УДК 519.2

СРАВНЕНИЕ АЛГОРИТМОВ РАСПОЗНАВАНИЯ С ПОМОЩЬЮ ПРОГРАММНОЙ СИСТЕМЫ "ПОЛИГОН"

Г.С. Лбов, Н.Г. Старцева

В настоящий момент известно более ста алгоритмов построения решающих правил распознавания. Поэтому возникает проблема выбора алгоритма для эффективного решения конкретной приклад ной задачи. Для решения данной проблемы необходимо сравнить алгоритмы распознавания и выделить области наиболее эффективного применения того или иного алгоритма.

Трудности сравнения алгоритмов связаны со следующими вопросами: по каким принципам и критериям сравнивать алгоритмы, как формировать тестовые примеры, каков должен быть набор сравниваемых алгоритмов. Кроме того, сравнение алгоритмов предполагает большую техническую работу, связанную с решением прикладных и тестовых задач.

Для экспериментального сравнения алгоритмов необходимо создание полигона, включающего в себя алгоритмы распознавания образов, архив тестовых и прикладных задач, ряд сервисных программ, обеспечивающих сравнение.

Авторами предложен принцип сравнения алгоритмов, на основании которого разработана методика их сравнения. Создано программное обеспечение "Полигон", включающее в себя шесть алго ритмов распознавания, около пятидесяти прикладных задач и пятьдесят одну тестовую задачу, а также сервисную часть, обеспечивающую сравнение.

§1. Основные определения

и постановка задачи сравнения

Пусть для описания каждого объекта $a \in \Gamma$ (Γ — генсральная совокупность) используются признаки $X_1, \dots, X_j, \dots, X_n$ и целевой признак $X_{n+1} \in \Omega$, $\Omega = \{1, \dots, \omega, \dots, k\}$, где k — число образов, $k \geq 2$. Если признаки являются непрерывными случайными величинами, то для них определены условные плотности распределения $p(x/\omega)$, $\omega = \overline{1,k}$, в многомерном пространстве D, где $x = (X_1(a), \dots, X_j(a), \dots, X_n(a))$, $x \in D$, $D = \prod_{j=1}^n D_j$, D_j — область значений признака X_j ; $X_j(a)$ — значение признака X_j для объекта A, A0 — размерность пространства. Если X_1, \dots, X_n — дискретные случайные величины, то для них определены условные распределения вероятнос — тей $P(x/\omega)$.

Под стратегией природы С будем понимать следующий набор $\mathbf{c} = \{\mathbf{p}(\mathbf{x}/\omega)\cdot\mathbf{q}_{\omega},\ \omega = \overline{\mathbf{1},\mathbf{k}}\}$ (для дискретных признаков $\mathbf{c} = \{\mathbf{p}(\mathbf{x}/\omega)\mathbf{q}_{\omega},\ \omega = \overline{\mathbf{1},\mathbf{k}}\}$), где \mathbf{q}_{ω} - априорные вероят - ности проявления объектов из образа ω .

Введем L^0 как множество всевозможных стратегий приро-

Под решающим правилом \mathbf{f} будем понимать следующее отображение $\mathbf{f}: \mathbf{D} \to \mathbf{\Omega}$. Решающему правилу соответствует некоторое разбиение множества $\mathbf{D}: \alpha = \{\mathbf{D}^1, \dots, \mathbf{D}^{\omega}, \dots, \mathbf{D}^k\}$, где $\mathbf{D}^{\omega} = \{\mathbf{x}: \mathbf{f}(\mathbf{x}) = \omega\}$. Качество решающего правила определяется вероятностью ошибочной классификации $\mathbf{P}(\mathbf{f}, \mathbf{c})$. Обозначим через $\mathbf{P}_0(\mathbf{c}) = \mathbf{P}(\mathbf{f}_0, \mathbf{c})$ вероятность ошибочной классификации байесовского решающего правила \mathbf{f}_0 (байесовский уровень ошиб-ки).

В задачах распознавания стратегия природы, как правило, неизвестна. Решающее правило строится на основе анализа обучаю-

щей выборки $V = \{x_{ij}\}; i = \overline{1,N}; j = \overline{1,n+1}$ (N - объем об - учающей выборки). Алгоритмом построения решающего правила распознавания Q будем называть некоторую процедуру, которая каждой выборке V ставит в соответствие решающее правило $f \in \Phi$ (Φ - некоторый класс решающих правил), Q(V) = f.

