УДК 517.11

К ТЕОРЕМЕ СПЕКТОРА-ГАНДИ ДЛЯ Σ -ДОПУСТИМЫХ МНОЖЕСТВ*

Ю.Л. Ершов

Настоящая заметка написана в связи с появлением важной статьи [6], которая содержит дальнейшее развитие Σ -допустимых (в терминологии [1]) или +-допустимых (в терми нологии [6]) множеств. В указанной работе доказана лемма усечении, определено и доказано существование HYP (M) для любого резольвентного Σ -допустимого множества любой модели \mathcal{M} (сигнатура которой есть Σ -множество в Λ). Главной задачей [6] является нахождение обобщения теоремы П - классов счетных моделей Спектора-Ганди о связи $\mathbf{HYP}_{\mathbf{A}}$. Найденное там ∑-определимостью в (теорема 3.3.1) имеет одно неестественное условие на стимое множество 🛕 - не быть слабо стабильным. Другие условия естественны: счетность 🔬 используется по существу, уснеобходимо A ловие резольвентности для существования $\mathrm{HYP}_{\mathbf{a}}$ (\mathfrak{M}'). Оказывается, что условие не быть слабо стабильным в этой теореме может быть опущено.

Для понимания настоящей заметки необходимо знакомство со статьей [6], обозначениями и терминологией которой (с неболь - шими изменениями) будем пользоваться далее.

Основным утверждением является следующее усиление теоремы 3.3.3 из [6].

^{*)} Работа выполнена при финансовой поддержке Российского Фонда Фундаментальных исследований (93-011-16014).

ТЕОРЕМА. Пусть $\mathbf{A} = \langle \mathbf{A}, \mathbf{P} \rangle$ — резольвентное Σ —до — пустимое множество, $\mathbf{R} \subseteq \mathbf{A}$ — предикатная сигнатура, являющаяся Σ —подмножеством \mathbf{A} . Пусть \mathbf{J} — класс \mathbf{A} —прамоделей (моделей с основным множеством из пра-элементов, не пересекающимся с \mathbf{A}). Если \mathbf{J} есть Σ —класс над $\mathbf{HYP}_{\mathbf{A}}$ в \mathbf{A} —прамоделях, то \mathbf{J} есть $\mathbf{CPC}_{\mathbf{d}}(\mathbf{A})$ —класс в \mathbf{A} —прамоделях.

Пусть A, R и J удовлетворяют условиям теоремы. Пусть ϕ — Σ -формула и $\overline{a} \in A$ таковы, что для любой A-прамо - дели $\mathcal{M} = (M, \rho)$ сигнатуры R $\mathcal{M} \in J$ тогда и только тогда, когда $(HYP_A(\mathcal{M}), A, \rho) \models \phi(\overline{a})$.

По теореме Маккаи 1.4.1 из [6] достаточно доказать, что J есть ${\rm CPC}_{\bf d}^{\, {\bf I}}({\bf A})$ -класс. Для простоты предположим, что ${\bf P}$ состоит из одного множества ${\bf S}\subseteq {\bf A}$. Пусть $\overline{{\bf K}}$ есть сигнатура $\langle {\bf A}^{\, {\bf I}}, {\bf S}^{\, {\bf I}}, {\bf p}^{\, {\bf I}} \rangle$ ${\bf U}$ $\langle {\bf A} \mid {\bf a}\in {\bf A} \rangle$, ${\bf M}^{\, {\bf I}}\not\subset {\bf K}$ ${\bf U}$ ${\bf R}$, и $\overline{{\bf K}}$ ${\bf N}$ $\overline{{\bf R}}=\emptyset$. Будем доказывать, что ${\bf J}$ совпадает с классом ${\bf L}\not\simeq {\bf Mod}({\bf V}\,{\bf M}^{\, {\bf I}}\,\overline{{\bf V}}\,\overline{{\bf K}}\,(\Lambda\,\Phi \to \phi(\overline{\bf a}))$, где Φ есть Σ -множество ${\bf Z}_{\bf A}$ -предложений, описанное ниже.

