5. Выполненное исследование базируется на развитом алгебро-грамматическом аппарате, включающем логические средства и метаправила выводимости схем алгоритмов и программ, принадле жащих классам, ассоциированным с актуальными предметными областями. Особенность алгебро-грамматических средств представления знаний - гармоническое сочетание декларативных процедур ных и трансформационных спецификаций, а также адекватность данных средств концепции объектно-ориентированного программирова-

На базе полученных результатов разработаны наукоемкая технология и ее инструментарий КЕЙС-система МУЛЬТИПРОЦЕССИСТ, нашедшие применение при решении задач АСУ, САПР конструкторской и технологической подготовки производства, языковых процессоров транслирующего и интерпретирующего типа.

Литература

- 1. ГЛУШКОВ В.М., ЦЕЙТЛИН Г.Е., ЮЩЕНКО Е.Л. Методы символьной мультиобработки. Киев: Наукова думка. 1980. 252 с.
- 2. ДАРЛИНГТОН Дж. Синтез нескольких алгоритмов сортировки //Кибернетический сборник. - №18. - С. 141-176.
- 3. ЦЕЙТЛИН Г.Е. Проектирование алгоритмов сортировки: классификация, трансформация, синтез //Программирование. -1989. N3. C. 3-24.

То же //Программирование. - 1989. -№6. -С. 4-19. То же //Кибернетика. - 1989. -№6. -С. 67-74.

FINITARY LAMBDA CLONES

Diskin Z.B., Riga

There are known several algebraic structures aspiring to be an algebraic counterpart of the λ -calculus: λ -algebras, combinatory models. λ -models (here and further we follow on the whole. the terminology adopted in [1]). We present one more such a structure called a (finitary) λ-clone which has some attractive features from both universal algebra and λ-calculus points of view. Namely, for any environment model of the λ-calculus, the range of the valuation mapping is a λ-clone in fact, a so called locally finite (1.f.) λ -clone. In addition, the very luation mapping is nothing but a homomorphism onto this λ -clone and the corresponding λ -theory (of the model) is the kernel of this homomorphism. Equivalently, if (C, ', k, s) is a λ -algebra and X is a countable set of variables, then the polyno mial algebra C[X] can be equipped with the structure of λ -clone and proves the 1.f. λ -clone generated by C (not X!) with certain defining relations.

At the same time, the class of all λ -clones is a variety of algebras contained in the class of λ -models and, besides, the last one, considered as a category, is equivalent to the full subcategory of λ -clones consisting of 1.f. λ -clones.

These nice properties of λ -clones are provided point that variables, λ -quantifiers and substitutions are included directly into the signature of λ-clones. Roughly spea king, a λ -clone is an abstract clone in the sense of universal algebra equipped with operations of application and λ -quantifications.

DEFINITION 1 [2]. Let L = $(x_i, s_i, ', \lambda_i)_{i \le \omega}$ be a signature of operation symbols where all x_i are constants, all s_i and ' are binary and all $\lambda_{\bf i}$ are unary. A (finitary) $\lambda\text{-clone}$ is defined to be an L-algebra $\mathcal W$ s.t. the following identities hold for each i,j,k < ω with i \neq j \neq k (u,w range over the underlying set W, v stands for $s_i(x_k, w)$:

(S)
$$s_{i}(x_{i}, w) = w$$
, $s_{i}(w, x_{i}) = w$, $s_{j}(w, x_{i}) = x_{i}$, $s_{j}(u, v) = v$,
 $s_{i}(u, w^{1}, w^{2}) = s_{i}(u, w^{1})$, $s_{i}(u, w^{2})$;

(SQ)
$$s_i(w,\lambda_i u) = \lambda_i u$$
, $s_i(v,\lambda_i u) = \lambda_i s_i(v,u)$;

(SQ)
$$s_i(w, \lambda_i u) = \lambda_i u$$
, $s_i(v, \lambda_j u) = \lambda_j s_i(v, u)$;
(\alpha) $\lambda_i v = \lambda_j s_i(x_j, v)$; (\beta) $(\lambda_i w), u = s_i(u, w)$.

Here (S) - identities correspond to intuitive understan ding of s_i(u,w) as the result of substituting of u into w for x_i , (SQ) - identities regulate interaction between substitutions and λ -quantification, (α), (β) provide (α),(β) - conversion resp.

Given a λ -clone W, for each element $w \in W$ we introduce its dimension set, $\Delta w := \{i \le \omega : s_i(u,w) \neq w \text{ for some } u \neq x_i \}$, and call w finitary if $|\Delta w| < \omega$ and closed if $\Delta w = \emptyset$. Further, we define $W_{\text{fin}}:=\{w: |\Delta w| < \omega\}$ and $W_{\text{g}}=\{w: \Delta w=\emptyset\}$. W_{fin} proves a subalgebra of W, W_{fin} , and W is called locally finite dimensional (1.f.) if W =

DEFINITION 2. An environment domain is defined to be pentuple 2 = (D,V,F, ,, , ,) with D a set, V a set of operations $D^{\omega} \to D$, F a set of operations $D \to D$, ϕ a mapping $D \to F$ and Ψ a mapping $F \rightarrow D$ s.t. the following conditions are (we use the symbol Λ for the ordinary set theoretical

lambda abstraction):

- (E1) $\pi_i := (\Lambda \rho \in D^{\omega}. \rho i) \in V$ for all $i < \omega$, $\bar{d} := (\Lambda \rho \in D^{\omega}. d) \in V$ for all $d \in D$;
- (E2) if $u,v \in V$ then $(\Lambda \rho \in D^{\omega}.v([i/u]\rho)) \in V$ and $(\Lambda \rho \in D^{\omega}.\phi(u\rho)(v\rho)) \in V$;
- (E3) if veV then, for any fixed $i<\omega,\rho\in D^\omega$, $(\Lambda d\oplus D.v([i/\overline{d}]\rho))\in F$.

