text, a more natural structure is a λ -clone with infinitary, $(1+\overline{i})$ -ry, applications and infinitary, \overline{i} -ry, λ -quantifiers for all, finite and countable, sequences $\overline{i} \in \omega^{\infty}$. In this way we obtain an algebraic version of an infinitary λ -calculus but this is another story.

REFERENCES

- 1. MEYER A.R. What is a model of the lambda calculus?Information and Control, 52,1, 1982(87-122).
- DISKIN Z.B. Lambda term systems. Z.Math.Logic Grundl. Math. Submitted.

On coding of hereditarily-finite sets, polynomial-time computability and Δ -expressibility

Sazonov V.Yu., Leontjev A.V., Pereslavl-Zalessky

This paper is devoted to computability and definability in terms of bounded (i.e., Δ -) set theoretic language (cf. references below).

A coding (or numbering; cf. the general theory in [3]) of the universe of hereditarily-finite sets HF is any surjection $\vartheta: A^* \to HF$ from the set of all finite strings over some finite alphabet A. Let P_{ϑ} denote the class of operations F: HF \to HF such that $F\vartheta = \vartheta f$ for some polynomial-time computable (or shortly, P-) function $f: A^* \to A^*$. For any two codings $\vartheta: A^* \to HF$, $\eta: B^* \to HF$ and P-function $f: A^* \to B^*$ the P-reducibility $\vartheta = \eta$ f is denoted also as $\vartheta \leq f_p \eta$ or $\vartheta \leq f_p \eta$. P-equivalence $\vartheta = f_p \eta$ means $\vartheta \leq f_p \eta$ and implies $\varphi = f_p \eta$. If cardinalities of A and B are $\varphi = f_p \eta$. If cardinalities of A and B are $\varphi = f_p \eta$. If cardinalities of A and B are $\varphi = f_p \eta$. Hence, we will usually consider codings over the same A. Any $\varphi = f_p \eta$ is called P-coding if (1) the predicate "HF $\varphi = f_p \eta$ and $\varphi = f_p \eta$ is called P-coding if (1) the predicate "HF $\varphi = f_p \eta$ and $\varphi = f_p \eta$ and $\varphi = f_p \eta$ is called P-coding if (1) the predicate "HF $\varphi = f_p \eta$ and $\varphi = f_p \eta$ is P-decidable on any, a,be $\varphi = f_p \eta$ and $\varphi = f_p \eta$ and $\varphi = f_p \eta$ and $\varphi = f_p \eta$.

..., $a_k \mapsto a$ from codes to lists of cods and conversely exist such that in both cases $\{\vartheta(a_1), \ldots, \vartheta(a_k)\} = \vartheta(a)$ in HF. Alternatively, P^* -coding is one satisfying (1), as above, and, in place of (2), the condition (2^*) on P-computability of a mapping $a \mapsto a_1, \ldots, a_k$ such that $\{\vartheta(a_1), \ldots, \vartheta(a_k)\} = the$ transitive closure of set $\vartheta(a)$ in HF.

Examples of P & P -codings are 1) (correct) bracket exp - ressions, like {}, {{}{{}}{{}}}, etc., which represent HF-sets in the evident way, this coding being denoted as β : {"{", "}"} + HF, 2) finite trees which are graphs of the special kind and are given by 0-1-incidence matrices; the coding is denoted as τ :Trees + HF and is defined inductively by τ (tree) = $\{\tau(\text{subtree1}), \dots, \tau(\text{subtreek})\}$ for all immediate subtrees of any given tree; 3) graph coding or collapsing $\chi(g,v)$ which assigns to any finite acyclic directed graph g with the distin - guished vertex v, a set $\chi(g,v) \in HF$ by the same as τ does.

Example of P^* & TP-coding is arithmetical one $e: \omega \to HF$ [1] where $e(n) = \{e(n_1), \ldots, e(n_k)\}$ for $n = 2^{n_1} + \ldots + 2^{n_k}$, $n_1 > n_2 > \ldots > n_k$. More exactly, we should distinguish between unary, binary and in general m-ary arithmetical coding e_1 , e_2 , and e_m , $m \ge 1$, relative to chosen representation of natural numbers by a set of digits $0,1,\ldots,m-1$, i.e., by m-adic numeric system.

PROPOSITION 1. (1) $\theta \leq_{P} \chi$ holds for any P^* -coding θ .

(2) The following not invertible P-reducibilities hold: $e_1 \leq_{P} e_m \equiv_{P} e_n \leq_{P} \beta \equiv_{P} \tau \leq_{P} \chi$ for $m, n \geq 2$.

