УДК 517.15

π-АВТОНОМНЫЕ НУМЕРАЦИИ

А. Н. Гамова

Один из способов построения рекурсивных иерархий (классов вычислимых объектов) - итерированная клиниевская вычисли мость, в основе которой лежит Π_1^{-1} -вычислимость, проитерированная вдоль начального отрезка ординалов [1].

Интерес представляют эффективные ординальные нумерации ${\cal V}$, на которые навешиваются семейства оракулов итерированной клиниевской вычислимости $\left\{H_{\cal V}^{\tau}\right\}_{\tau\leq |{\cal V}|}$. Одним из критериев эффективности нумерации ${\cal V}$ может служить вычислимость оракулов $H_{\cal V}^{\sigma}$ с оракулами $H_{\cal V}^{\sigma}$ относительно произвольной регулярной нумерации ${\cal V}_{1}$ (свойство инвариантности вычислимых объектов).

В [1] доказана эффективность в этом смысле автономных нумераций V, порождаемых равномерной процедурой, основанной на конечной экстраполяции на фиксированное число шагов K вдоль вспомогательной нумерации $V^{\bullet} = V \upharpoonright \sigma \cup \{\langle 0, \sigma \rangle, \langle 1, \sigma + 1 \rangle, \ldots, \langle k, \sigma + k \rangle\}$. Здесь понятие автономности обобщается до π -автономности с предвосхищением на бесконечное число шагов, равное длине нумерации π . Чтобы иметь свойство инвариантности для таких нумераций V, берем в качестве π автономную нумерацию и применяем π -автономные процедуры порождения номеров нумерации V лишь в точках, кратных

 $|\pi|$, используя для остальных точек нумерации ν автономный процесс. Доказательство теоремы об инвариантности π -авто - номных нумераций составит содержание статьи.

Сообщим необходимые сведения об итерированной клиниевской вычислимости из [1].

Под ординальной нумерацией ν будем понимать одно-одно-значное отображение числового множества $K[\nu]$ на начальный отрезок ординалов длины $|\nu|$. Обозначим через ν τ нумерацию до ординала τ , тогда $K[\nu]$ τ = $K_{\tau}[\nu]$.

На нумерацию ν навешены оракулы семейства $\{H_{\nu}^{\tau}\}_{\tau \leq |\nu|}$, в котором частичные функции H_{ν}^{τ} определены как минимальные неподвижные точки некоторого монотонного оператора θ_{ν}^{τ} , так что выполняются условия:

$$H_{\nu}^{\tau}(3^{\langle j,t\rangle}) = \begin{cases} 0, \text{ если } t \in \text{ графику } H_{\nu}^{\nu j}; \\ 1 - \text{ в противном случае,} \end{cases}$$

где $j \in K_{\tau}[\nu]$, $H_{\nu}^{\tau}(5^{y}) = E(\lambda t\{y\}^{H_{\nu}^{\tau}}(t))$, $y \in B^{\bullet}(H_{\nu}^{\tau})$ и $B^{\bullet}(H_{\nu}^{\tau})$ есть множество кодов H_{ν}^{τ} -вычислимых тотальных функций, а функционал E определен как

$$\mathbf{E}(\alpha) = \begin{cases} 0, \text{ если } \exists t(\alpha(t)=0); \\ 1 - \text{ в противном случае.} \end{cases}$$

Для семейства оракулов итерированной клиниевской вычислимости имеем по построению:

$$H_{\nu}^{\tau} = \sup \{H_{\nu}^{\tau, \gamma}\},$$

где $\mathbf{H}_{\mathbf{V}}^{\mathbf{T},\mathbf{V}} = \emptyset$, $\mathbf{H}_{\mathbf{V}}^{\mathbf{T},\mathbf{Y}+1} = \mathbf{\Theta}_{\mathbf{V}}^{\mathbf{T}}(\mathbf{H}_{\mathbf{V}}^{\mathbf{T},\mathbf{Y}})$, для предельных \mathbf{Y} $\mathbf{H}_{\mathbf{V}}^{\mathbf{T},\mathbf{Y}} = \bigcup_{\mathbf{Y}^{\mathbf{I}} < \mathbf{Y}} \mathbf{H}_{\mathbf{V}}^{\mathbf{T},\mathbf{Y}^{\mathbf{I}}}.$

