16 3

5

. 4

УДК 519.I

ОБ ОДНОМ СПОСОБЕ РАСПОЗНАВАНИЯ ИЗОМОРФИЗМА ПЛОСКИХ ГРАФОВ

В.К.Попков

Вопросы изоморфизма являются центральными в теории графов и её приложениях. Так например, решение некоторых экстремальных задач на графах, сводится к распознаванию изоморфизма графов.

В общем случае задача распознавания изоморфизма графов представляется чрезвычайно трудной и, как предположил Зыков А.А. [I], разрешима только путем полного перебора. Поэтому представляют интерес алгоритмы, позвсляющие сократить перебор. В работе [2] предлагается алгоритм распознавания изоморфизма, кото рый в лучшем случае дает оценку α^2 , а в худшем—все тот же полный перебор. Существуют также работы [I,3,4], в которых излатаются критерии изсморфизма двух графов. В этих работах проблема изоморфизма двух графов сводится к проблеме изоморфизма двух других графов.

В то же время для некоторых классов графов существуют алгоритмы, улучшающие оценки. Так, например, в работе [5] проблема изоморфизма решается для деревьев. Случай плоских графов представляет самостоятельный интерес, и вопросы изоморфизма в этом классе графов имеют много приложений.

В настоящей работе рассматриваются связные неориентиро — ванные плоские графы без петель, кратных ребер, точек сочлене ния и гамаков.

Пусть задан произвольный граф L-(X, u), где X — множество вершин (|X|=n), а U — множество ребер (|U|=m) графа L. Сферической (плоской) реализацией [6] S(L)|P(L)| графа L на—

вывается представление его вершин x_i точками сферы (плоскости) $\ell(x_i)$, а его ребер u — простыми дугами, лежащими на сфере (плоскости), причем выполняются следующие условия:

если $x_i \neq x_j$, то $\ell(x_i) \neq \ell(x_j)$, если $u_i \neq u_j$, то $\ell(u_i) \cap \ell(u_j) = \phi$, если x_i индидентна ребру u , то точка $\ell(x_i)$ является концом дуги $\ell(u)$.

 Γ раф L сферический (плоский), если он имеет хотя бы одну сферическую (плоскую) реализацию.

Две сферические (плоские) реализации назовем изотопными, если их можно совместить на сфере (плоскости), непрерывно деформируя $S_{1}(L)$ и $S_{2}(L)$ так, чтобы никакие дуги не пересека — лись, а вершины не совпадали.

леммя і. Если граф 4 без точек сочленения и гамаков, то число неизотопных сферических реализа -ций не больше двух.

ДО АЗАТЕЛЬСТВО "Пустъ имеется сферическая реализация $S_d(L)$ графа L .

Определим операцию Ψ как зеркальное отражение сферы (применить операцию Ψ к S(L) означает "вывернуть сферу наизнанку"). В общем случае $S_{1}(L) \sim \Psi$ $S_{1}(L) = S_{2}(L)$ и $S_{2}(L)$ является сферической реализацией графа L .

Далее понажем, что не существует сферической реализации $S(\mathcal{L})$, которан не изотопна одновременно с $S_1(\mathcal{L})$ и $S_2(\mathcal{L})$.

Определим операцию φ на $S_{i}(\mathcal{L}')$ ($\mathcal{L}' \subset \mathcal{L}$) как непрерывное че — ремещение точек $e(x_{i})$ по сфере с пересечением дуг e(u) .В этом былучать получится сферическая реализация $S(\mathcal{L})$, не инотопная $S_{i}(\mathcal{L})$. Очевидно, любое возможное построение сферических реализаций можно получить, применяя операцию φ к тому или иному подграфу \mathcal{L}' графа \mathcal{L} .

Заметим, что произвольному циклу μ графа λ соответствует замкнутая кривая $\ell(\mu)$ в $S_{\ell}(\lambda)$.

Итак, применим операцию φ к некоторой части $S_{\tau}(\mathcal{L}')$ так, чтобы полученная реализация $S(\mathcal{L})$ была сферической.