Под задачей распознавания образов будем понимать построение решающего правила $\mathbf f$ с помощью алгоритма $\mathbf Q$ на основе выборки $\mathbf V$ с последующим использованием этого правила для распознавания новых объектов. Качество алгоритма $\mathbf Q$ при фиксированных $\mathbf C$ и $\mathbf N$ будем определять математическим ожиданием вероятности ошибки $\mathbf EP_{\mathbf N}(\mathbf Q,\mathbf C)=\mathbf EP_{\mathbf N}(\mathbf Q(\mathbf V),\mathbf C)$.

Авторами [1] показано, что математическое ожидание веро - ятности ошибки отличается от байесовского уровня ошибки на некоторую величину $\varepsilon(Q,c,N)=\gamma(Q,c)+\varkappa(Q,c,N)$. Здесь ве личина $\gamma(Q,c)=P_{\infty}(Q,c)-P_{0}(c)$ - мера адекватности алго - ритма Q стратегии природы C, где $P_{\infty}(Q,c)=\lim_{N\to\infty} \mathbf{EP}_{N}(Q,c),\varkappa(Q,c,N)=\mathbf{EP}_{N}(Q,c)-P_{\infty}(Q,c)$ - мера устой-чивости алгоритма Q к объему обучающей выборки N при фиксированной C. Математическое ожидание $\mathbf{EP}_{N}(Q,c)=\mathbf{P}_{0}(c)+\varepsilon(Q,c,N)$.

Из множества алгоритмов распознавания $G = \{Q_1, \dots, Q_m\}$ для фиксированной стратегии природы $\mathbf{c} \in \mathbf{L}^0$ при заданных размерности пространства \mathbf{n} и объеме выборки \mathbf{N} необходимо выбрать некоторый алгоритм $\mathbf{Q}_{\mathbf{C}^{\bullet}} \in \mathbf{G}$ такой, что

$$EP_{N}(Q_{\alpha^{*}},c) = \min_{Q_{\alpha} \in G} EP_{N}(Q_{\alpha},c)$$

или

$$\varepsilon(Q_{\alpha^*}, c, N) = \min_{Q_{\alpha} \in G} \varepsilon(Q_{\alpha}, c, N).$$

При решении прикладной задачи стратегия природы **Q** обычно неизвестна. В этих условиях проблема выбора наилучшего ал - горитма из G при фиксированных значениях параметров D и N значительно усложняется. Возникает проблема сравнения ал-горитмов на множестве стратегий природы \mathbf{L}^0 при фиксированных \mathbf{D} и \mathbf{N} . Очевидно, что сравнивать алгоритмы на всем множестве \mathbf{L}^0 невозможно. Основным вопросом для решения данной проблемы становится формирование подмножества стратегий природы, на котором можно было бы проводить сравнение алгоритмов.

Можно указать ряд существующих подходов к решению этого вопроса:

- 1. Предполагается, что стратегия G принадлежит доста точно узкому классу стратегий, например, когда плотности $\mathbf{p}\left(\mathbf{x}/\mathbf{\omega}\right)$ описываются нормальным законом распределения или их смесями [2].
- 2. Предполагается, что на множестве \mathbf{L}^0 задано равно мерное распределение $\mathbf{p}(\mathbf{c})$ [3].
- 3. Формируется конечное множество стратегий природы в рам-ках игровой имитационной модели [4].

Недостатки каждого из трех подходов указаны в [5].

В данной работе предлагается новый подход к решению проблемы сравнения алгоритмов распознавания. Разработана методика такого сравнения.

§2. Методика сравнения алгоритмов распознавания

Описываемая методика заключается в последовательном выполнении трех основных этапов.

На первом этапе производится деление алгоритмов на груп - пы. В каждую группу входят алгоритмы, предназначенные для решения задач одного типа, дальнейшее сравнение алгоритмов осу - ществляется внутри каждой группы. Деление алгоритмов на группы проводится согласно параметрам классификации задач.

Введем параметры задачи. Любую задачу распознавания образов можно характеризовать фиксированным списком из семи параметров: B - параметр, определяющий тип признаков; k - число образов; \mathbf{Z} - параметр, определяющий наличие пропусков в таблице; \mathbf{d} - параметр, определяющий форму задания области принятия решения $\mathbf{D}^{\mathbf{W}}$ для каждого из образов; при наличии некоторой дополнительной информации о виде распределений или о виде разделяющих функций можно ввести дополнительный параметр \mathbf{S} , характеризующий задачу (\mathbf{B} данной работе предполагается. Что такая априорная информация отсутствует); \mathbf{D} - число признаков; \mathbf{N} - объем обучающей выборки.