Введем понятие рангов вопросов оракула $\ \mathbf{H}_{\mathbf{v}}^{\mathbf{\tau}}$:

$$\rho_{\nu}^{\tau}\left(\mathbf{x}\right)=\boldsymbol{\gamma}\leftrightarrow\mathbf{x}\boldsymbol{\in}\;\delta\boldsymbol{H}_{\nu}^{\tau,\boldsymbol{\gamma+1}}\backslash\boldsymbol{\delta}\boldsymbol{H}_{\nu}^{\tau,\boldsymbol{\gamma}}\;,$$

$$\rho_{\nu}^{\tau}(z) = |H_{\nu}^{\tau}| = \sup \{\rho_{\nu}^{\tau}(x) : x \in \delta H_{\nu}^{\tau}\}, \quad \text{ecam} \quad z \notin \delta H_{\nu}^{\tau}.$$

Отсюда следует, что $\rho_{\nu}^{\tau}(5^{y}) = \sup\{\rho_{\nu}^{\tau}(x) \colon x \in \mathbb{Q}_{y}\}$, где \mathbb{Q}_{y} есть множество вопросов, задаваемых машиной $y[H_{\nu}^{\tau}]$ (соединенной с оракулом H_{ν}^{τ}).

Рассмотрим некоторые свойства оракулов.

- 1. Множество $K_{oldsymbol{ au}}[
 u]$ $H^{oldsymbol{ au}}_{oldsymbol{ au}}$ -перечислимо, а множества $K_{oldsymbol{ au},oldsymbol{ au}}[
 u]$ $H^{oldsymbol{ au}}_{oldsymbol{ au}}$ -разрешимы равномерно по $\mathbf{j}\in K_{oldsymbol{ au}}[
 u]$.
- Оракул ${f F}$ называют слабо фундированным, если множество ${f T}({f F})$ (кодов ${f F}$ -вычислимых фундированных деревьев) ${f F}$ -перечислимо.
 - 2. Оракулы H_{ν}^{τ} ($\tau \leq |\nu|$) слабо фундированные.
- 3. Если ${\bf F}$ слабо фундированный оракул, функционал ${\bf E}$ ${\bf F}$ -вычислим, множество ${\bf K}_{\bf T}[\nu]$ ${\bf F}$ -перечислимо и графики ${\bf H}_{\nu}^{\sigma}$ ${\bf F}$ -разрешимы равномерно по ν -номерам, $\sigma < \tau$, то оракул ${\bf H}_{\nu}^{\tau}$ ${\bf F}$ -вычислим (лемма 2 из [1]).

Оракул **F** называется регулярным, если существует машина **C** (регулятор), выдающая по коду каждого непустого **F**-перечислимого множества его элемент. Нумерации с регулярной иерархией оракулов, навешиваемых на них, называются регулярными.

По определению, оракулы $H_{\mathbf{V}}^{\mathbf{J}}$ зависят от номеров ординалов уже построенного куска нумерации $\mathbf{V}_{\mathbf{I}}^{\mathbf{J}}$ \mathbf{J} . Можно представить себе эффективный способ вычисления \mathbf{V} -номера \mathbf{J} с помощью вспомогательного семейства оракулов итерированной клиниевской вычислимости, навешенных на продолжение (на конечное число шагов \mathbf{k}) нумерации $\mathbf{V}_{\mathbf{I}}^{\mathbf{J}}$ \mathbf{J}

т.е. $\{H_{\mathcal{V}_1}^{\mathcal{O}+1}\}_{0\leq 1\leq k}$,где $\mathcal{V}_1^{\mathfrak{e}}=\mathcal{V}_1^{\mathfrak{h}}$ о U $\{\langle 0,\sigma\rangle,\ldots,\langle k,\sigma+k\rangle\}$ и $H_{\mathcal{V}}^{\mathcal{O}}=H_{\mathcal{V}_1}^{\mathcal{O}}$. Так как $\mathcal{V}_1^{\mathfrak{e}}$ -номера продолжения $\mathcal{V}_1^{\mathfrak{h}}$ о также уже имеются, то семейство вспомогательных оракулов полностью определено. Тогда с заключительным оракулом $H_{\mathcal{V}_1}^{\mathcal{O}+k}$ этого семейства, соединенным с некоторой машиной \mathbb{W} (генератором), вычислим $\mathcal{V}^{-1}\sigma=\mathbb{W}[H_{\mathcal{V}_1}^{\mathcal{O}+k}](0)$. Так определяемые нумерации \mathbb{V} называются автономными степени \mathbb{K} с генератором автоном - ной процедуры \mathbb{W}

 $H^{\mathcal{T}}_{\nu_1}$ -вычислимы (лемма об инвариантности для автономных про - должений).

