УДК 510.5+519.68

ЯЗЫК ЛОГИЧЕСКИХ СПЕЦИФИКАЦИЙ ВЫСОКОГО УРОВНЯ И ЕГО ДЕНОТАЦИОННАЯ СЕМАНТИКА

Г.К.Абдрахманова

Введение

В настоящей статье описывается формальный логический язык высокого уровня, предназначенный для спецификации отношений на допустимых множествах [1]. Главной его особенностью является то, что в качестве подъязыка термов (семантических программ) здесь выступает расширение языка Σ -выражений Ю.Л.Ершова [2, 4] с помощью произведения предикатных термов. Эта особенность реализует центральный принцип семантического программирования - единство концептуально-логической основы языка специфи - каций и соответствующего языка программирования, - что позво - ляет в рамках единого языка не только специфицировать исходные задачи, строить соответствующие программы, но и исследовать свойства этих программи и процессы их построения [3].

Помимо описания языка спецификаций, в данной статье строится его денотационная семантика, основанная на построении "башни" непрерывных "предикатных" функционалов конечных типов (относительно некоторого допустимого множества). В качестве этой "башни" берется расширение "башни" $\mathcal A$ (построенной в [2] для язы - ка Σ -выражений) с помощью конечных прямых произведений.

Денотационная семантика позволяет построить исчисление языка термов, формулы которого выражают отношение аппроксимации между термами. Это исчисление содержит в себе аксиомы и правила вывода, указанные в [2,4], и дополнительные аксиомы и правила вывода, связанные с конструкциями произведений термов и выте - кающие из денотационной семантики.

Конструкция произведения типов дает возможность присту - пить к решению задачи описания конструктивной семантики рас - сматриваемого языка типа реализуемости,где бы в качестве реализаций формул выступали термы этого языка [3]. Решение этой задачи - тема следующей публикации.

§1. Язык логических спецификаций

Пусть $\sigma = (=, \in,...)$ - некоторая фиксированная сигнатура теории множеств **KPU** [1].

Множество типов ${f T}$ и множество предикатных типов ${f PT}$ языка ${f L}$ определим следующими правилами:

- 0) PT CT;
- 1) 0 € T, 0 € PT, B € PT;
- 2) если $\tau \in T$, $\sigma \in PT$, $\tau \circ (\tau \rightarrow \sigma) \in PT$;
- 3) если $\tau.\sigma \in PT$, то $(\tau \times \sigma) \in PT$;
- 4) других типов нет.

Очевидно, что $\mathbf{T} = \mathbf{PT} \cup \{ \ o \ \}$. Через \mathbf{T}_0 и $\mathbf{PT}_0 \subset \mathbf{T}_0$ обозначим множество типов, полученное с помощью правил 1 и 2. Множество \mathbf{T}_0 есть в точности множество типов подъязыка $\mathbf{\Sigma}$ - выражений $\mathbf{L}^{\mathbf{\Sigma}}$, рассмотренного в работе [2].

Индуктивно определим множество термов языка ${f L}$,для этого однозначно поставим в соответствие каждому терму его тип:

- 0) для камдого типа $\mathbf{t} \in \mathbf{T}$ существует бесконечное множество переменных $\mathbf{x}^{\mathbf{t}}$, являющихся термами типа \mathbf{t} ;
 - 1) обычные термы сигнатуры О являются термами типа 0;

- 2) если P-n-местный предикатный символ сигнатуры σ , а t_1,\dots,t_n термы типа 0, то $P(t_1,\dots,t_n)$ и $P(t_1,\dots,t_n)$ являются термами типа B ;
- 3) константы \bot_{B} (ложь) и \top_{B} (истина) являются термами типа B ;
- 4) если Φ и Ψ термы типа B , $x \in X^0$, t терм типа 0 , не содержащий x , то $(\Phi \land \Psi)$, $(\Phi \lor \Psi)$, $\forall x \in t$ Φ , $\exists x \in t$ Φ , $\exists x \Phi$ являются термами типа B;
- 5) если Φ терм типа $\sigma \in \operatorname{PT}$, $R \in X^{\mathfrak{T}}$, то $[R;\Phi]$ терм типа $(\tau \to \sigma)$;
- 6) если Φ терм типа $(\tau \to \sigma)$, Ψ терм типа τ , то $\Phi(\Psi)$ терм типа σ ;
- 7) если Φ терм типа $\tau \in PT$, Ψ терм типа $\sigma \in PT$, то $\langle \Phi, \Psi \rangle$ терм типа $\langle \tau \times \sigma \rangle$:
- 8) если Φ терм типа $(\mathbf{x} \times \boldsymbol{\sigma})$, то $\mathbf{x_1}\Phi$ терм типа \mathbf{x} , $\mathbf{x_2}\Phi$ терм типа $\mathbf{\sigma}$;
- 9) если $R \in X^{\mathfrak{T}}$, $\mathfrak{T} \in PT$, \mathfrak{P} терм типа \mathfrak{T} , то $\langle R \rangle \mathfrak{P}$ терм типа \mathfrak{T} ;
 - 10) других термов нет.

ì

Интуитивно определения пп. 5,6,9 можно понимать соответ ственно как операторы абстракции, применения функции к аргументу и нахождения наименьшей неподвижной точки.

Обратим внимание читателя на то, что определение терма языка \mathbf{L} фактически следует определению подъязыка $\mathbf{\Sigma}$ -выражений \mathbf{L}^{Σ} в [2], за исключением пп. 7,8 - образования пар термов и их проекций. Это позволяет нам в дальнейшем при построении денотационной семантики языка \mathbf{L} существенно опираться на построенную денотационную семантику языка \mathbf{L}^{Σ} [2].

Вхождение переменных ${\bf x}$ типа О и ${\bf R}$ типа ${\bf v}\in {\bf P}{\bf r}$ в терм называется связанным, если оно является частью вхождения

выражений вида $\exists x \in \emptyset$, $\forall x \in t \in \emptyset$, $\exists x \in t \in \emptyset$ или $[R; \Phi]$, $\langle R \rangle \Phi$ соответственно.

Определим теперь класс формул языка 🗓 :

- 0) каждый терм типа **В** является формулой, называемой в дальнейшем термальной;
- 1) если \mathcal{O}_0 и \mathcal{O}_4 формулы, то таковыми же явля ются \mathcal{O}_0 , $(\mathcal{O}_0 \vee \mathcal{O}_4)$, $(\mathcal{O}_0 \wedge \mathcal{O}_4)$, $(\mathcal{O}_0 \wedge \mathcal{O}_4)$,
- 2) если $x \in X^{\overline{a}}$, $x \in T$, $O \overline{c}$ формула, то $\sqrt{x} O \overline{c}$, $\exists x O \overline{c}$ формулы;
 - 3) других формул нет.

Свободное вхождение переменных в формулу определяется обычным образом.

Описанный язык ${f L}$ выступает одновременно как язык специ - фикаций (формулы) и язык семантических программ (термы).