тогда $\psi \circ_{1}(\mathcal{L})$ должна располагаться внутри некоторой замкнутой кривой $e(\mu_{1})$, а $S_{1}(\mathcal{L}')$ внутри кривой $e(\mu_{2})$.

Возможны три случая:

- a) $e(\mu_i) = e(\mu_2)$, Torma $\varphi S_i(L) = \varphi S_i(L) = S_2(L)$.
- б) $e(\mu_1) \cap e(\mu_2) = \phi$, тогда, в силу свявности L, \bar{S} , (L') соединима с точками кривых $e(\mu_1)$ и $e(\mu_2)$, следовательно, в какой бы кривой $S_f(L')$ не располагалось, дуги соединяющие $S_f(L')$ с другой кривой, пересекут замкнутую кривую, содержащую $S_f(L')$, а значит, $S_f(L')$ не сферическая реализация.
- в) $e(\mu_t) \cap e(\mu_2) = e(q) = \phi$, если удалить $S_t(L')$, то e(q) не замкнутая кривая. Пусть $S_t(L')$ соединима с точками этой кривой и только с ними. В противном случае будет иметь место б). С другой стороны, если $S_t(L')$ соединима только с точками кривой e(q), то концевые точки e(q) являются концевыми точками гамака, что противоречит условию леммы.

Если $e(q) = e(x_o)$, то x_o -точка сочленения. Лемма доказана. ЛЕММА 2. Число плоских неизотоп — ных реализаций графа L без точек сочленения и гамаков не превыпа— ет 2(m-n+2).

ДОКАЗАТЕЛЬСТВО. Введем операцию ω_{α} S(L), отображающую сферу без точки на плоскость. Пусть имеется сферическая реализа— ция S(L) графа L, тогда расположим точку α на какой—либо грани $z_{\alpha} \in S(L)$ и "спроектировав S(L) на плоскость, получим плоскую реализацию $\mathcal{P}_{\alpha}(L)$.

Нетрудно заметить, что если α , в α_2 принадлежит одной грани и не лежат на S(L), то $\omega_{\alpha_1}S(L)$ изотопна $\omega_{\alpha_2}S(L)$. Следовательно, сферическая реализация S(L) порождает m-n+2 плос их реализаций, где m-n+2—число граней в S(L) (формула Эйлера). Но $\psi S(L)$, по лемме I_τ единственная не изотопная S(L) сферическая реализация, которая в свою очередь порождает ана — логичное число плоских не изотопных реализаций. Лемма доказана.

Пусть имеется плоская реализация \mathcal{P}_i (\mathcal{L}) графа \mathcal{L} .Перевуметруем точки \mathcal{P}_i (\mathcal{L}) с помощью алгоритма $\mathcal{A}_{\mathcal{P}}$.Полученную нумерацию назовем правой нумерацией \mathcal{P}_i (\mathcal{L}) и обозначим через $\mathcal{N}_{x_i}^{\mathcal{P}}$ \mathcal{D}_i (\mathcal{L}).

Алгориты Ар

I. Выберем произвольную точку x_t из внешней замкнутой кривой c(u) плоской реализации $P(\lambda)$ графа λ . Присвоим точке $c(x_t)$ номер I.

- 2. Двигаемся по правой дуге до точки $e(x_2)$, присваиваем ей номер 2. а дугу $e(x_1,x_2)$ отмечаем.
 - 3. При дальнейшей нумерации точек возможны два случая:
- а) выходя из точки $e(x_k)$ по правой дуге в точку $e(x_{k+1})$ и отмечая дугу $e(x_k,x_{k+1})$, присваиваем точке $e(x_{k+1})$ номер, если его еще нет. Далее, если из точки $e(x_{k+1})$ исходят неотмеченные дуги, то двигаемся по самой правой неотмеченной дуге и отмечаем её. Через конечное число шагов наступит момент, когда очередная точка $e(x_e)$ станет инцидентной только отмечен ным дугам,
- б) если $e(x_{k+1})$ инцидентна только отмеченным дугам, то возвращаемся назад к точке $e(x_k)$, повторно отмечая дугу $e(x_k,x_{k+1})$. Если $e(x_k)$ также инцидентна только отмеченным дугам, то возвращаемся к точке $e(x_{k-1})$, отмечая дугу $e(x_k,x_{k-1})$. (Примечание: точка $e(x_{k-1})$ предмествует точке $e(x_k)$ в маршеруте $e(x_{k-1},x_k,x_{k+1})$.

