1 . Множество таких упорядочений разбивается на два равномощных подмножества таких, что a < b в любом порядке из одного подмножества и a > b в любом порядке из другого подмножества. Тем самым справедливость утверждения (i) теоремы в случае i=2 установлена. Доказательство утверждения (i) теоремы в случае i=3 аналогично.

Рассмотрим случай, когда $T \in T_1^*(n_1,n_2,n_3), a \in L_1(T)$ и $b \in L_2(T)$. Обозначим через T' порядок на множестве $S \setminus \{a\}$, который получается из T. Ясно, что $T' \in T^*(n_1-1,n_2,n_3)$. Поэтому $|\mathcal{E}^*(T')| \sim |\mathcal{E}(T')|$. Зафиксируем произвольный линейный порядок E из $\mathcal{E}^*(T')$ и обозначим через R_1 , R_2 начальные отрезки порядка E длины n_1-w_0-1 и n_1+w_0 соответственно. Из определения $\mathcal{E}^*(T')$ следует, что в R_1 нет элементов из $L_2(T')$ и $L_3(T')$, а вне отрезка R_2 нет элементов из $L_1(T')$.

Рассмотрим такие упорядочивания элемента a с элементами из E, что результирующие порядки являются линейными и принадлежат множеству $\mathcal{E}^*(T)$. Ясно, что a следует упорядочивать только с элементами из R_2 . В этом случае любой порядок является допустимым, а число упорядочиваний равно $|R_1|+1\sim n_1$. Далее, число остальных упорядочиваний элемента a с элементами из R_2 равно o(n), и все получаемые упорядочения являются допустимыми. Следовательно, почти всегда элемент a упорядочивается с элементами из R_1 . В любом таком порядке a < b. Тем самым справедливость утверждения (ii) теоремы при i=1, j=2 установлена.

Доказательство утверждения (ii) теоремы при i=2, j=3 аналогично. Наконец, справедливость утверждения (ii) теоремы при i=1, j=3 следует из утверждения 2.2. Теорема полностью доказана.

ЛИТЕРАТУРА

- 1. Fredman M. L. How good is the information theory bound in sorting? // Theoret. Comput. Sci. 1976. V. 13, N 4. P. 355-361.
- 2. Linial N. The information theoretic bound is good for merging // SIAM J. Comput. 1984. V. 13, N 4. P. 795-801.
- 3. Kahn J., Saks M. Balancing poset extensions // Order. 1984. V. 1, N 2. P. 113-126.
- 4. Komlós J. A strange pigeon-hole principle // Order. 1990. V. 7, N 2. P. 107-113.
- 5. Kleitman D. J., Rothschild B. L. Asymptotic enumeration of partial orders on a finite set // Trans. Amer. Math. Soc. 1975. V. 205. P. 205-220.
- 6. Erdös P., Kierstead H. A., Trotter W. T. The dimension of random ordered sets // Random Structures and Algorithms. 1991. V. 2, N 3. P. 251-275.