Ниже будет построена денотационная семантика языка \mathbf{L} . Основой всех наших построений будет служить модель языка \mathbf{L}^{Σ} — "башня" непрерывных "предикатных" функционалов [2] — \mathcal{A} = $(\mathbf{A}_{\mathbf{C}})_{\mathbf{T}\in\mathbf{T}_{\mathbf{Q}}}$ над фиксированным "миром" $\mathbf{A}_{\mathbf{C}}$, являющимся фиксированным допустимым множеством сигнатуры \mathbf{G} [1] с неким выделенным классом предикатов \mathbf{P} , удовлетворяющим принципу \mathbf{E}^+ -объединения (см. [2]). Заметим, что области

$$A_{\tau} = (A_{\tau}, A_{\tau}^{\text{fin}}, \, \Xi_{\tau}, \, \text{fin}_{\tau} \colon A \overset{\text{Ha}}{\to} A_{\tau}^{\text{fin}}) \,, \quad \tau \in T_{\sigma} \,,$$

имеют структуру полных $\mathbf{I}_{\mathbf{A}}$ -пространств [6], если класс \mathbf{P} является подклассом всех $\mathbf{\Sigma}$ -предикатов на \mathbf{A} . В дальнейшем предполагается, что класс \mathbf{P} удовлетворяет вышеу \mathbf{R} азанным двум условиям. Все необходимые определения областей $\mathbf{A}_{\mathbf{T}}$, $\mathbf{T} \in \mathbf{T}_{\mathbf{0}}$, читатель может найти в работе [2].

Заметим, что непосредственно из результатов Ю.Л.Ершова [6] вытекает, что категорию полных f_A -пространств F \Leftrightarrow

 $\not= (X, X_0, \not\leq, y): B \stackrel{\text{Ha}}{\rightarrow} X_0) \text{ с условием} \qquad B^* = Con_{X,y}$ можно декартово замкнуть. Декартова замкнутость означает замкнутость относительно прямого произведения и замкнутость относительно образования пространства непрерывных вычислимых от-C(X, Y)). Нетрудно проверить. ображений (обозначается что для каждого $au \in \mathbf{T}_0$ $\mathbf{A}_{\mathbf{T}}$ удовлетворяет условию (определения см. в [2,6]). Следовательно, башню $\mathcal A$ можно расширить для более высоких типов $\mathbf v \in \mathbf T \setminus \mathbf r_0$ естественным способом, полагая $\mathbb{A}_{q \times G} \neq \mathbb{A}_{q} \times \mathbb{A}_{G}$; $\mathbb{A}_{q \to G} \neq \mathbb{A}_{q \times G}$ + C($oldsymbol{A}_{\omega}$) . Но, опираясь на известные изоморфизмы полных $\mathbf{I}_{\mathtt{A}}$ -пространств, связывающие прямое произведение пространств и образование пространств вычислимых непрерывных отображений [6]. можно ввести естественное представление типов ₹ € PT в виде произведения типов из $\mathbf{PT}_{\mathbf{o}}$. А это позволит ограничиться расширением башни 🗚 только прямыми произведениями.

§2. Расширение башни
$$\mathcal{A} = (\mathbf{A}_{\overline{\mathbf{v}}})_{\overline{\mathbf{v}} \in \overline{\mathbf{T}}_{0}}$$
 для всех типов $\overline{\mathbf{v}} \in \overline{\mathbf{T}}_{0}$

Рассмотрим наименьшее <u>отношение эквивалентности " \sim "</u> на множестве типов $\mathbf T$, удовлетворяющее следующим условиям:

3)
$$(\sigma \rightarrow (\tau \times \epsilon)) \sim ((\sigma \rightarrow \tau) \times (\sigma \rightarrow \epsilon));$$

4) если
$$\sigma \sim \sigma'$$
, $\tau \sim \tau'$, τ_0 ($\sigma \times \tau$) \sim ($\sigma' \times \tau'$) и ($\sigma \to \tau$) \sim ($\sigma' \to \tau'$).

0бозначим через $\mathbf{X}(\mathbf{PT_0})$ следующее множество типов: $\{((\ldots(\mathbf{\tau_1}\times\mathbf{\tau_2})\times\ldots)\times\mathbf{\tau_n})\mid \mathbf{\tau_1}\in\mathbf{PT_0},$

$$i = \overline{1,n}, n \in \mathbb{N}$$
.

В дальнейшем для удобства вместо $((\dots(\tau_1 \times \tau_2) \times \dots) \times \tau_n)$ и $(\tau_1 \to (\tau_2 \to \dots (\tau_n \to \epsilon) \dots))$ будем соответственно писать $(\tau_1 \times \dots \times \tau_n)$ и $(\tau_1,\dots,\tau_n \to \epsilon)$.

Индукцией по построению типов определим функцию *: $T \rightarrow X(PT_0)$ U {o}, называемую в дальнейшем представлением типов:

- 0) $0^* + 0$. $B^* + B$:
- 1) если $\mathbf{T} = (\mathbf{E} \times \mathbf{G})$ и определены $\mathbf{E}^{\mathbf{e}} = (\mathbf{E}_1 \times \dots \times \mathbf{E}_n)$ и $\mathbf{G}^{\mathbf{e}} = (\mathbf{G}_1 \times \dots \times \mathbf{G}_k)$ представления типов \mathbf{E} и \mathbf{G} соответственно, то полагаем $\mathbf{T}^{\mathbf{e}} = (\mathbf{E}_1 \times \dots \times \mathbf{E}_k \times \mathbf{G}_k \times \dots \times \mathbf{G}_k)$;
- 2) если $\mathbf{\tau} = (\mathbf{\sigma} \to \mathbf{\epsilon})$ и определены $\mathbf{\epsilon}^*$ и $\mathbf{\sigma}^*$, то полагаем $\mathbf{\tau}^* = ((\mathbf{\sigma}_1, \dots, \mathbf{\sigma}_k \to \mathbf{\epsilon}_1) \times \dots \times (\mathbf{\sigma}_1, \dots, \mathbf{\sigma}_k \to \mathbf{\epsilon}_n)$.

Нетрудно понять, что данное определение корректно, т.е. действительно задает функцию в $X(PT_0)U(0)$.

предложение 1.

- а) Для каждого типа $\tau \in T$ $\tau^* \sim \tau$;
- б) для любого типа вида $\mathbf{\tau} = (\tau_1, \dots, \tau_n \to \mathbf{B})$ имеем $\mathbf{\tau}^* \in \mathrm{PT}_0$ (в частности, для всех $\mathbf{\tau} \in \mathbf{T}_0$ $\mathbf{\tau} = \mathbf{\tau}^* \in \mathbf{T}_0$).

ДОКАЗАТЕЛЬСТВО "a" проводим индукцией по построению типа τ . Очевидно, $o^* \sim o$, $B^* \sim B$. Пусть $\tau = (\varepsilon \times \sigma)$ или $\tau = (\sigma \to \varepsilon)$. По индукционному предположению $\varepsilon^* \sim \varepsilon$, $\sigma^* \sim \sigma$, $\varepsilon^* = (\varepsilon_1 \times \ldots \times \varepsilon_n)$, $\sigma^* = (\sigma_1 \times \ldots \times \sigma_k)$ $\in X(PT_0)$. Тогда следующие цепочки эквивалентностей доказывают утверждение:

$$\mathbf{\tau} = (\mathbf{\varepsilon} \times \mathbf{\sigma}) \sim (\mathbf{\varepsilon}^* \times \mathbf{\sigma}^*) =$$

$$= ((\mathbf{\varepsilon}_1 \times \dots \times \mathbf{\varepsilon}_n) \times (\mathbf{\sigma}_1 \times \dots \times \mathbf{\sigma}_k)) \sim$$

$$\sim (\mathbf{\varepsilon}_1 \times \dots \times \mathbf{\varepsilon}_n \times \mathbf{\sigma}_1 \times \dots \times \mathbf{\sigma}_k) = \mathbf{\tau}^*,$$

$$\mathbf{\tau} = (\sigma \rightarrow \mathbf{\epsilon}) \sim (\sigma^{\bullet} \rightarrow \mathbf{\epsilon}^{\bullet}) = \\
= ((\sigma_{1} \times \dots \times \sigma_{k}) \rightarrow (\varepsilon_{1} \times \dots \times \varepsilon_{n})) \sim \\
\sim (((\sigma_{1} \times \dots \times \sigma_{k}) \rightarrow \varepsilon_{1}) \times \dots \times ((\sigma_{1} \times \dots \times \sigma_{k}) \rightarrow \varepsilon_{n})) \sim \\
\sim ((\sigma_{1} \times \dots \times \sigma_{k} \rightarrow \varepsilon_{1}) \times \dots \times (\sigma_{1} \times \dots \times \sigma_{k} \rightarrow \varepsilon_{n})) = \mathbf{\tau}^{\bullet}.$$

Доказательство "б" оставляем читателю в качестве упражнения.