Для доказательства основной теоремы нам потребуются две леммы, которые мы сейчас докажем.

ПЕММА 1. Нумерация v^{ϵ} , получаемая сдвигом нумерации π на произвольную нумерацию v^{ϵ} σ , m.e. нумерация $v^{\epsilon} = v^{\epsilon}$ σ $U\{\langle \pi^{-1}\xi, \sigma+\xi\rangle \colon \xi<|\pi|\}$ (для сокращения будем писать $v^{\epsilon} = v^{\epsilon}$ σ U π) такова, что оракули H_{π}^{ξ} $H_{v^{\epsilon}}^{0+\xi}$ -вичислими равномерно по π -номерам ξ , $0 \le \xi < |\pi|$.

ДОКАЗАТЕЛЬСТВО получим по лемме Роджерса. Пусть ξ , $0 \le \xi < |\pi|$, - фиксированный параметр индукционного шага и для всех $\xi^i < \xi$ оракулы $H_\pi^{\xi^i}$ $H_{\mathcal{V}^i}^{\mathcal{O}+\xi^i}$ -вычислимы равномерно по π -номерам ξ^i , т.е. существует рекурсивная процедура θ для вычисления функций $H_\pi^{\xi^i}$ на соответствующих машинах $\theta(\pi^{-1}\xi^i)[H_{\mathcal{V}^i}^{\mathcal{O}+\xi^i}]$. Условия леммы Роджерса будут выполнены, ес-

ли эффективно по паре $\langle e\,,\pi^{-1}\,\xi\rangle$ построить машину, вычисляющию с оракулом $H_{\,\,\,V^{\,\,I}}^{\,\,C+}\,\xi$ функцию $H_{\,\,\pi}^{\,\,C}$.

Из индукционного допущения следует, что графики $H_{\,\,\pi}^{\,\,C+}\,\xi$ -разрешимы равномерно по π -номерам $\xi^{\,\,I}$ и соответствующая рекурсивная разрешающая процедура $\,\,e^{\,\,I}\,$ эффективно находится по паре $\langle\,e\,,\pi^{-1}\,\xi\,\rangle$.

Номерное множество $K_{\xi}[\pi] = K_{\sigma + \xi}[\nu^i] \setminus K_{\sigma}[\nu^i]$ $H_{\nu^i}^{\sigma + \xi}$ перечислимо на машине, строящейся эффективно по перечисляющей машине множества $K_{\sigma + \xi}[\nu^i]$, по коду $(\nu^i)^{-1}\sigma = \pi^{-1}0$ и разрешающей машине множества $K_{\sigma}[\nu^i]$ (которые, в свою очередь, найдены эффективно по паре $\langle 1, \pi^{-1} \xi \rangle$ и фиксированному коду $\pi^{-1}0$).

Тем самым условия леммы 2 из [1] выполнены и оракул $H_{\mathfrak{V}^{\mathfrak{s}}}^{\mathfrak{s}}$ -вычислим (на машине, эффективно построенной по \langle e ,

 $\pi^{-1}\xi$). По лемме Роджерса для всех ξ , $0 \le \xi < |\pi|$, ора-кулы H_{π}^{ξ} $H_{\nu}^{C+\xi}$ —вычислимы равномерно по π -номерам ξ (существует равномерная рекурсивная процедура, эффективно строя—

щаяся по коду π^{-1} О , не зависящая ни от σ , ни от ν).

ЛЕММА 2. Нумерация $v' = v \wedge \sigma U \pi$, где π — автономная нумерация, есть автономное продолжение нуме рации $v \wedge \sigma$.

Мы хотим организовать автономную процедуру степени k для вычисления v^{i} -номеров $\sigma+\xi$. Возьмем вспомогательную нумерацию $v^{i}=v^{i}$ ($\sigma+\xi$) v^{i} (v^{i}) v^{i}

причем, по условию, $(v^*)^{-1}(\sigma + \xi) = \pi^{-1}\xi$. Применяя лемму 1 к нумерациям π^* и $v^* = v \upharpoonright \sigma^0 \pi$, эффективно по номеру $(\pi^*)^{-1}O=\pi^{-1}O$ построим равномерную рекурсивную процедуру е для вычисления оракулов $H^{\xi+1}_{\pi^*}$ с временными оракулами $H^{G+\xi+1}_{v^*}$ равномерно по π^* -номерам ординалов $\xi+1$ (т.е. равномерно по 1). В частности, эффективно по $\pi^{-1}O$ строится машина e(k), вычисляющая с оракулом $H^{G+\xi+k}_{v^*}$ функцию $H^{G+\xi+k}_{\pi^*}$ и не зависящая от ξ .