Так как \mathbf{A} — резольвентное Σ -допустимое множество, то для \mathbf{A} , \mathbf{S} и $\overline{\mathbf{R}}$ существуют хорошие Σ -резольвенты \mathbf{a} , \mathbf{S} и \mathbf{r} . Пусть $\phi_0(\mathbf{x},\mathbf{y},\overline{\mathbf{a}})$, $\phi_1(\mathbf{x},\mathbf{y},\overline{\mathbf{a}})$ и $\phi_2(\mathbf{x},\mathbf{y},\overline{\mathbf{a}})$ - Σ -формулы, которые определяют графики резольвент \mathbf{a} , \mathbf{s} и \mathbf{r} соответственно (не уменьшая общности, можно считать, что они зависят от тех же параметров, что и $\mathbf{\phi}$).

Множество Ф определяется как объединение следующих множеств:

- 1) $AKPU(A^{\dagger},S^{\dagger},\rho^{\dagger})$ (система аксиом теории Адамсона-Крипке-Платека с праэлементами, т.е. теория Σ — допустимых множеств с $\mathbb{P} = \langle A^{\dagger},S^{\dagger},\rho^{\dagger} \rangle$);
- 2) $\{ \forall xy(A'(y) \land x \in y \rightarrow A'(x)) \} \cup \{ \forall x(s'(x) \rightarrow A'(x)) \} \cup AKPU(s')^{A'}.$

ЗАМЕЧАНИЕ. Эти предложения гарантируют, что A^{\dagger} - гранзитивное подмножество модели $B \in Mod \Phi$, $S^{\dagger} \subseteq A^{\dagger}$ и что $B \mid A^{\dagger} \models AKPU(S^{\dagger})$;

3) {A'(ă) | a ∈ A } U {Ū(ğ) | q ∈ Ū(a) } U {¬Ū(Ď)} ∪

$$\cup \{ \forall \mathbf{v}_{0} (\mathbf{v}_{0} \in \check{\mathbf{a}} \leftrightarrow \bigvee_{b \in \mathbf{a}} \mathbf{v}_{0} = \check{b}) | \mathbf{a} \in \mathbf{A} \} \cup \{ \mathbf{S}'(\check{\mathbf{a}}) | \mathbf{a} \in \mathbf{S} \}.$$

ЗАМЕЧАНИЕ. Эти предложения гарантируют, что \mathbf{A}^{\bullet} есть концевое расширение \mathbf{A} ($\mathbf{A}\subseteq_{\mathrm{end}}\mathbf{A}^{\bullet}$) и что $\mathbf{S}\subseteq\mathbf{S}^{\bullet}$;

4)
$$\{\forall xyz(\phi_{i}^{A'}(x,y,\tilde{a}) \land \phi_{i}^{A'}(y,z,\tilde{a}) \rightarrow y = z) \mid i = 0,1,2\}.$$

ЗАМЕЧАНИЕ. Эти предложения гарантируют, что $\phi_{\bf i}^{\bf A}$ определяет функцию в любой модели Φ , ${\bf i}=0,1,2$;

5) {
$$\forall xyz (\rho'(\langle x,y \rangle) \land \rho'(\langle x,z \rangle) \rightarrow y = z)$$
,

$$\forall x (\exists y \rho' (\langle x, y \rangle) \leftrightarrow \exists u v (\phi_2^{\underline{A}'} (u, v, \overset{\vee}{\underline{a}}) \land x \in v)) \}.$$

ЗАМЕЧАНИЕ. Эти предложения гарантируют, что в любой модели Φ ρ^{t} определяет функцию с областью определения $U\left\{v\mid \exists u \; \phi_{2}^{A^{t}}(u,v,\overset{\succ}{a})\right\};$

6)
$$\{\forall \mathbf{x}(\mathbf{M}(\mathbf{x}) \to \mathbf{U}(\mathbf{x})), \forall \overline{\mathbf{v}}(=\mathbf{v}_1 \dots \mathbf{v}_{\mathbf{x}P})(P(\overline{\mathbf{v}}) \to \mathbf{M}'(\overline{\mathbf{v}}) (= \bigwedge_{i=1}^{nP} \mathbf{M}'(\mathbf{v}_i))) \land \forall \overline{\mathbf{v}} (\exists \mathbf{v}_0 \rho'(\langle \check{\mathbf{P}}, \mathbf{v}_0 \rangle) \land \land \langle \overline{\mathbf{v}} \rangle \in \mathbf{v}_0 \leftrightarrow P(\overline{\mathbf{v}})) \mid P \in \overline{R}\}.$$