Теперь, используя определенное выше представление типов,

расширим башню $\mathcal{A} = (\mathbf{A}_{\mathbf{T}})_{\mathbf{T} \in \mathbf{T}_0}$ для всех типов $\mathbf{T} \in \mathbf{T}$. Пусть $\mathbf{T} \in \mathbf{T}$, $\mathbf{T}^* = \mathbf{T}_1 \times \ldots \times \mathbf{T}_n$ - его представление в $X(PT_0)$ U $\{0\}$, $n \ge 1$. Полагаем 5 At. X ... X At. .

Нетрудно понять, что $\mathbf{A}_{\mathbf{T}}$ совпадает с соответствующей областью ${f A}_{f T}\in {\cal N}$ для ${f T}\in {f T}_{f 0}$. Очевидно, что имеет структуру полного $\mathbf{f}_{\mathbf{A}}$ -пространства, как прямое произведение пространств:

$$A_{\tau} = (A_{\tau}, A_{\tau}^{fin}, \subseteq_{\tau}, fin_{\tau}: A^{n} \stackrel{Ha}{\rightarrow} A_{\tau}^{fin}),$$

здесь

Į.

$$A_{\tau}^{\text{fin}} \neq A_{\tau_{1}}^{\text{fin}} \times \dots \times A_{\tau_{n}}^{\text{fin}}; \quad \Xi_{\tau} = \Xi_{\tau_{1}} \quad \dots \quad \Xi_{\tau_{n}};$$

$$fin_{\tau}((i_{1}, \dots, i_{n})) \neq (fin_{\tau_{1}}(i_{1}), \dots, fin_{\tau_{n}}(i_{n});$$

адля всех $(i_1, ..., i_l) \in \mathbb{A}^n$.

Естественность определений представления типов и областей

TEOPEMA 1.

a) $A_{(G \rightarrow E)} \cong C(A_G, A_E)$, m.e. cywecmeyem usoморфное соответствие элементов $\mathbf{L}_{\mathbf{q}}$ и непрерывних вичислимих отображений из \mathbf{A}_{σ} в \mathbf{A}_{ε} ; δ \mathbf{A}_{σ} \mathbf{A}_{σ

$$\tau^* = ((\sigma_1, \dots, \sigma_k \rightarrow \varepsilon_1) \times \dots \times (\sigma_1, \dots, \sigma_k \rightarrow \varepsilon_n)),$$

а

$$\mathbf{A}_{\mathbf{T}} = \mathbf{A}(\mathbf{G} \rightarrow \mathbf{E})^{=} \mathbf{A}(\mathbf{G}_{1}, \dots, \mathbf{G}_{k} \rightarrow \mathbf{E}_{1})^{\times} \dots \times \mathbf{A}(\mathbf{G}_{1}, \dots, \mathbf{G}_{k} \rightarrow \mathbf{E}_{n})$$
 Значит, любой $\mathbf{f} \in \mathbf{A}(\mathbf{G} \rightarrow \mathbf{E})$ есть $(\mathbf{f}_{1}, \mathbf{f}_{2}, \dots, \mathbf{f}_{n})$, где для каждого $\mathbf{l} \in \{1, \dots, n\}$ $\mathbf{f}_{1} \in \mathbf{A}(\mathbf{G}_{1}, \dots, \mathbf{G}_{k} \rightarrow \mathbf{E}_{1})$, или, если $\mathbf{E}_{1} = (\mathbf{T}_{1}^{1}, \dots, \mathbf{T}_{k}^{1} \rightarrow \mathbf{B})$, \mathbf{f}_{1} есть отображение из

$${}^{\underline{A}}\sigma_{1}^{\times}\cdots^{\times}{}^{\underline{A}}\sigma_{\underline{k}}^{\times} {}^{\underline{A}}\sigma_{1}^{1}^{\times}\cdots^{\times}{}^{\underline{A}}\sigma_{b_{1}}^{1}$$

в A_B , удовлетворяющее условиям (Σ), (\mathbf{m}), (\mathbf{c}) [2].Для любого ($\mathbf{g_1},\ldots,\mathbf{g_k}$) \in A_G \cong $A_{G_1}\times\ldots\times A_{G_k}$ и каждого $\mathbf{1}\in\{1,\ldots,n\}$ $\mathbf{1}_1(\mathbf{g_1},\ldots,\mathbf{g_k})\in A_{\mathbf{g_1}}$, поэтому $\mathbf{1}$ можно рассматривать как отображение из \mathbf{A}_G в $\mathbf{A}_{\mathbf{g_1}}$. Покажем, что $\mathbf{1}$ является непрерывным вычислимым отображением из \mathbf{A}_G в $\mathbf{A}_{\mathbf{g_1}}$. Непрерывность означает [5], что, во-первых, $\mathbf{1}$ монотонно и, во-вторых, для любого ($\mathbf{g_1},\ldots,\mathbf{g_k}$) \in \mathbf{A}_G и любого $\mathbf{J}\in \mathbf{A}^n$ из того, что $\mathbf{Iin}_{\mathbf{g_1}}(\mathbf{J})\subseteq_{\mathbf{g_1}}\mathbf{I}(\mathbf{g_1},\ldots,\mathbf{g_k})$, следует существование $\mathbf{I}\in \mathbf{A}^k$ такого, что $\mathbf{Iin}_{\mathbf{g_1}}(\mathbf{J})\subseteq_{\mathbf{g_1}}\mathbf{I}(\mathbf{g_1},\ldots,\mathbf{g_k})$. Монотонность \mathbf{I} очевидным образом вытекает из монотонности \mathbf{I}_1 , $\mathbf{I}\in\{1,\ldots,n\}$.

Покажем выполнение второго условия. Пусть $\mathbf{j} \in \mathbf{A}^n$, $(\mathbf{g}_1, \dots, \mathbf{g}_k) \in \mathbf{A}_{\mathbf{G}}$ и $\mathrm{fin}_{\mathbf{g}}(\mathbf{j}) \sqsubseteq_{\mathbf{g}} \mathbf{f}(\mathbf{g}_1, \dots, \mathbf{g}_k)$, или покомпонентно $\forall \mathbf{l} \in \{1, \dots, n\}$

В силу того, что $\forall \mathbf{f} \in \mathbf{I}_0$ и $\forall \mathbf{g} \in \mathbf{A}_{\mathbf{g}}$ $\mathbf{g} = \bigcup_{\mathbf{i} \in [\mathbf{g}]_{\mathbf{g}}} \mathbf{fin}_{\mathbf{g}}(\mathbf{i})$,

где $|g|_{\tau} = \{i \mid fin_{\tau}(i) \subseteq_{\tau} g\}$ [2], для каждого $l \in \{1, \ldots, n\}$ имеем

$$f_{1}(g_{1},...,g_{k}) = f_{1}(\underset{i_{1} \in [g_{1}|_{\sigma_{1}}}{\text{lin}_{\sigma_{1}}(i_{1}),...} fin_{\sigma_{1}}(i_{1}),...$$

$$..., \underset{i_{k} \in [g_{k}|_{\sigma_{k}}}{\text{lin}_{\sigma_{k}}(i_{k})),}$$