Встраивая в генератор P автономной нумерации π машину e(k) таким образом, что вопросы, задаваемые машиной P, поступают на вход машины e(k) и полученный результат используется в качестве ответа оракулу при последующем моделировании работы машины P, получим эффективный процесс порождения V^{t} -номера ординала $\sigma + \xi$ с оракулом $H_{V^{t}}^{\sigma + \xi + k}$ (не зависящий от ординала ξ , $0 \le \xi < |\pi|$), который можно принять за генератор W нумерации V^{t} , а саму нумерацию $V^{t} = V \int_{0}^{\infty} \sigma U \pi$ за автономное продолжение нумерации V^{t} σ .

Как уже отмечалось, главной особенностью π -автономных нумераций является предвосхищение на бесконечное число шагов вдоль вспомогательной нумерации $v^* = v \upharpoonright \sigma U \pi$ в точках $\sigma = \pi \upharpoonright \sigma V$, для которых $v^{-1}\sigma = w \llbracket H_{v^*}^{G+} \rrbracket (0)$, где $v \in V$ генератор $v \in V$ -автономной процедуры, а $v \in V$ - заключи -

тельный оракул вспомогательного семейства $\{H_{\mathcal{V}^1}^{\mathbf{C}_1, \xi}\}_{0 \leq \xi < |\pi|}$. В точках, не кратных $|\pi|$, работает автономная процедура с автономным генератором Ψ .

ТЕОРЕМА. Пусть V - нумерация, порождаемая π - автономной процедурой в точках, кратних $|\pi|$, и автономной процедурой в остальних точках. Если π - автономная нумерация, а V_4 - произвольная регуляр-

ная нумерация той же длины, что и нумерация ν , то для всех $\tau \leq |\nu|$ оракулы H^{τ}_{ν} $H^{\tau}_{\nu_1}$ -вычислимы.

ДОКАЗАТЕЛЬСТВО. Воспользуемся леммой 2 из [1]. Сделаем индукционное допущение, что для всех $\sigma < \tau$ оракулы H_{ν}^{σ} -вычислимы. Отсюда сразу имеем $|H_{\nu}^{\sigma}| < |H_{\nu}^{\tau}|$ (для всех $\sigma < \tau$).

Для случая, когда au — непредельный ординал, условия леммы 2 из [1] легко выполнить. Существует ординал au — au , и по индукционному допущению оракул $ext{H}_{ extstyle \text{V}}^{ au-1}$ — вычислим, следовательно, график $ext{H}_{ extstyle \text{V}}^{ au-1}$ — разрешим, а графики $ext{H}_{ extstyle \text{V}}^{ au}$ — разрешимы равномерно по extstyle extsty

$$H_{\nu}^{\tau-1}(3^{\langle j,t \rangle}) = \begin{cases} 0, \text{ если } t \in \text{ графику } H_{\nu}^{\nu j}; \\ 1 - \text{ в противном случае,} \end{cases}$$

где $j\in K_{\tau-1}[\nu]$. Отсюда для всех $\sigma<\tau$ графики H^σ_{ν} $H^\tau_{\nu_1}$ -разрешимы равномерно по ν -номерам σ .

Множество $K_{\tau-1}[\nu]$ $H_{\nu}^{\tau-1}$ -перечислимо, поэтому оно $H_{\nu_1}^{\tau}$ -перечислимо, а следовательно, и множество $K_{\tau}[\nu] = K_{\tau-1}[\nu] U \{ \nu^{-1}(\tau-1) \}$ $H_{\nu_1}^{\tau}$ -перечислимо. По лемме 2 из [1], оракул H_{ν}^{τ} $H_{\nu_1}^{\tau}$ -вычислим.