PROPOSITION 2. P_{χ} not $\subseteq P_{\beta}$; P_{β} not $\subseteq P_{\chi}$; $P_{\chi} \cap P_{\beta}$ not $\subseteq P_{e_{-}}$;

 $P_{e_{m}} \text{ not } \subseteq P_{\chi}, P_{\beta}; P_{e_{2}} \text{ not } \subseteq P_{e_{1}}; P_{e_{1}} \text{ not } \subseteq P_{e_{2}}.$

Define set-theoretic Δ -language (cf. [6-8]) consisting of Δ -terms a,b,... and Δ -formulas $\phi,\psi,...$ by the clauses:

 $\Delta - \text{formulas::= } \mathbf{a} \in \mathbf{b} | \ \ \, \forall | \phi \lor \psi | \phi => \psi | \forall \mathbf{x} \in \mathbf{a} \phi | \exists \mathbf{x} \in \mathbf{a} \phi;$ $\Delta - \text{terms::= } \langle \text{set-variables} > | \{\mathbf{a}, \mathbf{b}\} | \cup \{\mathbf{b}(\mathbf{x}) : \mathbf{x} \in \mathbf{a} \& \phi(\mathbf{x})\} |$ $[\mathbf{p} = \mathbf{p} \cup \{\mathbf{x} \in \mathbf{a} : \phi(\mathbf{x}, \mathbf{p})\}].$

Here (closed) variables x and p are different and not occurring in a. These selfexplanatory constructs have the evident semantics in HF (and even in any universe V for ZF) and are every-day used tools of the "working mathematician". The only construct which deserves special definition is inductive Δ -separation $[p = p \cup \{x \in a: \phi(x,p)\}]$ (its omission essentially gives rise to Kripke-Platek theory without foundation axiom; cf. [1,6,7]). It is considered as the term (not formula!) and denotes the distinguished solution p of the equation in square brackets obtained as the result of stabilization (in \leq card(a) steps) of monotone sequence $\emptyset = p_0 \subseteq p_1 \subseteq \ldots \subseteq a$, where $p_{n+1} := p_n \cup \{x \in a: \phi(x,p_n)\}$. Let us call Δ -operations those definable by Δ -terms.

THEOREM 1 (V.Yu.Sazonov). Given any finite alphabet A, there exists the retraction pair i:HF \rightarrow A and i R:A \rightarrow HF (ii R = identity:A \rightarrow A) such that arbitrary P-function f:A \rightarrow A satisfy fi = if for some \triangle -operation f:HF \rightarrow HF.

Let $\vartheta^R: HF \to A^*$ be a retraction of any coding ϑ . Denote $\Delta_{\vartheta}:=\Delta$ -language extended by the corresponding retraction pair $\vartheta:=\vartheta$ i and $\vartheta^R:=i^R\vartheta^R: HF \to HF$. Any P-coding ϑ with a retraction ϑ^R is called P-regular if the following three functions $A^* \to A^*$ are in P: (1) ϑ^Ri^R , which transforms any code a in A^* to the code of a (i.e. of its representation in HF), (2) $i\vartheta$, , which restore the code a in A^* from the code of a, and (3) $\vartheta^R\vartheta$, which transforms any code in A^* to some equivalent code called canonical one.

PROPOSITION 3. Graph, tree and bracket P-coding χ,τ , and β are P-regular, however arithmetical codings (which are only P -codings) are not.

THEOREM 2. $\Delta_{\chi} \equiv P_{\chi}$, i.e. Δ_{χ} -language represents exactly P_{χ} -operations (and P_{χ} -predicates) in HF (cf. [6-8]). Analogously, $\Delta_{\beta} \equiv P_{\beta} \equiv \Delta_{\tau} \equiv P_{\tau}$

THEOREM 3 (V.Yu.Sazonov). In general, for any P-regular coding θ ,n:

- (1) ∆₈ ≡P₈ ;
- (2) $\vartheta \leq_{p} \eta \& \vartheta \not\equiv_{p} \eta$ implies P_{ϑ} not $\subseteq P_{\eta}$ and P_{η} not $\subseteq P_{\vartheta}$ (with contraexamples $\vartheta ^{R}$ and $\eta ^{R}$, respectively);
 - (3) in fact, $\eta \leq P_{\mathfrak{S}} \Leftrightarrow 0 \Leftrightarrow \widetilde{\mathfrak{S}} \in P_{\mathfrak{S}} \Leftrightarrow 0 \Leftrightarrow \widetilde{\mathfrak{S}} \in P_{\mathfrak{S}}$

REFERENCES

- 1. BARWISE J.K. Admissible Sets and Structures, Springer, Berlin, 1975.
- 2. DAHLHAUS E. Is SETL a suitable language for parallel programming a theoretical approach. CSL 87, LNCS 329, E.Borger, H.Kleine Buning M.M.Richter editors,pp. 56-63.
- 3. ERSHOV Yu.L. Numbering theory (In Russian), izd. "Nau ka", glavnaja red. fiz.-mat. literatury, M., 1977.
- 4: GANDY R.O. Set-Theoretic Functions for Elementary Syntax, Proceedings in Pure Mathematics, Vol. 13, Part II, 1975, pp. 103-126.
- 5. SAZONOV V.Yu. Polynomial computability and recursivity in finite domains. Elektronische Informationsverarbeitung und Kybernetik, Vol. 16, N7, 1980, p. 319-323.
- 6. SAZONOV V.Yu. Bounded set theory and polynomial computability. All Union Conference on Applied Logic, Proc., Novosibirsk, 1985, p. 188-191 (In Russian).
- 7. SAZONOV V.Yu. Bounded set theory, polynomial computa -bility and Δ -programming. Application aspects of mathematical logic. Computing systems, Vol.122, 1987, p.110-132 (In Russian). See also the short English version of this paper in Lecture Notes in Computer Science, N 278, 1987, p. 391-397.
- 8. SAZONOV V.Yu. Hereditarily-finite sets with attributes, data bases and polynomial-time computability, Actes Preliminaires, du Symposium Franco-Sovietique, INFORMATIKA'91, 16-18 October, 1991, Grenoble, INRIA, 1991, p.113-132.