Под конкретным типом задачи распознавания образов будем понимать множество задач, имеющих одинаковое значение параметров $\mathbf{B}, \mathbf{k}, \mathbf{z}, \mathbf{d}$.

На втором этапе внутри каждой группы алгоритмов $G^{\, \circ} \subseteq G$, предназначенных для решения задач одного типа, проводится от бор A-допустимых алгоритмов для дальнейшего сравнения. Алгоритм $Q_{\underline{u}}$ является A-допустимым, если автор алгоритма или эксперты для некоторого \underline{u} могут предложить такую гипотетическую стратегию природы $\underline{u} \in \underline{L}^0$, заданную в виде имита тационной модели, для которой хотя бы при одном \underline{u}

$$\mathbf{\bar{E}P}_{N}(\mathbf{Q}_{\mathbf{r}},\mathbf{c}) < \min_{\mathbf{Q}_{\alpha} \in G}, \mathbf{\bar{E}P}_{N}(\mathbf{Q}_{\alpha},\mathbf{c}), \quad \alpha \neq \mathbf{r},$$

где $\mathbf{EP}_{\mathbb{N}}(\mathbf{Q}_{\mathbf{r}},\mathbf{c})$ - оценка математического ожидания вероятности ошибки, полученная на основе моделирования.

Ичыми словами, на данном этапе проводится сравнение алгоритмов на конечном множестве гипотетических стратегий природы, сформулированных в рамках игровой имитационной модели. Очевидно, что в "Полигон" следует включать только — А-допустимые алгоритмы. Впервые использование игровой модели для выбора алгоритма распознавания было предложено Т.Андерсоном [4].

<u>На третьем этапе</u> проводится сравнение алгоритмов на множестве "усредненных стратегий природы", заданных в виде имитационных моделей, для определения значений параметров задачи (объема выборки N и числа признаков D), при которых алгоритм B-допустим.

Авпоритм $Q_{\mathbf{r}}$ является B-допустимым в \mathbf{n} -мерном признаковом пространстве, если существуют хотя бы одна "усредненная стратагия природы" $C \in S$ (S — множество всевозможных "усредненных стратегий" в \mathfrak{n} -мерном признаковом пространстве, $S \subseteq \mathbf{L}^0$) и такое N, что

$$\widetilde{\mathbb{E}}_{N}(Q_{r},\overline{c}) < \min_{Q_{\alpha} \in G} \widetilde{\mathbb{E}}_{N}(Q_{\alpha},\overline{c}), \quad r \neq \alpha.$$

где $\mathbf{G}^{\mathbf{H}}$ - мижжество \mathbf{A} -допустимых авторитмов распознавыбранных на втором этапе сравнения.

Для формирования множества "усредненных стратегий приро - ды" ${\bf S}$ рассмотрим класс решающих правил ${\bf \Phi}$, удовлетворяю - ць, следующим условиям:

1) класс рашающих правил Φ образует последовательность подклассов Φ_1 C ... C Φ_2 C ... C Φ_3 C ... C Φ_4 C ... C Φ_4 C ... C Φ_5 C ... C Φ_6 ... C ... C

$$\mu(\Phi_1) < \ldots < \mu(\Phi_1) < \ldots < \mu(\Phi_g)$$
,

g - целое больше единицы;

2) для любой $\mathbf{c} \in \mathbf{L}^0$ найдется такое \mathbf{i}^* ($\mathbf{i}^* = \overline{\mathbf{1}_* \mathbf{g}}$), что для некоторого $\mathbf{f} \in \Phi_{\mathbf{c}^*}$

$$P(f,c) - P_o(c) < \delta$$

где δ - сколь угодно малое число.

ізждому $\Phi_{\mathbf{i}}$ ставится в соответствие подмножество стоа — тегий природы $\mathbf{L}_{\mathbf{i}} \subseteq \mathbf{L}^0$ следующим образом: $\mathbf{L}_{\mathbf{i}} = \{\mathbf{c}: \exists \mathbf{f} \in \Phi_{\mathbf{i}}, \ \mathbf{F}(\mathbf{f},\mathbf{c}) - \mathbf{F}_{\mathbf{0}}(\mathbf{c}) < \delta\}$. Тогда упорядоченным подкластам резающих правил можно поставить в соответствие упорядочен-

ные подмножества стратегий природы $\mathbf{L}_1 \subset \ldots \subset \mathbf{L}_i \subset \ldots$... $\subset \mathbf{L}_g \subseteq \mathbf{L}^0$. Меру сложности каждого подмножества \mathbf{L}_i будем определять через меру сложности соответствующего ей под - класса решающих правил $\mu(\mathbf{L}_i) = \mu(\Phi_i)$.