Случаи, когда τ - предельний ординал, не кратний $|\pi|$, и $\tau = |\pi| \cdot \zeta$, где ζ - непредельний ординал, можно объединить, так как в обоих случаях найдется такое $\xi < \tau$, что продолжения от $\nu \upharpoonright \xi$ до $\nu \upharpoonright \tau$ автономные. Ввиду разрешимости диаграммы нумерации $\Gamma[\pi] = \{\langle i,j \rangle \colon \pi i \leq \pi j \}$ и множества $\{|\pi| \cdot \eta\}_{\eta < \tau}$ с оракулом $H_{\nu_{\eta}}^{\tau}$, можно выбрать среди ординалов, кратных $|\pi|$ и меньших τ , наибольший; если такого ординала σ нет, выбираем σ . Такое продолжение нумерации σ ординала σ нет, выбираем σ на во втором случае весь ку-

сок $V \$ Γ автономны.По лемме об инвариантности для автономных нумераций, замыкающий нумерацию $V \$ Γ оракул $H \$ $U \$ U

Наибольшую трудность представляет случай, когда $\mathbf{T} = \|\mathbf{\pi}\| \cdot \mathbf{\zeta}$, где $\mathbf{\zeta}$ - предельний ординал (\mathbf{T} назовем $\mathbf{\pi}$ -предельним).

Достаточно доказать следующие два утверждения:

- 1) графики оракулов $H_{\mathcal{V}}^{\sigma}$ $H_{\mathcal{V}_1}^{\tau}$ -разрешимы равномерно по \mathcal{V}_4 -номерам $\sigma < \tau$;
- 2) V-номера ординалов $\sigma < au$ находятся эффективно по их u_1 -номерам (с оракулом $H_{\mathcal{N}_2}^{ au}$).

Докажем эти утверждения при индукционном допущении леммы Роджерса, что при фиксированном параметре $\sigma < \tau$ $\sigma^{\intercal} < \sigma$ графики $H^{\sigma^{\intercal}}_{\upsilon}$ H^{τ}_{υ} -разрешимы равномерно по номерам σ^{\dagger} , т.е. посредством некоторой равномерной рекурсивной процедуры ϕ , так что $\phi(v_1^{-1}\sigma)$ есть машина, раз- $\mathbf{H}^{\sigma^{\dagger}}$, а V-номер ординала σ^{\dagger} соответственно эффективно находится посредством равномерной процедуры ψ на машине $\psi(\sqrt{10^{\circ}})$. Эффективно по тройке $v^{-1}\sigma
angle$ построим машину a , $H^{ au}_{v}$ -разрешающую график $γ = ρ_{ν_{a}}^{τ}(x), x ∈ δH_{ν_{a}}^{τ}$. Покажем, что графики $H_{ν}^{σ,γ}$ разрешимы равномерно по ү. Сделаем индукционное допущение для леммы Роджерса о том, что имеется равномерная рекурсивная процедура θ^{\dagger} такая, что для всех $\gamma^{\dagger} < \gamma$ $(\gamma^{\dagger} = \rho_{\nu_{a}}^{\tau}(x^{\dagger}),$ $\mathbf{x}^* \in \delta \mathbf{H}_{\mathbf{v}}^{\mathbf{T}}$ графики $\mathbf{H}_{\mathbf{v}}^{\mathbf{\sigma},\mathbf{Y}^*}$ $\mathbf{H}_{\mathbf{V}}^{\mathbf{T}}$ -разрешимы на соответствующих машинах $e^*(x^*)$. И по тройке $\langle e^*, x, v_1^{-1}\sigma \rangle$ эффективно построим машину, разрешающую график $H_{\mathcal{V}}^{\sigma, \Upsilon}$.

Для $\mathbf{x}=3$ $\langle \mathbf{j},\mathbf{t} \rangle$, $\gamma=0$, график $\mathbf{H}_{\mathbf{v}}^{\mathbf{\sigma},\mathbf{o}}=\emptyset$, т.е. $\mathbf{H}_{\mathbf{v}_{\mathbf{1}}}^{\mathbf{\tau}}$ -раз-

Для $\mathbf{x} = \mathbf{5}^{\mathbf{y}}$ надо уметь различать предельный или непредельный ординал \mathbf{Y} (что эффективно устанавливается с оракулом $\mathbf{H}_{\mathbf{y}_1}^{\mathbf{\tau}}$ из построения семейства $\left\{\mathbf{H}_{\mathbf{y}_1}^{\mathbf{\sigma},\mathbf{y}_2}\right\}$). Для предельных \mathbf{Y} график