а в силу непрерывности \mathbf{f}_1 как \mathcal{A} -предиката (свойство (c) из [2]) имеем $\exists q_1^1, \dots, q_k^1 \in \mathbf{\Lambda}$ такие, что $q_1^1 \subseteq \mathbf{g}_1 \mid_{\sigma_1}$, $\mathbf{i} \in \{1, \dots, k\}$, и

Полагаем

3

$$i_1^0 \neq U(\bigcup_{k=1}^n q_1^k), \dots, i_k^0 \neq U(\bigcup_{k=1}^n q_k^k).$$

0чевидно, что $\mathbf{i}_1^0, \dots, \mathbf{i}_k^0 \in \mathbb{A}$. Покажем, что $\mathbf{i}_1^0 \in \mathbb{A}$ есть искомый. Действительно, $\mathrm{fin}_{\mathbf{g}}(\mathbf{i}_1^0) \subseteq_{\mathbf{g}} (\mathbf{g}_1, \dots, \mathbf{g}_k)$, так как

для каждого $\mathbf{t} \in \{1, \dots, k\}$, в силу свойств $\mathrm{fin}_{\mathbf{c}}$ для $\mathbf{t} \in \mathbf{T}_0$. Нетрудно убедиться, что $\mathrm{fin}_{\mathbf{c}}(\mathbf{j}) \subseteq_{\mathbf{c}}$ $\subseteq_{\mathbf{c}} \mathbf{f}(\mathrm{fin}_{\mathbf{c}}(\mathbf{i}^0))$ в силу выбора \mathbf{i}^0 и монотонности \mathbf{f} . Вычислимость отображения \mathbf{f} из $\mathbf{A}_{\mathbf{c}}$ в $\mathbf{A}_{\mathbf{c}}$ по определению означает следующее [6]: множество $\mathbf{L}_{\mathbf{f}} = \{(\mathbf{i}, \mathbf{j}) \mid \mathbf{i} \in \mathbf{A}^{\mathbf{k}}, \mathbf{j} \in \mathbf{A}^{\mathbf{n}}, \mathrm{fin}_{\mathbf{c}}(\mathbf{j}) \subseteq_{\mathbf{c}} \mathbf{f}(\mathrm{fin}_{\mathbf{c}}(\mathbf{i}))\}$ является \mathbf{E} -множеством [1]. Так как

$$\operatorname{fin}_{\varepsilon}(\overline{\mathbf{j}}) \subseteq_{\varepsilon} f(\operatorname{fin}_{\sigma}(\overline{\mathbf{i}}))$$

$$\Leftrightarrow \underset{i=1}{\overset{n}{\&}} (\operatorname{fin}_{\varepsilon_{1}}(j_{1}) \subseteq_{\varepsilon_{1}} f_{1}(\operatorname{fin}_{\sigma}(\overline{i}))) \Leftrightarrow$$

$$\phi_{1=1}^{n}(j_{1} \in |f_{1}(fin_{\sigma_{1}}(i_{1}),...,fin_{\sigma_{k}}(i_{k}))|_{\varepsilon_{k}}),$$

а для любого $1 \in \{1, \dots, n\}$ и любого $g \in A_{g_1}$ множество во $|g|_{g_1}$ есть Σ -множество, то получаем, что L_{g_1} - тоже Σ -множество.

Теперь пусть Φ - непрерывное вычислимое отображение из \mathbb{A}_{σ} в \mathbb{A}_{ε} . Нетрудно понять, что Φ (Φ_1, \dots, Φ_n) ,

где каждое ϕ_1 есть непрерывное вычислимое отображение из \mathbf{A}_{σ} в $\mathbf{A}_{\varepsilon_1}$, $\mathbf{1} \in \{1,\dots,n\}$. Пусть $\mathbf{s}_1 = (\tau_1^1,\dots,\tau_n^1 \to \mathbf{B})$. Для каждого $\mathbf{1} \in \{1,\dots,n\}$ рассмотрим отображение

$$\tilde{\varphi}_1: \mathbb{A}_{\sigma_1} \times \cdots \times \mathbb{A}_{\sigma_k} \times \mathbb{A}_{\tau_1^1} \times \cdots \times \mathbb{A}_{\tau_{\epsilon_1}^1} \to \mathbb{A}_B$$
,

задаваемое следующим образом:

$$\tilde{\phi}_{1}(f_{1},...,f_{k},g_{1},...,g_{k_{1}}) \neq$$

$$+ \phi_{1}(f_{1},...,f_{k})(g_{1},...,g_{k_{1}}).$$

Убедимся, что каждое $\widetilde{\phi}_1$ является \mathcal{A} -предикатом, т.е. удовлетворяет условиям (Σ) , (\mathbf{m}) , (\mathbf{c}) [2]:

$$(Σ)$$
 Для любых $α_{σ_1}, \ldots, α_{σ_k}^-, \beta_1, \ldots, \beta_{\tau_1^-}$

семейств соответствующих типов имеем

$$\begin{split} \mathbf{P}_{\widetilde{\boldsymbol{\phi}_{1}}}(\overline{\mathbf{i}}_{1},\ldots,\overline{\mathbf{i}}_{k},\overline{\mathbf{j}}_{1},\ldots,\overline{\mathbf{j}}_{k}) &\neq \widetilde{\boldsymbol{\phi}_{1}}(\boldsymbol{\alpha}_{\sigma_{1}}(\overline{\mathbf{i}}_{1}),\ldots,\boldsymbol{\alpha}_{\sigma_{k}}(\overline{\mathbf{j}}_{k}), \boldsymbol{\beta}_{1}(\overline{\mathbf{j}}_{1}),\ldots,\boldsymbol{\beta}_{k}(\overline{\mathbf{j}}_{k})) &= \\ &= \boldsymbol{\phi}_{1}(\boldsymbol{\alpha}_{\sigma_{1}}(\overline{\mathbf{i}}_{1}),\ldots,\boldsymbol{\alpha}_{\sigma_{k}}(\overline{\mathbf{i}}_{k}))(\boldsymbol{\beta}_{1}(\overline{\mathbf{j}}_{1}),\ldots,\boldsymbol{\beta}_{k}(\overline{\mathbf{j}}_{k})) &= \\ &= \mathbf{P}_{\boldsymbol{\phi}_{1}}(\boldsymbol{\alpha}_{\sigma_{1}}(\overline{\mathbf{i}}_{1}),\ldots,\boldsymbol{\alpha}_{\sigma_{k}}(\overline{\mathbf{i}}_{k}))(\boldsymbol{\beta}_{1}(\overline{\mathbf{j}}_{1}),\ldots,\boldsymbol{\beta}_{k}(\overline{\mathbf{j}}_{k})) &\in \Sigma^{+}(\boldsymbol{\mathcal{Q}},\boldsymbol{\Lambda}), \\ &\varphi_{1}(\boldsymbol{\alpha}_{\sigma_{1}}(\overline{\mathbf{i}}_{1}),\ldots,\boldsymbol{\alpha}_{\sigma_{k}}(\overline{\mathbf{i}}_{k}))(\boldsymbol{\beta}_{1}(\overline{\mathbf{j}}_{1}),\ldots,\overline{\mathbf{j}}_{k}) &\in \Sigma^{+}(\boldsymbol{\mathcal{Q}},\boldsymbol{\Lambda}), \\ &\varphi_{1}(\boldsymbol{\alpha}_{\sigma_{1}}(\overline{\mathbf{i}}_{1}),\ldots,\boldsymbol{\alpha}_{\sigma_{k}}(\overline{\mathbf{i}}_{k}))(\boldsymbol{\beta}_{1}(\overline{\mathbf{j}}_{1}),\ldots,\boldsymbol{\beta}_{k}) &\in \Sigma^{+}(\boldsymbol{\mathcal{Q}},\boldsymbol{\Lambda}), \\ &\varphi_{1}(\boldsymbol{\alpha}_{\sigma_{1}}(\overline{\mathbf{i}}_{1}),\ldots,\boldsymbol{\alpha}_{\sigma_{k}}(\overline{\mathbf{i}}_{k}))(\boldsymbol{\beta}_{1}(\overline{\mathbf{i}}_{1}),\ldots,\boldsymbol{\beta}_{k}) &\in \Sigma^{+}(\boldsymbol{\mathcal{Q}},\boldsymbol{\Lambda}), \\ &\varphi_{1}(\boldsymbol{\alpha}_{1}),\ldots,\boldsymbol{\alpha}_{n}(\boldsymbol{\alpha}_{1}),\ldots,$$