Нетрудно видеть, что Φ есть Σ -подмножество Λ .Пусть $\mathcal{M} = (\mathbf{M}, \rho)$ - Λ -прамодель. Пусть $\mathcal{M} = (\mathcal{M}, \rho)$ - естественное обогащение Σ -допустимого множества $(\mathrm{HYP}_{\Lambda}(\mathcal{M}), \Lambda, S, \rho)$

до сигнатуры $\sigma(A)$ U $\langle M', A', S', \rho' \rangle$ U $\langle \tilde{a} \mid a \in A \rangle$ $\langle M'(\hat{h}(\mathcal{M})) \neq M, A'(\hat{h}(\mathcal{M})) \neq A$, $S'(\hat{h}(\mathcal{M})) \neq S$, $\rho'(\hat{h}(\mathcal{M})) \neq \rho$, $\tilde{a}(\hat{h}(\mathcal{M})) \neq a$, $a \in A$. Тогда легко видеть, что $\hat{h}(\mathcal{M})$ является моделью для Φ .

Покажем теперь, что $\mathbf{J} = \mathbf{L}$, где

 $\mathbf{L} = \mathbf{Mod}(\forall \mathbf{M}' \forall \mathbf{K}(\land \Phi \rightarrow \varphi(\mathbf{a}))).$

Покажем, что $(\mathbb{L}\subseteq \mathbb{J})$. Пусть \mathcal{M} - \mathbb{A} -прамодель из (\mathbb{L}) , тогда \mathcal{H} (\mathcal{M}) - модель (\mathbb{A}) и, следовательно, $(\mathcal{M})\models\phi(\check{\overline{a}})$, $(\mathcal{M})\models\phi(\check{\overline{a}})$, $(\mathcal{M})\models\phi(\check{\overline{a}})$, но тогда (\mathcal{M}) .

Покажем теперь, что $\mathbf{J}\subseteq \mathbf{L}$. Пусть \mathcal{M} - \mathbf{A} -пра - модель из \mathbf{J} и пусть \mathcal{X} - произвольная модель \mathbf{Q} такая, что $\mathcal{X} \models \mathbf{M}'(\mathcal{X}) \upharpoonright \overline{\mathbf{R}} = \mathcal{M}$. Нужно показать, что $\mathcal{X} \models \mathbf{\phi}(\mathbf{a})$: для этого достаточно показать, что $\mathcal{X} \models \mathbf{\phi}(\mathbf{a})$, где \mathcal{X} - вполне упорядоченная часть \mathcal{X} , так как $\mathcal{X} \subseteq_{\mathbf{end}} \mathcal{X}$ и $\mathbf{\phi}(\mathbf{a})$ - $\mathbf{\Sigma}$ -формула. Из предложения о концевых расширениях из \mathbf{Q} (группа 3) следует, что $\mathbf{A} \subseteq \mathbf{A}'(\hat{\mathcal{X}})$ и \mathbf{A} , \mathbf{S} \mathbf{C} \mathbf{C} end \mathbf{C} \mathbf{A} \mathbf{C} \mathbf{A} \mathbf{C} \mathbf{A} \mathbf{C} \mathbf{A} \mathbf{C} $\mathbf{C$

Из группы 4 аксиом Φ следует, что Σ -формулы $\phi_1^{\mathbf{A}^{\dagger}}(\mathbf{x},\mathbf{y},\overline{\mathbf{a}})$, \mathbf{i} = 0,1,2, определяют (частичные) функции на $\widehat{\mathbf{x}}$; заметим, что эти функции $\widehat{\mathbf{a}}$, $\widehat{\mathbf{s}}$ и $\widehat{\mathbf{r}}$ являются расши рениями функций (резольвент) \mathbf{a} , \mathbf{s} и \mathbf{r} , определимых \mathbf{s} (\mathbf{A} , \mathbf{s}) формулами $\phi_0(\mathbf{x},\mathbf{y},\overline{\mathbf{a}})$, $\phi_1(\mathbf{x},\mathbf{y},\overline{\mathbf{a}})$, $\phi_2(\mathbf{x},\mathbf{y},\overline{\mathbf{a}})$ соответственно, так как (\mathbf{A} , \mathbf{s}) \subseteq_{end} $\widehat{\mathbf{x}}$ | $\mathbf{A}^{\dagger}(\widehat{\mathbf{x}})$ | $\langle \sigma(\mathbf{A}), \mathbf{s}^{\dagger} \rangle$. Пусть $\alpha \neq \mathrm{Ord}(\mathbf{A})$, тогда $\alpha \subseteq \mathrm{Ord}(\widehat{\mathbf{x}})$ и множества $\widehat{\mathbf{A}} \neq \{\mathbf{b} \mid \exists \beta < \alpha \quad \widehat{\mathbf{x}} \models \phi_0^{\mathbf{A}^{\dagger}}(\beta, \mathbf{b}, \mathbf{a})\}$,