 $H_{\alpha,\lambda}^{\alpha,\lambda} = \bigcap_{\lambda \in \Lambda} H_{\alpha,\lambda}^{\alpha,\lambda} = \bigcap_{\lambda \in \Lambda} H_{\lambda}$ $x_{i} \in \delta^{\lambda}$

1

 $H_{V_1}^{\mathcal{T}}$ -разрешим, что следует из индукционного долущения по γ , разрешимости множества Q_{y} (см. с.185) и вычислимости с оракулом $H_{V_1}^{\mathcal{T}}$ функционала E .Для непредельных γ $H_{V}^{\sigma,\gamma-1}$ = $U_{V_1}^{\sigma,\gamma}$ и график

$$H_{\mathcal{V}}^{\sigma,\gamma} = H_{\mathcal{V}}^{\sigma,\gamma-1} \cup \{\langle 5^{z},v \rangle : \\ z \in B^{*}(H_{\mathcal{V}}^{\sigma,\gamma-1}) \land v = E(\lambda t\{z\}^{H_{\mathcal{V}}^{\sigma,\gamma-1}}(t))\},$$

т.е. график $H_{\mathcal{V}}^{\mathcal{O},\Upsilon}$ $H_{\mathcal{V}_1}^{\mathcal{T}}$ -разрешим по индукционному Допущению, разрешимости множества $B^*(H_{\mathcal{V}}^{\mathcal{O},\Upsilon^{-1}})$ и вычислимости E с оракулом $H_{\mathcal{V}_1}^{\mathcal{T}}$, и разрешающая машина строится эффективно по указанным параметрам. По лемме Роджерса для всех $\Upsilon<|H_{\mathcal{V}_1}^{\mathcal{T}}|$ графики $H_{\mathcal{V}}^{\mathcal{O},\Upsilon}$ $H_{\mathcal{V}_1}^{\mathcal{T}}$ -разрешимы равномерно по Υ на соответствующих машинах $e(\mathbf{x})$, где Θ - код равномерной рекурсивной процедуры, полученной эффективно по тройке Φ

По тем же параметрам эффективно построим машину M , разрешающую график $H_{\mathcal{V}}^{\sigma} = H_{\mathcal{V}}^{\sigma}$, где Y_0 - момент стабилиза - ции семейства $\{H_{\mathcal{V}}^{\sigma}, Y\}$, и, как было уже установлено, $Y_0 < |H_{\mathcal{V}}^{\tau}|$, поэтому множество

$$X = \{x : x \in \delta H_{v_1}^{\tau}, \rho_{v_1}^{\tau}(x) = \gamma, H_{v}^{\sigma, \gamma} = H_{v}^{\sigma, \gamma+1} \}$$

непусто. А так как по X можно эффективно построить X^* для которого $\rho_{\nu_1}^{\tau}(x^*) = \gamma+1$ (достаточно построить машину y^* , задающую вопрос X и останавливающуюся), тогда $X^* = 5^{y^*}$ и графики H_{ν}^{σ}, γ и $H_{\nu}^{\sigma}, \gamma+1$ разрешимы с оракулом $H_{\nu_1}^{\tau}$ соответственно на машинах e(x) и $e(x^*)$; множество X $H_{\nu_1}^{\tau}$ -перечислимо, и его код Z эффективно находится по коду E(x) и перечисляющей машине множества E(x) и E(x). Искомая машина работает следующим образом:

а: $\mathbf{t} \mapsto \mathbf{c}(\mathbf{z}) = \mathbf{x}_0 \mapsto \mathbf{e}(\mathbf{x}_0) \mapsto \{\mathbf{e}(\mathbf{x}_0)\}(\mathbf{t}) = \begin{cases} 0, \\ 1, \end{cases}$ где \mathbf{c} - регулятор оракула $\mathbf{H}_{\mathbf{v}_1}^{\mathbf{T}}$. Тем самым график $\mathbf{H}_{\mathbf{v}_1}^{\mathbf{o}}$ -разрешим на машине \mathbf{a} , эффективно построенной по па -раметрам $\langle \phi, \phi, \mathbf{v}_1^{-1} \sigma \rangle$.

Переходим ко второй части задачи - построению машины b. Продолжение нумерации $v \upharpoonright \sigma$ зависит соответственно от вида ординала $\sigma < \tau$: π -автономное или просто автономное. Рас - смотрим эти возможности.