Если все дуги оказались помеченными дважды, то процесс окончен. В противном случае найдется точка $\ell(x_p)$ на кривой $\ell(x_{k+1},...,x_1)$, с которой инцидентны неотмеченные дуги; имеем случай а).

4. Так как граф \bot конечный и каждая дуга в $\mathcal{P}(\bot)$ отме — чается дважды, то за 2m шагов процесс будет закончен.

Так как алгоритм $\mathcal{A}_{\mathcal{O}}$ является несущественной модифика — цией алгоритма Тэрри [3], то доказательство того, что все ребра будут помечены дважды, следует из доказательства, предло — женного Тэрри.

Единственность нумерации при фиксированной вершине x_f и плоской реализации следует из того, что плоские реализации изотопны относительно их непрерывной деформации, а также из того, что в каждой точке выбирается крайняя правая дуга, которая при любой непрерывной деформации плоской реализации остается правой.

Очевидно, что подобным образом межно определить левую нумерацию $N \stackrel{e}{x_i} P_i(L)$.

ТЕОРЕМА. Граф 2 имеет 4m различных правых нумераций, если он не содэржит точек сочленения и гама—ков. доказательство. Пусть задана сферическая реализация $S_{\ell}(L)$ графа L, тогда по лемме 2 она порождает m-n+2 неизотопных плоских реализаций $P_{\ell}(L)$. Обозначим через h_{ℓ} число точек на внешней кривой плоской реализации $P_{\ell}(L)$.

Имеет место тождество [3]

11

$$\sum_{i=1}^{m-n+2} h_i = \sum_{j=1}^{n} G(x_j) = 2m,$$

где $\mathcal{G}(x_j)$ - степень x_j вершины.

Так как правая нумерация определяется фиксированной плоской реализацией. $\mathcal{P}_{i}(\mathcal{L})$ и точкой $e(x_{j})$ на внешней кривой $e(\mu)$ этой реализации, то число различных нумераций $\mathcal{N}_{x_{j}}^{\mathcal{P}}\mathcal{P}_{i}(\mathcal{L})$ для плоских реализаций, порождаемых сферической реализацией $S_{i}(\mathcal{L})$, равно 2m. Но по лемме I число сферических неизотопных реализаций не больше двух, откуда следует утверждение теоремы.

На основании теоремы можно предложить алгориты распознавания изоморфизма плоских графов с заданными ограничениями.

Смысл алгоритма распознавания плоских графов заключается в перенумеровании всех плоских реализаций графа, а затем в сравнении того или иного представления графа, задающего его с точностью до нумерации.

Нетрудно заметить, что задавать все плоские реализации не имеет смысла. Действительно, пусть имеется плоская реализация $\mathcal{P}(\mathcal{L})$ графа \mathcal{L} . Перенумеруем грани и точки плоской реали — зации, тогда для получения правой нумерации некоторой плоской реализации $\mathcal{P}_{\ell}(\mathcal{L})$ в точке $e\left(x_{j}\right)$ достаточно начать нумеровать вершины графа \mathcal{L} , двигаясь изнутри ℓ грани, начиная с точки $e\left(x_{j}\right)$. Законность такой нумерации будет очевидной, если вспомнить, каким образом получаются плоские реализации из сферической.

Далее показываем равносильность правой нумерации плоской реализации $\mathcal{P}_{\mathcal{L}}(\mathcal{L})$, соответствующей левой нумерации $\dot{\psi}\,\mathcal{P}_{\mathcal{L}}(\mathcal{L})$; имеет место формула.

$$N_{x_j}^{P} P_{i}(L) = N_{x_j}^{e} \psi P_{i}(L) .$$

Этот факт имеет простую геометрическую иллюстрацию. Пусть $P_{\ell}(\mathcal{L})$ некоторая плоская реализация графа \mathcal{L} . Посмотрим на эту реа пизацию снизу, тогда , очевидно , полученная реализация есть \mathcal{L} , а нумерация у нее левая.