- (т) Монотонность очевидна.
- (с) Достаточно показать непрерывность по первым k элементам. Пусть (α, K) одномерное семейство типа σ_s , $s \in \{1, \ldots, k\}$. Надо показать, что

$$\widetilde{\phi}_1(\ldots, \underset{K}{\sqcup} \alpha, \ldots, g_1, \ldots, g_{k_1}) \Rightarrow \exists q \in A$$
 $q \subseteq K \otimes$

&
$$\tilde{\phi}_1(\ldots, \underset{q}{\sqcup} \alpha, \ldots, \varepsilon_1, \ldots, \varepsilon_{k_1})$$
.

Из непрерывности ϕ_1 следует [6], что $\forall j \in A$ и $\forall (f_1, \ldots, f_k) \in A_\sigma$ из того, что

$$fin_{\varepsilon_1}(j) \subseteq_{\varepsilon_1} \phi_1(f_1, ..., f_k),$$

следует $\exists i \in \Lambda^k$ такое, что $\operatorname{fin}_{\sigma}(\overline{i}) \subseteq_{\sigma} (f_1, \dots, f_k)$ и $\operatorname{fin}_{\varepsilon}(j) \subseteq_{\varepsilon} \varphi_1(\operatorname{fin}_{\sigma}(\overline{i}))$.

Пусть $\widetilde{\phi}_1$ (..., $\underline{\Box}$ α ,..., \underline{g}_1). Рассиотрим $\mathbf{j} \in \mathbf{A}$ такой, что $\mathrm{fin}_{\mathbf{g}_1}(\mathbf{j}) \subseteq_{\mathbf{g}_1} \phi_1$ (..., $\underline{\Box}$ α ,...) и $\mathrm{fin}_{\mathbf{g}_1}(\mathbf{j})(\mathbf{g}_1,...,\mathbf{g}_{\mathbf{g}_1})$. Тогда существует $\overline{\mathbf{i}} \in \mathbf{A}^k$ такой, что $\mathrm{fin}_{\mathbf{g}}(\overline{\mathbf{i}}) \subseteq_{\mathbf{g}}$ (...

...,
$$\underset{K}{\sqcup} \alpha_{\bullet}$$
...) u $\operatorname{fin}_{\epsilon_{1}}(j) \subseteq_{\epsilon_{1}} \varphi_{1}(\operatorname{fin}_{\sigma}(\overline{i}))$.

Отсюда имеем, что i_s такое, что $fin_{\sigma_s}(i_s) \subseteq_{\sigma_s} \coprod_K \alpha$.

А по определению A-конечных элементов [2] имеем, что $\exists q \in A$ такое, что $q \subseteq K$ и $fin_{\sigma_{g}}(i_{g}) \subseteq_{\sigma_{g}} \bigcup_{q} \alpha$. Нетрудно

понять, что для этого q $\widetilde{\phi}_1(\ldots, \overset{-}{\mathsf{U}}\alpha,\ldots, \mathsf{g}_1,\ldots, \overset{-}{\mathsf{g}}_1,\ldots, \overset{-}{\mathsf{Q}}$

..., $\mathcal{B}_{\mathbf{q}}$). Таким образом, мы каждому $\phi \in C(\mathbb{A}_{\mathbf{G}}, \mathbb{A}_{\mathbf{g}})$ поставили в соответствие $\phi = (\widetilde{\phi}_1, \ldots, \widetilde{\phi}_n) \in \mathbb{A}_{\mathbf{G} \to \mathbf{g}}$.

Нетрудно убедиться, что это соответствие является взаимно обратным к соответствию каждому элементу $\mathbb{A}_{G \to E}$ элемента из С (\mathbb{A}_{G} , \mathbb{A}_{E}), определенного ранее. Причем эти соответствия определяют изоморфизм $\mathbb{A}_{G \to E}$ и С (\mathbb{A}_{G} , \mathbb{A}_{E}) как полных $\mathbb{1}_{\Lambda}$ -пространств.

б) Изоморфизм $\mathbf{A}_{\mathbf{G} \times \mathbf{E}} \cong \mathbf{A}_{\mathbf{G}} \times \mathbf{A}_{\mathbf{E}}$ вытекает из определения областей $\mathbf{A}_{\mathbf{E}}$ и свойств прямого произведения.

Аналогично, как это было сделано в работе [2] для $\P \in \P_0$, определим:

i) для
$$\tau \in T$$
 и $f \in A_{\tau} = A_{\tau_1}$... A_{τ_n}

$$|f|_{\tau} = \{ \overline{i} \in \mathbb{A}^n | fin_{\tau}(\overline{i}) \subseteq_{\tau} f \},$$

если
$$\tau^* = (\tau_1, \dots, \tau_n);$$
2) для $\tau \in T$ и $P \in A_0, \dots; 0 \to B$

$$[P]^{\tau} = \bigcup_{\overline{i} \in P} fin_{\tau}(\overline{i}).$$

ПРЕДЛОЖЕНИЕ 2. Функционали $[\cdot]$ и $[\cdot]$ облада-ют следующими свойствами:

a)
$$|f|_{\tau} = |f_1|_{\tau_1} \cdots |f_n|_{\tau_n}$$
;

ŗ

6) $\partial_{\Lambda R} q_1 \times \dots \times q_n \subseteq \mathbb{A}^n$, $q_i \in \mathbb{A}$, $i \in \{1, \dots, n\}$,

$$q_1 \times \cdots \times q_n \subseteq |f|_{\pi} \Leftrightarrow (Uq_1, \ldots, Uq_n) \in |f|_{\pi};$$

e) ecnu $k \in \{1, ..., n\}$, $i_k \subseteq j_k$, motin_t(\overline{i}) $\subseteq_{\overline{t}}$ fin_t(\overline{j});

ДОКАЗАТЕЛЬСТВО утверждения вытекает из аналогичных свойств для $\tau \in T_0$, доказанных в работе [2].

Итак, для всех типов $\mathbf{T} \in \mathbf{T}$ определены области $\mathbf{A}_{\mathbf{T}}$ как соответствующие прямые произведения элементов башни $\mathbf{A} = (\mathbf{A}_{\mathbf{T}})_{\mathbf{T} \in \mathbf{T}_0}$, однозначно определяемые представлением типа. Расширенную башню в дальнейшем будем обозначать $\mathbf{A} = (\mathbf{A}_{\mathbf{T}})_{\mathbf{T} \in \mathbf{T}_0}$.