Для σ , кратного $|\pi|$, вспомогательная нумерация \mathcal{V}^{\bullet} π -автономной процедуры, порождающей \mathcal{V} -номер σ , имеет вид $\mathcal{V}^{\bullet} = \mathcal{V}^{\dagger}$ σ \mathcal{V} π и по доказанной лемме 2 автономна. Тогда по лемме об инвариантности для автономных продолжений оракулы $H_{\mathcal{V}^{\bullet}}^{G+\xi}$ $H_{\mathcal{V}_{1}}^{G+\xi}$ -вычислимы для всех ξ , $0 \le \xi < |\pi|$. Ввиду π -предельности ординала τ , для всех σ τ имеем σ + $|\pi| < \tau$, поэтому графики $H_{\mathcal{V}^{\bullet}}^{G+\xi}$ $H_{\mathcal{V}_{1}}^{\tau}$ -разрешимы и их модули $|H_{\mathcal{V}^{\bullet}}^{G+\xi}|$ < $|H_{\mathcal{V}_{1}}^{\tau}|$.

По лемме Роджерса можно доказать $H_{\nu_1}^{\tau}$ -разрешимость графиков $H_{\nu_1}^{\sigma+\xi}$ равномерно по ν_1 -номерам $\sigma+\xi$ и π -номерам ξ . Для $\xi=0$ это верно, так как графики H_{ν}^{σ} . $H_{\nu_1}^{\tau}$ -разрешимы равномерно по ν_1 -номерам $\sigma<\tau$. Пусть это верно для всех $\xi'<\xi<|\pi|$ равномерно по π -кодам ординалов ξ' и пусть ϕ^* есть код соответствующей равномерной рекурсивной проце дуры $\phi \upharpoonright (\sigma+\xi)$.

Равномерная разрешимость по γ графиков $H_{\mathcal{V}^1}^{\sigma+\zeta,\gamma}$ (с

оракулом $H_{\nu_1}^{\tau}$) доказывается, как для графиков $H_{\nu_1}^{\sigma,\gamma}$. Код е той процедуры находится эффективно по параметрам $\langle \phi, \psi, \phi^*, \nu_1^{-1}\sigma, \pi^{-1}\xi, \pi^{-1}O \rangle$. Аналогично строится машина \mathfrak{a}^* , разрешающая график $H_{\nu_1}^{\sigma+\xi}$, и машина \mathfrak{d}^* для разрешения графика замыкающего оракула $H_{\nu_1}^{\sigma+|\pi|}$ (с учетом π -предельности ординала τ). Встраивая машину \mathfrak{d}^* вместе с порождающими ее конструкциями в генератор \mathfrak{W} π -автономной нумерации ν , эффективно по параметрам $\langle \phi, \psi, \nu_1^{-1}\sigma \rangle$ получим рекурсивную процедуру \mathfrak{b} для вычисления с оракулом $H_{\nu_1}^{\tau}$ ν -номера σ .

Случай σ , не кратного $|\pi|$, номер которого получается автономной процедурой, можно считать частным случаем предыдущего, где равномерная разрешимость графика по π -но-

мерам ξ будет соответствовать равномерной разрешимости по 1, $0 \le 1 \le k$, и может быть легко доказана без применения леммы Роджерса последовательно по k шагам.

Индукционный шаг сделан. По лемме Роджерса существуют рекурсивные процедуры ϕ , ψ , равномерные по ν_1 -номерам $\sigma < \tau$.

Теперь, учитывая, что оракул $H_{\nu_1}^{\tau}$ — регулярный и функция $\psi\colon \nu_1^{-1}\sigma\mapsto \nu^{-1}\sigma$ H_{ν}^{τ} —вычислима, построим обратную ей $H_{\nu_1}^{\tau}$ —вычислимую функцию $\psi^{-1}\colon \nu^{-1}\sigma\mapsto \nu_1^{-1}\sigma$. Отсюда утверждение 1) выполняется равномерно по ν -номерам $\sigma<\tau$, а множество $K_{\tau}[\nu]$ $H_{\nu_1}^{\tau}$ —перечислимо как область определения $H_{\nu_1}^{\tau}$ —зычислимой функции. Условия леммы 2 из [1] выполнены, поэтому оракул H_{ν}^{τ} —вычислим.

Литература

1. БЕЛЯКИН Н.В. Итерированная клиниевская вычислимость и суперджамп //Мат. сб. -М., 1978. - Т.101, №1. - С. 21-43.

Поступила в ред.-изд.отд. 1 августа 1988 года