класса решающих правил $\mu(\mathbf{L}_{\underline{i}}) = \mu(\Phi_{\underline{i}})$. Каждому подмножеству $\mathbf{L}_{\underline{i}}^t = \mathbf{L}_{\underline{i}} \setminus \mathbf{L}_{\underline{i-1}}$ ($\mathbf{L}_{\underline{0}} \neq 0$) при фик - сированном байесовском уровне ошибки $\mathbf{P}_{\underline{0}}$ поставим в соответствие "усредненную стратегию природы".

"Усредненная стратегия" введена [6] пока для одномерного признакового пространства, признак количественный, $\mathbf{k}=2$, $\mu(\mathbf{L_i})<\infty$. В одномерном признаковом пространстве любое решающее правило разбивает диапазон изменения признака \mathbf{X} на $\mathbf{l}+\mathbf{l}$ интервал \mathbf{l} границами $(\mathbf{l}\leq\mathbf{l}<\infty)$. Под сложностью произвольной стратегии будем понимать число границ \mathbf{l} , соответствующих байесовскому решающему правилу. Здесь

$$P_0(c) = \sum_{i=1}^{i+1} \min \{P_i^1, P_i^2\},$$

где $\mathbf{P_1^{\omega}}$ - вероятность попадания объектов образа ω , ω = 1,2, в 1-й интервал. Под Пусредненной стратегией при фиксированных 1 и $\mathbf{P_0}$ будем понимать вектор $\overline{\mathbf{C}}(1,\mathbf{P_0})$ = = $\{\mathbf{P_1^1},\ldots,\mathbf{P_{1+1}^1},\mathbf{P_1^2},\ldots,\mathbf{P_{1+1}^2}\}$, заданный своими средними значениями компонент. Внутри каждого интервала распределение по каждому из образов равномерно. Область определения признака \mathbf{X} интервал (0,1).

Таким образом, множество всех "усредненных стратегий природы" S, заданных в виде имитационных моделей, будет служить набором тестовых примеров для проверки алгоритмов на B-допустимость. Причем для каждого D будет свое множество S "усредненных стратегий".

На этом описание методики сравнения закончено. Необходимо лишь добавить, что для решения конкретной задачи с фиксированными значениями параметров \mathbf{n} и \mathbf{N} пользователю рекомендуется использовать только \mathbf{B} -допустимые алгоритмы. Безусловно, пользователь может из \mathbf{B} -допустимых алгоритмов исключить еще часть тех алгоритмов, которые используют слишком большие время счета или оперативную память.

§3. Результаты сравнения шести алгоритмов распознавания

Как уже отмечалось выше, в "Полигон" вошло шесть алгоритмов построения решающих правил распознавания: линейная дискриминантная функция (ЛДФ), квадратичная дискриминантная функция (КДФ), алгоритм, основанный на непараметрических оценках Розенблатта-Парзена (CANDY), и алгоритмы, основанные на логических решающих правилах (DW13,LRP,GLRP). Описание всех этих алгоритмов дано в [5].Трудности, связанные с передачей программного обеспечения, не позволили включить в "Полигон" ряд известных алгоритмов.

Качество решения задачи определяется оценкой вероятности ошибки на контроле, усредненной по числу экспериментов. Под экспериментом в случае решения тестовой задачи понимается после - довательность следующих процедур: генерирование обучающей выборки, построение решающего правила с помощью алгоритма $\mathbb{Q}_{\mathfrak{C}}$, генерирование контрольной выборки и вычисление оценки вероят - ности ошибки для заданной контрольной выборки. При решении прикладной задачи под экспериментом понимается выбор случайным образом из всей совокупности объектов обучающей выборки заданного объема, построение решающего правила с помощью алгоритма $\mathbb{Q}_{\mathfrak{C}}$, из оставшихся объектов выбор случайным образом контрольной выборки заданного объема и вычисление оценки вероятности ошибки для заданной контрольной выборки. Качество работы алгоритма может также определяться с помощью процедуры "скользящий экзамен".

Сравнение алгоритмов на тестовых примерах проводилось согласно описанной выше методике для задач следующего типа: признаки количественные, число образов равно двум, пропуски в таблице отсутствуют, форма задания области принятия решения не учитывается.