A R P O P U T M A 7

- I. Построим плоскую реализацию $\mathcal{P}(\mathcal{L}_i)$ графа \mathcal{L}_i , перенумеруем вершины графа \mathcal{L}_i с помощью алгоритма $\mathcal{A}_{\mathcal{P}}$ и составим матрицу смежности $\mathcal{M}(\mathcal{L}_i)$ графа \mathcal{L}_i согласно возрастанию номеров вершин графа \mathcal{L}_i .
- 2. Построим плоскую реализацию $\mathcal{P}\left(\mathcal{L}_{2}\right)$ и перенумеруем грани этой реализации.
- 3. Выберем пару z_i, x_j (где $P(L_2) = z_i$ грань, а x_j -вершина, принадлежащая границе этой грани), для которой не строи лась нумерация.
- 4. Построим нумерацию $\mathcal{N}_{x_j}^{\mathcal{P}}\mathcal{P}_t(\mathcal{L}_2)$ (\mathcal{P}_t плоской реализащии соответствует z_t грань) и соответствующую ей матрицу смежности $\mathcal{M}(\mathcal{L}_2)$.
 - 5. Един $M(L_1)$ и $M(L_2)$ совпадают, то п. 10, иначе п. 6.
- 6. Построим нумерацию $N_{x_j}^{\varepsilon} P_i (L_2)$ и соответствующую ей матрицу $M(L_2)$.
 - 7 Если $M(L_1)$ и $M(L_2)$ совпадают, то п. 10, иначе п.8.
 - 8. Если все пары x_i, x_i просмотрены, то п. 9. иначе п.3.
 - 9. Графы не изоморфны.
 - 10. Графы изоморфии.

Число операций Q_T в алгоритме A_I , очевидно, равно произ — ведению числа операций при построении нумерации, на число сравнений матриц смежности графов и число операций при перестанов-ке рядов матриц смежности и поэлементного сравнения матриц:

 $Q_I = c_I m \cdot 4 m \cdot c_2 n^3 = c m^2 \cdot n^3$. Так как $m \neq 3(n-2)$, то $Q_I = c (2n-6)^2 n^3 = c n^5$, где $c \approx 10^{2-3}$, что существенно меньше полного просмотра всевозможных нумераций. Q_I можно существенно улучшить, если воспользоваться представлением графов, жанример, веерным покрытием графа λ [3].

Приведенние оценки будут не полными, если не указать число операций при расположении графа на плоскости. Воспользуемся алгоритмом, описаниям в работе [6]. Алгоритм разбивается на два этапа:

- а) мостроение циклов системы M графа $G \left(c \cdot (m-n+2)^2 \right)$ операций).
- б) раскраска вершин графа и разбиение их на категории (cn^2) операций), следовательно, число операций при расположении графа

на плоскости равно $Q_2 = c \cdot ((m-n+2)^2 + n^2)$, но $m \neq 3 \cdot (n-2)$, откуда следует, что $Q_2 \neq c \cdot n^2$, где $c = 10^3$.

Таким образом, число операций при распознавании изоморфизма плоских графов не превышает Q_1+Q_2 .

Литература

- І. ЗЫКОВ А.А. Теория конечных графов. Новосибирск, "Наука"
- 2. СКОРОБОГАТОВ В.А. О распознавании изоморфизма неориеннтированных графов. -"Вычислительные системы", Новосибирск, "Наука" СО, 1969, вып. 33, стр. 34-36.
 - ОРЕ О. Теория графов. М., "Наука", 1968.
- 4. HALIN R., JUNG H.A. Note on isomorphisms of graphs. "J. Sondon Math. Soc.", 1967, vol.2, N 166.
- 5. KELLY P.I. A congruence theorem for trees. "Pacit. J.Math.", 1957, vol.7, N 1.
- 6. ПЛЕСНЕВИЧ Г.С. Расположение графа на плоскости. "Вы числительные системы" Новосибирск, 1963, вып. 6, стр. 45-56.

Поступила в ред.-изд.отд. 15 декабря 1972 г.

I44