1973 год

YAK 51:153:681.3.06

АКТИВНОЕ ВОСПРИЯТИЕ ЗРИТЕЛЬНОЙ ИНФОРМАЦИИ

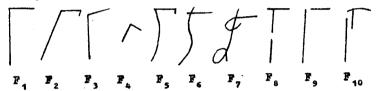
А.С. Нудельман

настоящая работа является развитием подхода к изучению зрительного восприятия, описанного в [I].

Кратко изложим некоторые стороны этого подхода. Пусть эрительный аналиватор $\mathcal A$ находится на расстоянии $\mathcal L$ от картины $\mathcal K$. Формальной моделью данной ситуации является пара $\langle \mathscr{G}, \mathcal{F} \rangle$. где y =язык описания, сопоставленный анализатору A и расстоянию $\mathcal L$, а $\mathcal F$ - фигура, зависящая от картины $\mathcal K$ и языка $\mathcal G$. Каждое предложение языка У есть утверждение о существовании вполне определенных свойств у рассматриваемой фигуры. Свойствами фи гуры могут быть только свойства точек, линий, направлений и угнов. то есть таких объектов, выделяемых в фигуре, которые представляются наиболее примитивными. В связи с этим говорится, что изучается именно непосредственное восприятие Класс $\mathcal{F}(S)$ всех фигур, на которых истиню некоторое предложение S языка У , можно рассматривать как образ и тогда алгорити проверки истинности S на любой фигуре будет решающим правилом. Выражение "анализатор A воспринял картину K на расстоянии A " имеет следуршур формальную интерпретацир: в языке ${\cal Y}$ выделено иножество всех предложений, истинных на фигуре $\mathcal F$. Впредь восприятие анализатором A картины K будем называть пассивным, поскольку в формальной модели истинность любого предложе ния языка $\mathcal Y$ на фигуре F определяется только действительным наличием у этой фигуры утверждаемых предложением свойств.

Рассмотрим предложение S_r [I , стр. 56], которое на обычном языке формулируется следующим образом: "существует (вертикальная) и (прямая > линия $\mathcal{L}_I(t_I, t_2)$, длина которой (рав-

на> высоте фигуры, причем начальная точка t_1 этой линии лежит выше конечной точки t_2 ; существует < горизситальная > и < прямая > линия \mathcal{L}_2 (t_1 , t_5) (начальные точки линий \mathcal{L}_1 и \mathcal{L}_2 совпа — дают), длина которой < равна > ширине фигуры, причем точка t_5 лежит правее точки t_1 ; длина линии \mathcal{L}_2 не < больше > длины линии \mathcal{L}_4 , но и не < существенно меньше > ; эсли существует линия \mathcal{L}_3 , (парадлельная > линии \mathcal{L}_4 , лежащая < правее > линии \mathcal{L}_4 , лиею — щая < значительную > длину, то линия \mathcal{L}_3 не заходит < достаточно далеко > вниз". Здесь выражения "<P> " указывают формальные предикать, определенные в языке \mathcal{G} , ориентировочный смысл которых перэдан выражениями "F". Нетрудно убедиться, что предложение \mathcal{G}_{-} истинно на фигурах \mathcal{F}_{3} , \mathcal{F}_{6} , \mathcal{F}_{10} (рис. I).

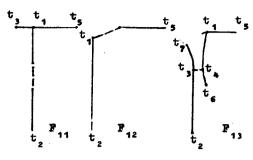


Puc. I

Из практических соображений часто требуется, что вее фигуры $F_r - F_{ro}$ принадлежали одному классу фигур, определенным образом порожденному предложением S_r , т.е. являлись бы реаливациями одного образа (в расширенном смысле). Этот класс будем называть F^α — классом и обозначать через F^α (S_r). Ниже даего определение F^α — класса для произвольного предложения языка $\mathcal S$. Но сначала — несколько понатий.

Пусть F — фигура [I , § I] и t_1 , t_2 — точки, принадле — жащие этой фигуре. Тогда отрезок прямой линии [t_1 , t_2] назовем д о п у с т и м ы м в F , если и только если для любой точки t фигуры F , отличной от t_1 , t_2 : $z(t_1,t_1) > z(t_1,t_2)$ или $z(t_1,t_2) > z(t_1,t_2)$. Здесь z(t',t'') — расстояние между точками t' к t''.