Для проверки алгоритмов на **А**-допустимость было предложено 17 тестовых примеров. Сравнение проводилось при следующих объемах обучающей выборки N = 40, N = 100, N = 200. Объем контрольной выборки равен 200. Число объектов каждого образа одинаково. Эксперимент моделирования повторялся 9 раз для каждого варианта. Под вариантом здесь понимается некоторая стратегия природы при фиксированном объеме обучающей выборки **N**. Всего вариантов 51.

Необходимо отметить, что для алгоритма GLRP рассматрива - лись два основных режима построения группы деревьев и для каждого из них пять процедур принятия решений.

Согласно проведенному экспериментальному сравнению было получено, что все алгоритмы, включенные в "Полигон", двляются A-допустимыми.

Заметим, что для алгоритмов DW13, LRP, GLRP было прове - дено аналогичное сравнение для проверки их на А-допустимость в случае задач следующего типа: признаки разнотипны, k = 2. прогуски в таблицах отсутствуют, форма задания области приня - тия решения не учитывается. Было получено, что все эти алгоритмы являются А-допустимыми.

Для проверки алгоритмов на В-допустимость в одномерном признаковом пространстве без "шума" или с "шумом" (к одному информативному признаку добавлялись неинформативные признаки, для каждого из которых распределение выбиралось одинаковым, равным N(0,20)). В результате было рассмотрено 120 вариантов "усредненных стратегий природы", заданных в виде имитационных моделей. Разнообразие вариантов определялось сложностью 1,

уровнем ошибки $\mathbf{P_0}$, объемом выборки \mathbf{N} , отсутствием или присутствием "шумов". Сложность стратегий $\mathbf{1}=1,2,3,4,9$; байесовский уровень $\mathbf{P_0}=0$; 0,05; 0,10; 0,15. Объемы обучающей и контрольной выборок те же, что и при проверке алгоритмов на A-допустимость.

В результате сравнения было получено, что в одномерном признаковом пространстве $(\mathbf{n}=1)$ с "шумами" или без "шумов" при рассматриваемых объемах обучающей выборки В-допустимым оказался только алгоритм LRP (алгоритм GLRP при проверке алгоритмов на В-допустимость не рассматривался, так как в случае $\mathbf{n}=1$ он вырождается в алгоритм LRP).

Необходимо отметить, что так как эксперимент моделирова ния повторялся 9 раз для каждого варианта, то задача распознавания для проверки алгоритмов на А- и В-допустимость решалась около 13 тысяч раз. Эта цифра говорит о трудоемкости проведенного машинного эксперимента сравнения.

Программное обеспечение "Полигон" применялось также для решения около пятидесяти прикладных задач: каждая задача решалась с помощью всех алгоритмов, включенных в "Полигон". В большинстве случаев лучшие результаты (наименьшее значение оценки математического ожидания вероятности ошибки) были получены с помощью алгоритмов ЛДФ, LRP и GLRP. Алгоритм КДФ не оказался лучшим для решения ни одной из рассматриваемых задач. Очевидно, что результаты работы ЛДФ, КДФ и CANDY можно было улучшить,использовав ту или иную известную процедуру отбора информативных признаков.

В заключение отметим, что проведенное сравнение алгорит - мов по вышеизложенной методике является только началом исследования сложной и трудоемкой задачи сравнения алгоритмов построения решающих правил распознавания.

Литература

- 1. ЛБОВ Г.С., СТАРЦЕВА Н.Г. Классификация и принципы сравнения алгоритмов построения решающих правил распознавания //Статистическая обработка информации. Новосибирск, 1989. C. 14-23.
- 2.РАУДИС Ш. Ограниченность выборки в задачах классифика ции //Статистические проблемы управления. Вильнюс, 1976. Вып. 18. С. 1-185.
- 3. HYGHES G.F.On the mean accuracy of statistical pattern recognizers //IEEE Trans. inform theory. 1968.-Vol.IT-14,N1. P. 55-63.
- 4. АНДЕРСОН Т. Введение в многомерный статистический анализ: Пер. с англ./Под ред. Б.В.Гнеденко. М.: Физматлит.,1963. 500 с.
- 5. СТАРЦЕВА Н.Г. Выбор алгоритма построения решающего правила в распознающей системе: Автореф. Дис... кан.техн.наук: 05.13.01 Томск, 1988. 18 с.

Поступила в ред.-изд.отд. 24 января 1989 года