§3. Свойства башни $\widehat{\mathscr{H}}$

В этом параграфе мы исследуем те свойства башни $\widetilde{\mathcal{A}}$,которые позволяют говорить о ней как о модели нашего языка \mathbf{L} . Заметим, что $\widetilde{\mathcal{A}}$ есть в точности \mathbf{U} \mathcal{A} × ••• × \mathcal{A}

позиции \mathcal{A} -предикатов; г) подстановки Σ^+ -функции [2]. ПРЕДЛОЖЕНИЕ 3. Для любого $\mathbf{T} \in \mathbf{PT}$ существует $\mathbf{I}_{\mathbf{T}} \in \mathbf{A}_{\mathbf{T}}$ такой, что для любого $\mathbf{f} \in \mathbf{A}_{\mathbf{T}}$ имеем $\mathbf{I}_{\mathbf{T}}(\mathbf{f}) = \mathbf{f}$.

ДОКАЗАТЕЛЬСТВО. Пусть $\mathbf{\tau}^* = (\mathbf{\tau}_1 \times \dots \times \mathbf{\tau}_n)$, $\mathbf{\tau}_1 \in \mathbf{PT}_0$, $\mathbf{i} \in \{1,\dots,n\}$, $n \ge 1$. Тогда

$$(\tau \rightarrow \tau)^* = ((\tau_1, \dots, \tau_n \rightarrow \tau_1) \times \dots \times (\tau_1, \dots, \tau_n \rightarrow \tau_n))$$

и

$$^{\underline{A}} \mathbf{s} \rightarrow \mathbf{s}^{-\underline{A}} (\mathbf{r}_1, \dots, \mathbf{r}_n \rightarrow \mathbf{r}_1)^{\times} \cdots \times \underline{A} (\mathbf{r}_1, \dots, \mathbf{r}_n \rightarrow \mathbf{r}_n)$$

Для каждого $i \in \{1, \ldots, n\}$ определим отображение

$$I_{1}: A_{\tau_{1}} \times \cdots \times A_{\tau_{n}} \times A_{\varepsilon_{1}^{1}} \times \cdots \times A_{\varepsilon_{k_{1}}^{1}} \rightarrow A_{B}$$

(здесь $\tau_i = (\epsilon_1^i, \dots, \epsilon_{k_i}^i \to B))$ следующим образом:

$$f_1 \in A_{\tau_1}$$
, $l \in \{1, ..., n\}$, $g_s \in A_{\varepsilon_s^1}$, $s \in \{1, ..., k_i\}$,

полагаем $I_i(f_1, \dots, f_n, g_1, \dots, g_k) \neq$

Убедимся, что каждое I_1 является \mathscr{A} -предикатом, $i\in\{1,\dots,n\}$. Достаточно проверить выполнение свойств (Σ) , (m) и (c) [2]:

 eta_1 ,..., eta_k - семейств соответствующих типов

$$P_{I_i}(\overline{t}_1,\ldots,\overline{t}_n,\overline{j}_1,\ldots,\overline{j}_k) \in$$

$$\neq I_{1}(\alpha_{\overline{t}_{1}}(\overline{t}_{1}), \dots, \alpha_{\overline{t}_{n}}(\overline{t}_{n}), \beta_{\varepsilon_{1}^{1}}(\overline{j}_{1}), \dots, \beta_{\varepsilon_{k_{1}}^{1}}(\overline{j}_{k_{1}}) =$$

$$= \alpha_{\overline{i}_1}(\overline{i}_1)(\beta_{\varepsilon_1^1}(\overline{j}_1), \dots, \beta_{\varepsilon_{k_1}^1}(\overline{j}_{k_1}) =$$

$$= \alpha_{\overline{t}_{1}}(\overline{t}_{1}, \beta_{\varepsilon_{1}^{1}}(\overline{j}_{1}), \dots, \beta_{\varepsilon_{k}^{1}}(\overline{j}_{k_{1}})) \in \Sigma^{+}(\mathbb{P}, \mathbb{A}).$$

- (m) Монотонность очевидна в силу монотонности каждого $\mathbf{f}_{\mathbf{i}} \in \mathbb{A}_{\mathbf{f}_{\mathbf{i}}}$ и определения порядка $\mathbf{S}_{\mathbf{f}_{\mathbf{i}}}$.
- (с) Достаточно показать непрерывность по i-му аргументу. Пусть (α,K) одномерное семейство типа τ_i . За -метим, что

$$I_{\underline{i}}(\dots, \coprod_{K} \alpha, \dots, \varepsilon_{\underline{i}}, \dots, \varepsilon_{\underline{k}_{\underline{i}}}) = \coprod_{K} \alpha (\varepsilon_{\underline{i}}, \dots, \varepsilon_{\underline{k}_{\underline{i}}}) =$$

$$= \exists \underline{j} \in K \ \alpha (\underline{j}, \varepsilon_{\underline{i}}, \dots, \varepsilon_{\underline{k}_{\underline{i}}}).$$

Тогда если

$$I_{\underline{i}}(\dots, \coprod_{K} \alpha, \dots, g_{\underline{i}}, \dots, g_{\underline{k}_{\underline{i}}}),$$
 to существует $\underline{q} = \{\underline{j}\}, \underline{q} \subseteq K$ и $\underline{q} \in A$ $I_{\underline{i}}(\dots, \coprod_{\underline{q}} \alpha, \dots$

Итак, каждое $I_1\in A_{T_1},\dots,T_n\to T_1,\qquad i\in \{1,\dots,n\}.$ Положим $I_T=(I_1,\dots,I_n) \ .$ Очевидно, что $I_T\in A_{T\to T} \ \text{ и } I_T(f)=f \ \text{ для любого } f\in A_T \ ,$ причем $I_T \ \text{ для } T\in T_0 \ \text{ совпадает с оператором } I_T \ , \text{ определен - ным в работе } [2].$

Предоставим читателю убедиться в том, что I_{τ} есть образ тождественного отображения \mathbb{A}_{τ} , соответствующий изо морфизму $\mathbb{A}_{\tau \to \tau}$ и $\mathbb{C}(\mathbb{A}_{\tau},\mathbb{A}_{\tau})$, определенного в предыдущем параграфе .

Теперь определим оператор аппликации (применения функции к аргументу) $\mathbb{A}ppl\mathbf{y}_{\tau,\sigma} \in \mathbb{A}_{(\tau \to \sigma)} \to (\tau \to \sigma)$ такой, что $\forall \mathbf{f} \in \mathbb{A}_{\tau \to \sigma}$ и $\forall \mathbf{x} \in \mathbb{A}$, $\mathbb{A}ppl\mathbf{y}_{\tau,\sigma} (\mathbf{f},\mathbf{x}) = \mathbf{f}(\mathbf{x})$.

Полагаем $Apply_{\tau \to \sigma} = I_{(\tau \to \sigma)}$. Нетрудно убедиться, что $Apply_{\tau \to \sigma}(f,x) = I_{(\tau \to \sigma)}(f)(x) = f(x)$.

ПРЕДЛОЖЕНИЕ 4. Если $f \in A_{t \to g}$, $g \in A_{t \to t}$, то $f(g) \in A_{t \to g}$ (замкнутость относительно композиции).

ДОКАЗАТЕЛЬСТВО следует из замкнутости относительно композиции \mathcal{A} -предикатов [2]. Действительно, $\mathbf{f}(\mathbf{g}) = (\phi_1, \dots, \phi_k)$ (если $\mathbf{g} = (\sigma_1 \times \dots \times \sigma_k)$, $\mathbf{g} = (\sigma_1 \times \dots \times \sigma_k)$, $\mathbf{g} = (\sigma_1 \times \dots \times \sigma_k)$, где каждое $\mathbf{g} \in \mathbb{A}_{\mathbf{g}_1}, \dots, \mathbf{g}_{\mathbf{g}_k} \to \mathbf{g}_1$, так как $\mathbf{g}_1(\mathbf{g}_1, \dots, \mathbf{g}_k) = \mathbf{g}_1(\mathbf{g}_1(\mathbf{g}_1, \dots, \mathbf{g}_k))$.