На рис. 2 пунктирными линиями показаны допустимые отрезки к фигурам F_{11} , F_{12} и F_{13} (сплошные линии).



Puc. 2

Фигуру, полученную из F добавлением конечного числа допустимых в F отрезков, назовем до полненой фигурой F.

Будем говорить, что линия $\mathcal{L}(t_1,t_2)$ имеет направление $\widetilde{\mathcal{E}}$, если на —
правление в любой точке t, $t \neq t_2$ этой линии — $\widetilde{\mathcal{E}}(t)$, $t \in \mathcal{L}(t_1,t_2)$

[I, стр. 4I]— \langle совпадает \rangle с \bar{E} (как и прежде, \langle Р \rangle — предикат , выразимый в языке \mathcal{I}). Пусть в линии $\mathcal{I}(t_1,\dots,t_k,t_{k+1},\dots,t_n)$, f < k < n-1, подлинии $\mathcal{I}_f(t_1,t_k)$, $\mathcal{I}_2(t_k,t_{k+1})$ и $\mathcal{I}_3(t_{k+1},t_n)$ имеет направления \bar{E},\bar{E}_2 и \bar{E} , соответственно. Тогда если \bar{E}_2 \langle отличается \rangle от \bar{E} , то линио $\mathcal{I}_2(t_k,t_{k+1})$ будем называть и $\bar{I}_2(t_k,t_k)$ будем говорить, что она является линией направления \bar{E} с и $\bar{I}_2(t_k,t_k)$ общем случае линия может иметь конечное число попарно непересеквющихся изломов.

Рассмотрим фигуру F и выделенную в этой фигуре линию $\mathcal{L}(t_1,\dots,t_k,t_{k+1},\dots,t_n)$ направления \bar{F} с изломом (t_k,t_{k+1}) . Пусть линия $\mathcal{L}'(t_k,t')$ $\mathcal{L}'(t',t_{k+1})$ такова, что:

- I) Z'CF;
- 2) $I' \cap I = \{t_k\} [\{t_{k+1}\}]$;
- 3) линия Z' имеет направление E;
- 4) расстояние между произвольной точкой из \mathcal{L}' и ближайшей к ней точкой из $\mathcal{L}_{f}(t_{k+1},t_{n})[\mathcal{L}_{f}(t_{1} \mathbf{1}_{k})], \mathcal{L}_{f} \in \mathcal{L}$, не \langle превы шает \rangle величины $\mathcal{L}(t_{k},t_{k+1})$.

В этом случае линив \mathcal{L}' назовем линией, свяванной с изломом (t_k, t_{k+1}) .

В соответствии с вышеприведенными определениями в допол — ненной фигуре F_{l3} (рис. 2) можно выделить < вертикальную > ли— нию $\pounds(t_l,t_u,t_3,t_2)$ с изломом (t_u , t_s) . Линии $\pounds_l(t_q,t_s)$ и $\pounds_l(t_q,t_s)$ являются связанными с изломом (t_u , t_s) .

Предложение S навовем условно истини и има фигуре F, если в качестве хотя бы одной линии, существование которой обеспечило истинность S, выделена линия из F с

изломом. Впредь через $M^{o}(F,S)$, $M^{'}(F,S)$, $M^{2}(F,S)$ будем обозна — чать множество линий из F, дополненной F, дополненной F, су= ществование которых обеспечивает истинность S на F, истин — ность S на дополненной F, условную истинность S на дополнен = ной F, соответственно. Сформулируем теперь определение F^{α} — класса.

Для дюбого предложения S языка $\mathscr G$ класо $\mathcal F^{\alpha}(S)$ есть мно au жество фигур такое, что:

- I) $\operatorname{CDM} F \in F(S)$, $\operatorname{TO} F \in F^{\alpha}(S)$;
- 2) если дополненная $F \in F(S)$, то $F \in F^{\alpha}(S)$;
- 3) если S условно истинна на дополненной F и при этом все изломы линий из $M^2(F,S)$ являются допустимыми в F отрезками, то $F \in F^{\alpha}(S)$.

С введением класса $F^{\alpha}(S)$ понятие образа существенно расширяется за счет увеличения числа допустимых нетопологических преобразований. Фигуры класса F(S) тоже имеют допустимые не топологические преобразования, но все они заключаются только в "стирании" лишних линий (при установлении истинности предложения S_F на дополненной фигуре F_H (рис. 2) линия $\mathcal{L}(t_1, t_3)$ "стирается").