 An environment domain is said to be an environment model if
- (E4) ΦΨf=f for all f∈F.
 CONSTRUCTION.
- (i) With any environment domain % as above there is correlated the L-algebra $(V, \pi_i, s_i, ', \lambda_i)$ with operations defined according to the items (E1,2,3) of the definition 2.
- (ii) With any L-algebra W there is correlated a domain pentuple $W = (D, V, F, \Phi, \Psi)$ where $D = W_0$, V is the set of all operations on D determined by polynomials built from a countable set of variables and elements of D with the operation ', $W := \Lambda u \in W_0$, $W'u, F := \{ \Phi w : w \in W_0 \}$, $\Psi \Phi w := (\lambda_1 \lambda_1 (x_1 ' x_1)) 'w$.

THEOREM 1. If & is an environment model then $V_{\&}$ is a l.f. λ -clone; if W is a λ -clone then $\&_{W}$ is an environment model; finally, $\&_{W} \cong \&$ and $V_{\&}W\cong W_{\text{fin}}$

THEOREM 2. A λ -theory is defined to be a couple (C,T) with C a set of constants and T a subset of $\Lambda(C) \times \Lambda(C)$ closed under the ordinary λ -calculus deducibility. If $\mathbf{T} = (C,T)$ is a λ -theory then $\mathbf{W}_{\mathbf{T}} = \Lambda(C)/T$ is a 1.f. λ -clone; if \mathbf{W} is a λ -clone and μ is the homomorphism $\Lambda(\mathbf{W}_{\mathbf{T}}) \to \mathbf{W}$ naturally extending the identity inclusion $\mathbf{W}_{\mathbf{T}} \hookrightarrow \mathbf{W}$, then $\mathbf{T}_{\mathbf{W}} = (\mathbf{W}_{\mathbf{T}}, \ker \mu)$ is a λ -theory; finally, $\mathbf{T}_{\mathbf{W}} \cong \mathbf{T}$ and $\mathbf{W}_{\mathbf{T}} \cong \mathbf{W}_{\mathbf{f}}$ in.

CONJECTURE. The variety generated by the class of all 1.f. λ -clones coincides with the class of all λ -clones.

IN PROSPECT. The notion of a finitary λ -clone is somewhat unnatural as finitary operations acting on closed elements can not reach elements with infinite dimension sets. In this con-

text, a more natural structure is a λ -clone with infinitary, $(1+\overline{i})$ -ry, applications and infinitary, \overline{i} -ry, λ -quantifiers for all, finite and countable, sequences $\overline{i} \in \omega^{\infty}$. In this way we obtain an algebraic version of an infinitary λ -calculus but this is another story.

REFERENCES

- 1. MEYER A.R. What is a model of the lambda calculus?Information and Control, 52.1, 1982(87-122).
- 2. DISKIN Z.B. Lambda term systems. Z.Math.Logic Grundl. Math. Submitted.

ON CODING OF HEREDITARILY-FINITE SETS, POLYNOMIAL-TIME COMPUTA-BILITY AND A-EXPRESSIBILITY

Sazonov V.Yu., Leontjev A.V., Pereslavl-Zalessky

This paper is devoted to computability and definability in terms of bounded (i.e., Δ -) set theoretic language (cf. references below).

A coding (or numbering; cf. the general theory in [3]) of the universe of hereditarily-finite sets HF is any surjection $\vartheta: A^* \to HF$ from the set of all finite strings over some finite alphabet A. Let P_{ϑ} denote the class of operations F: HF \to HF such that $F\vartheta = \vartheta$ for some polynomial-time computable (or shortly, P-) function $f: A^* \to A^*$. For any two codings $\vartheta: A^* \to HF$, $\eta: B^* \to HF$ and P-function $f: A^* \to B^*$ the P-reducibility $\vartheta = \eta$ f is denoted also as $\vartheta \leq \frac{f}{p} \eta$ or $\vartheta \leq p$. P-equivalence $\vartheta = p \eta$ means $\vartheta \leq p \eta \otimes \eta \leq p \vartheta$ and implies $P_{\vartheta} = P_{\vartheta}$. If cardinalities of A and B are $\varrho = 2$ then any $\vartheta: A^* \to HF$ is P-equivalent to some $\vartheta: B^* \to HF$ (via arbitrary two-sided P-bijection $f: A^* \to B^*$). Hence, we will usually consider codings over the same A. Any ϑ is called P-coding if (1) the predicate "HF $\varrho = \vartheta$ (a) $\varrho \in \vartheta$ (b)" is P-decidable on any, a, b $\varrho \in A^*$ and (2) two P-computable mappings $\varrho \mapsto A_1, \dots, A_k$ and $\varrho \in A^*$.