Предложения 3 и $\frac{4}{3}$ доказывают теорему о комбинаторной полноте башни $\frac{3}{3}$.

ТЕОРЕМА 2. Любое аппликативное виражение (т.е. выражение, состоящее только из применения операции Apply),
рассматриваемое как функция от своих аргументов, является элементом башни A.

ПРЕДЛОЖЕНИЕ 5. Для любих Т. СЕРТ существуют

- a) one pamop $\langle \cdot, \cdot \rangle_{\tau,\sigma} \in A_{\tau,\sigma \to (\tau \times \sigma)}$ makoŭ, umo das anobux $g_1 \in A_{\tau}$, $g_2 \in A_{\sigma}$ $\langle g_1, g_2 \rangle_{\tau,\sigma} \in A_{\tau \times \sigma}$;
- 6) one pamopu $\pi_1^{\bullet} \in \mathbb{A}_{T \times G \to T}$ u $\pi_2^{\bullet} \in \mathbb{A}_{T \times G \to G}$ ma- κue , $umo \ \partial \Lambda s \ \Lambda m \delta o e o$ $f \in \mathbb{A}_{T \times G}$ $\pi_1^{\bullet}(f) \in \mathbb{A}_T$, $\pi_2^{\bullet}(f) \in \mathbb{A}_G$ u $\langle \pi_1^{\bullet}(f), \pi_2^{\bullet}(f) \rangle_{T_{\bullet}G} = f$.

доказательство. Пусть , $\mathbf{\tau}^* = (\tau_1 \times \dots \times \tau_n)$, $\mathbf{\sigma}^* = (\sigma_1 \times \dots \times \sigma_k)$. Для каждого $\mathbf{l} \in \{1, \dots, n\}$ определим $\mathbf{I}_1(\mathbf{g}_1^1, \dots, \mathbf{g}_n^1, \mathbf{g}_1^2, \dots, \mathbf{g}_k^2) = \mathbf{g}_1^1$, а для каждого $\mathbf{m} \in \{1, \dots, k\}$ определим $\mathbf{J}_{\mathbf{m}}(\mathbf{g}_1^1, \dots, \mathbf{g}_n^1, \mathbf{g}_1^2, \dots, \mathbf{g}_k^2) = \mathbf{g}_k^2$ для всех $\mathbf{g}_1^1 \in \mathbb{A}_{\mathbf{T}}$, $\mathbf{g}_k^2 \in \mathbb{A}_{\mathbf{G}}$. He-

трудно понять, что

$$I_{1} \in \mathbb{A}_{\tau, \sigma \to \tau_{1}} = \mathbb{A}_{\tau \times \sigma \to \tau_{1}}, (\tau, \sigma \to \tau_{1})^{*} = (\tau \times \sigma \to \tau_{1})^{*},$$

$$I_{1} \in \mathbb{A}_{\tau, \sigma \to \sigma_{1}} = \mathbb{A}_{\tau \times \sigma \to \sigma_{1}}$$

$$J_{n} \in \mathbb{A}_{\tau, \sigma \to \sigma_{1}} = \mathbb{A}_{\tau \times \sigma \to \sigma_{1}}$$

для $\mathbf{m} \in \{1,\dots,k\}$. Предоставляем читателю самому убедиться, что $\langle \cdot,\cdot \rangle_{\mathbf{T},\mathcal{O}} \neq (\mathbf{I}_1,\dots,\mathbf{I}_n,\mathbf{J}_1,\dots,\mathbf{J}_k)$, $\pi_1^* = (\mathbf{I}_1,\dots,\mathbf{I}_n)$, $\pi_2^* = (\mathbf{J}_1,\dots,\mathbf{J}_k)$ являются искомыми операторами.

Отметим простейшие свойства оператора $\left\langle \cdot,\cdot\right\rangle_{\tau,\sigma}$:

a)
$$\langle f, \langle g, h \rangle_{\tau, \sigma} \rangle_{\varepsilon, \tau \times \sigma} = \langle \langle f, g \rangle_{\varepsilon, \tau}, h \rangle_{\varepsilon \times \tau, \sigma}$$
;

6)
$$\langle f, g \rangle_{\tau \to \sigma, \tau \to \varepsilon} (x) = \langle f(x), g(x) \rangle_{\sigma, \varepsilon}$$
.

На этом этапе исследования свойств башни $\widetilde{\mathcal{A}}$ можно утверждать, что $\widetilde{\mathcal{A}}$ моделирует язык $\widetilde{\mathbf{L}}$, но без конструкции $\langle R \rangle$ Φ для всех типов $\tau \in \mathtt{PT}$.

ТЕОРЕМА 3 (о неподвижной точке). Для любих $\tau \in PT$ и $f \in A_{\tau \to \tau}$ неравенство $f(x) \in x$ имеет в A_{τ} наименьшее решение $x^{\bullet \bullet}$ (обращающее его в равенство), и оператор $f \in A_{\tau}$ его наименьшее решение $f \in A_{\tau}$ является элементом области $f \in A_{\tau}$

ласти $A(\tau \to \tau) \to \tau^*$ ДОКАЗАТЕЛЬСТВО. Вследствие теоремы 1, $f \in A_{\tau} \to \tau$ является непрерывным вычислимым отображением, т.е. $f \in C(A_{\tau}, A_{\tau})$. Тогда по теореме о неподвижной точке вычислимого отображения [6] f имеет наименьшую неподвижную точку $f \in A_{\tau}$. Причем оператор f такой, что f f является

непрерывным вычислимым отображением, или элементом $C(C(A_{\tau}, A_{\tau}), A_{\tau})$. А так как $C(C(A_{\tau}, A_{\tau}), A_{\tau}) \simeq C(A_{\tau}, A_{\tau}) \simeq$

ПРЕДЛОЖЕНИЕ 6. Для любих $\tau, \sigma \in \mathbf{PT}$ и любих $f \in A_{\tau, \sigma \to \tau}$ и $g \in A_{\tau, \sigma \to \sigma}$ система неравенств $f(\mathbf{x}, \mathbf{y}) \in A_{\tau, \sigma \to \sigma}$

$$\left. \begin{array}{l} f(x,y) \subseteq_q x, \\ g(x,y) \subseteq_q y \end{array} \right\}$$

имеет наименьшее решение $\langle \mathbf{x}^{\bullet}, \mathbf{y}^{\bullet} \rangle$ в $\mathbf{A}_{\mathbf{T} \times \mathbf{G}}$ (обращающее его в равенство), причем

$$y^{\infty} = Y_{\sigma}(\lambda y.g(Y_{\tau}(\lambda x.f(x,y)),y)),$$

$$x^{\infty} = Y_{\tau}(\lambda x.f(x,y^{\infty})).$$

ДОКАЗАТЕЛЬСТВО. Действительно,

$$\langle f, g \rangle (\tau, \sigma + \tau), (\tau, \sigma + \sigma) \in A(\tau \times \sigma) \rightarrow (\tau \times \sigma)$$

а система равносильна неравенству

$$\langle f,g\rangle_{(\tau \ \sigma \to \tau),(\tau \ \sigma \to \sigma)}(\langle x,y\rangle_{\tau,\sigma}) \subseteq_{\tau \times \sigma} \langle x,y\rangle_{\tau,\sigma}$$

следовательно, по предыдущей теореме, система имеет наименьшую неподвижную точку в $A_{\xi \times f}$. Покажем, что она имеет ука занный в формулировке вид.