Принцип перестройки фигуры, состоящей в проведении в фи — гуре новых линий, является первым аспектом (из двух) формаль — ной модели активного восприятия. Второй аспект заключается в сопоставлении каждой фигуре $\mathcal F$ из класоа $\mathcal F^\alpha(S)$ неотрицатель — ного действительного числа $\mathcal J(\mathcal F,S)$, характеризующего вели— чину перестройки фигуры $\mathcal F$ до дополненной $\mathcal F$, на которой предлюжение S истинно или условно истинно. Это число будем назы — вать интенсивностью перестройки.

Обозначим через $\mathcal{D}(M^k)$, k=0,1,2, сумму длин всех линий из $M^k(F,S)$; через $\mathcal{A}(M^k)$, k=1,2,- сумму длин всех допустимых в F отрезков, являющихся подлиниями линий из $M^k(F,S)$; через $N(M^2)$ — множество попарно непересенающихся линий, свя—занных с изломами линий из $M^2(F,S)$, и такое, что линия из $N(M^2)$ является подмножеством F и пересечение линии из $N(M^2)$ с линией из $M^2(F,S)$ либо пусто, либо содержит только одну точку; через $\ell(N(M^2))$ — сумму длин всех линий из $N(M^2)$.

Пусть $F \in F^{\alpha}(S)$. Определим $\mathcal{I}(F,S)$.

ECMM $F \in F(S)$, TO $\mathcal{I}(F,S') = 0$, Whave

$$\mathcal{I}(F,S)=\min\left[\min\frac{\mathcal{L}(M_i^2)}{\mathcal{D}(M_i^2)^{\frac{1}{2}}\mathcal{L}(M_i^2)^{\frac{1}{2}}\mathcal{L}(M_i^2)}, \min\frac{\mathcal{L}(M_K')}{\mathcal{D}(M_K')^{\frac{1}{2}}\mathcal{L}(M_K')}\right].$$

Здесь "числа" вида $\frac{X}{Q}$ принимаются равными + ∞ .

Так, для фигуры $F_{/3}$ (рис. 2) интенсивность перестройки $\mathcal{I}(F_{/3}, S_{/2})$ будет равна величине

$$\frac{z(t_{4},t_{5})}{\overline{\mathcal{I}(t_{1},t_{3})+\overline{\mathcal{I}(t_{4},t_{4})+\overline{\mathcal{I}(t_{3},t_{2})+\overline{\mathcal{I}(t_{4},t_{3})+\overline{\mathcal{I}(t_{4},t_{6})}}}}.$$

где \overline{Z} - длина линии $\mathcal L$.

В заключение рассмотрим пример использования формальной модели активного восприятия в алгоритме распознавания. Исход — ная ситуация: имеются описания образов \mathcal{O}_1 и \mathcal{O}_2 — предложения S_1 и S_2 , соответственно; имеется фигура F, которую необ — ходимо отнести либо к \mathcal{O}_1 , либо к \mathcal{O}_2 . Алгоритм состоит в следующем:

war I: если $F \in F^{\alpha}(S_i)$, то war 4;

mar 2: echu $\mathcal{F} \in \mathcal{F}^{\alpha}(S_2)$, to mar 9;

mar 3: orkas I; mar IO;

mar 4: ecnu $F \notin F^{\alpha}(S_2)$, to mar 8:

mar 5: ecnu $\mathcal{I}(F,S_i) < \mathcal{I}(F,S_2)$, ro mar 8;

mar 6: если $\mathcal{I}(F,S_2) < \mathcal{I}(F,S_1)$, то mar 9;

mar 7: orkas 2; mar IO;

mar 8: $F \in \mathcal{O}_{\ell}$; mar IO;

mar 9: $F \in \mathcal{O}_2$;

mar IO: конец.

На основе этого алгоритма была составлена программа, имитирующая восприятие цифр 0 и 6, и проведен эксперимент, описанный в $\lceil 2 \rceil$.

Литература

 НУДЕЛЬМАН А.С. Об одном формализованном подходе к изучению зрительного восприятия. Настоящий сборник, с.36-78.

2. НУДЕЛЬМАН А.С. Эксперимент по сравнению эрительного "восприятия" мажими с восприятием человека. Настоящий сбормик, с.84-89.

Поступила в ред.-изд.отд. 18 апреля 1973 года