Введем обозначения:

$$y^{0} = Y_{g}(\lambda y.g(Y_{g}(\lambda x.f(x,y)),y)),$$

$$x^{0} = Y_{g}(\lambda x.f(x,y^{0})).$$

Нетрудно понять, что $\langle x^0, y^0 \rangle$ является неподвижной точкой системы:

$$y^{0} = g(Y_{\tau}(\lambda x.f(x,y^{0})),y^{0}) = g(x^{0},y^{0}),$$
 $x^{0} = f(x^{0},y^{0}).$

Покажем, что она наименьшая, т.е. для любой другой неподвижной точки $\langle \mathbf{X}^1, \mathbf{J}^1 \rangle$ имеем $\mathbf{X}^0 \subseteq_{\mathbf{T}} \mathbf{X}^1, \quad \mathbf{J}^0 \subseteq_{\mathbf{T}} \mathbf{J}^1$. Пусть $\langle \mathbf{X}^1, \mathbf{J}^1 \rangle$ — неподвижная точка системы

Тогда $Y_{\tau}(\lambda x.f(x,y^{\dagger}))$ $\subseteq_{\tau} x^{\dagger}$ в силу определения оператора Y_{τ} . Отсюда из монотонности $\mathcal E$ имеем

$$g(Y_{x}(\lambda x.f(x,y')),y') \subseteq_{\sigma} g(x',y') = y'.$$

В силу определения оператора $\mathbf{Y}_{\mathbf{G}}$ получаем, что

$$y^{\circ} = Y_{\sigma}(\lambda y. g(Y_{\tau}(\lambda x. f(x,y)), y)) \subseteq_{\sigma} y^{\circ}.$$

Воспользовавшись монотонностью $Y_{\tau}(\lambda x.f(x,y))$, как отображением с аргументом y, получаем, что

$$x^0 = Y_{\tau}(\lambda x.f(x,y^0)) \subseteq_{\tau} Y_{\tau}(\lambda x.f(x,y^1)) \subseteq_{\tau} x^1.$$

Таким образом, $\langle x^0, y^0 \rangle$ — наименьшее решение системы (обращающее его в равенство).

Теперь перейдем к точному описанию семантики языка 🚨 .

§ 4. Семантика языка **L** и исчисление термов

В силу рассмотренных выше свойств башни $\widetilde{\mathcal{A}}$, означивание терма Φ типа $\mathbf{T} \in \mathbf{T}$ или формулы $\mathcal{O} \subset \mathbf{T}$ языка \mathbf{L} при некоторой интерпретации значений переменных $\mathbf{p} : \mathbf{U} \times_{\mathbf{T}} \to \widetilde{\mathcal{A}} = \mathbf{T}$

 конструкций терма, связанных с произведением типов и формул вида $\forall_{\mathbf{x}}^{\mathbf{x}} \mathcal{O} \mathbf{c}$, $\exists_{\mathbf{x}}^{\mathbf{x}} \mathcal{O} \mathbf{c}$. Поэтому мы приводим определения лишь для указанных случаев:

$$[\langle \bullet, \Psi \rangle]^{\mathcal{A}}_{\rho} = \langle [\bullet]^{\mathcal{A}}_{\rho}, [\Psi]^{\mathcal{A}}_{\rho} \rangle_{\tau,\sigma},$$

если 🗣 типа 😙 , 🖞 типа 🗷 ;

$$[\pi_1 \bullet]_{\rho}^{\mathcal{H}} = \pi_1^{\bullet}([\bullet]_{\rho}^{\mathcal{H}})$$

и

$$[\pi_2 \bullet]_{\rho}^{\mathcal{H}} = \pi_2^{\bullet}([\bullet]_{\rho}^{\mathcal{H}}),$$

если Ф типа Тх 🗗 ;

$$[\![\forall_{\mathbf{x}}^{\mathbf{q}} \alpha]\!]_{\mathbf{p}}^{\mathbf{q}} = \mathsf{T}_{\mathsf{B}} \Leftrightarrow \mathsf{QDR} \mathsf{BCEX} \quad \mathsf{a} \in \mathsf{A}_{\mathbf{q}}$$

$$[\alpha]_{\rho[x+a]}^{\alpha} = \tau_{B};$$

$$[\![\exists_{\mathbf{x}}^{\mathbf{T}} \mathcal{O} ()\!]_{\mathbf{p}}^{\mathbf{T}} = \mathsf{T}_{\mathbf{B}} \Leftrightarrow \mathsf{для} \mathsf{ некоторого} \qquad \mathsf{a} \in \mathsf{A}_{\mathbf{T}}$$

$$[\alpha]_{\rho[x+a]}^{\alpha} = \tau_B$$
.

Ясно, что для терма Φ типа \mathbf{T} \mathbf{T} \mathbf{T} Имеет место теорема о выразительной силе языка термов \mathbf{L} .

ТЕОРЕМА 4. Если терм \P типа \P не содержит свободних переменних, то $\| \P \|_{\P} \in \Sigma(\Lambda)$; обратно, если $Q \in \Sigma(\Lambda)$, то $[Q]^{\P} \in \Lambda_{\P}$ имеет вид $[\P]$ для некоторого терма \P .

Соответствующее этой семантике исчисление термов будет содержать в себе аксиомы и правила вывода, указанные в [2,4], и еще дополнительные аксиомы и правила вывода, связанные с конструкцией произведения типа. Формулы этого исчисления имеют вид $\begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix}$, где $\begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix}$ - термы языка $\begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix}$ соответственно типов $\begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix}$ таких, что $\begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix}$

Приведем дополнительные аксиомы и правила вывода.

Аксиомы:

$$\langle \pi_1 \oplus, \pi_2 \oplus \rangle \approx \oplus ;$$

$$\langle \Phi_1, \langle \Phi_2, \Phi_3 \rangle \rangle \approx \langle \langle \Phi_1, \Phi_2 \rangle, \Phi_3 \rangle ;$$

$$[R; \langle \Phi, \Psi \rangle] \approx \langle [R; \Phi], [R; \Psi] \rangle ;$$

$$[\langle R_1, R_2 \rangle; \Phi] \approx [R_1; [R_2; \Phi]];$$

$$\langle \langle R, Q \rangle \rangle \langle \Phi, \Psi \rangle \approx \langle (\langle R \rangle \oplus Q \rangle \langle \Psi)^R_{\langle R \rangle, \Phi} , \langle Q \rangle \langle \Psi)^R_{\langle R \rangle, \Phi} \rangle .$$

Правила вывода

Конечно же, этим списком не исчерпываются все аксиомы и правила вывода этого исчисления термов, соответствующего опи - санной семантике. Возможно, читатель добавит новые аксиомы и правила вывода.

ž

В заключение автор выражает благодарность Д.И.Свириденко за постановку проблемы, а также за внимание и помощь в процессе работы над статьей.

Литература

- 1. BARWISE J. Admissible Sets and Structures. Berlin: Springer-Verlag, 1975. P.6-42.
- 2. САЗОНОВ В.Ю., СВИРИДЕНКО Д.И. Денотационная семантика языка ∑-выражений// Логические вопросы теории типов данных.-Новосибирск, 1986.- Вып.114: Вычислительные системы.-С.16-34.
- 3. СВИРИДЕНКО Д.И. Проектирование Σ -программ. Σ -оцениваемость // Там же.- С.59-83.
 - 4. EPШOB Ю.Л. Язык **Σ**-выражений // Там же.- C.3-10.
 - Его же. Теория нумераций. М.: Наука, 1976. С. 577 585.
- 6. Его же. Об **∑**-пространствах // Алгебра и логика. 1986. Т.25, № 5. С.533-544.

Поступила в ред.-изд.отд. 13 июня 1991 года