 $\vec{S} \neq \{b \mid \vec{\exists} \, \beta < \alpha \quad \hat{\mathcal{L}} \models \phi_1^{\underline{A}}(\beta, b, \overline{a})\}$ и $\overline{\rho} \neq \{b \mid \vec{\exists} \, \beta < \alpha \quad \hat{\mathcal{L}} \models \phi_2^{\underline{A}}(\beta, b, \overline{a})\}$ являются Σ -подмножествани $\hat{\mathcal{L}}$; тогда $\langle \hat{B}, \overline{A}, \overline{S}, \rho^{\bullet}(\hat{\mathcal{L}}) \mid \overline{\rho} \rangle$ является Σ -допустимым множеством.

Из отмеченных выше включений $\mathbf{a} \subseteq \hat{\mathbf{a}}$, $\mathbf{s} \subseteq \hat{\mathbf{s}}$, $\mathbf{r} \subseteq \hat{\mathbf{r}}$ вытекает, что на самом деле $\overline{\mathbf{A}} = \mathbf{A}$ $\overline{\mathbf{S}} = \mathbf{S}$ и $\overline{\rho} = \overline{\mathbf{R}}$ и, следовательно, $\rho'(\hat{\mathbf{Z}}) \upharpoonright \overline{\rho} = \rho$. Итак, $\langle \hat{\mathbf{B}}, \mathbf{A}, \mathbf{S}, \rho \rangle$ - Σ -допустимо; следовательно, $\langle \text{HYP}_{\mathbf{A}} (\mathcal{W}), \mathbf{A}, \mathbf{S}, \rho \rangle \subseteq \langle \hat{\mathbf{B}}, \mathbf{A}, \mathbf{S}, \rho \rangle$. Из $\mathcal{W} \in \mathbf{J}$ следует $\langle \text{HYP}_{\mathbf{A}} (\mathcal{W}), \mathbf{A}, \mathbf{S}, \rho \rangle \subseteq \langle \hat{\mathbf{B}}, \mathbf{A}, \mathbf{S}, \rho \rangle = \phi(\overline{\mathbf{a}})$, но $\mathbf{A} \subseteq \mathbf{A}'(\hat{\mathbf{Z}})$, $\mathbf{S} \subseteq \mathbf{S}'(\hat{\mathbf{Z}})$, $\rho \subseteq \rho'(\hat{\mathbf{Z}})$ и $\phi - \Sigma$ -формула, позитивная \mathbf{B} $\mathbf{A}', \mathbf{S}', \rho'$; отсюда $\langle \hat{\mathbf{B}}, \mathbf{A}'(\hat{\mathbf{Z}}), \mathbf{S}'(\hat{\mathbf{Z}}), \rho'(\hat{\mathbf{Z}}) \rangle = \phi(\overline{\mathbf{a}})$; следовательно, и $\mathcal{Z} \models \phi(\overline{\mathbf{a}})$. Итак. $\mathcal{W} \in \mathbf{L}$ и равенство $\mathbf{J} = \mathbf{L}$ установлено. \square

Следствием доказанного является справедливость теоремы 3.3.1 из [6] без предположения о том, что Σ -допустимое множество A не является слабо стабильным.

ЗАМЕЧАНИЯ.1. Из работы [6] следует, что понятие Σ -допус - тимого множества, введенное автором в [1], по существу совпа - дает с понятием +-допустимого множества, введенного много ранее в работе [4]. К сожалению, важная работа [4], как и последующая [5], прошли мимо внимания автора и поэтому он не сделал на них ссылки. Следует отметить, что теорема Ганди для Σ -допустимых множеств не была доказана ни в [4], ни в [5,6],хотя важность ее несомненна.

 Следует отметить также, что в работе [4] содержится теорема 5.6, близкая к теореме 1 из работы автора [2],хотя доказательства совсем различны. 3. Еще одно пересечение работ автора с работами А.Адамсона, это предложение 2.4 из [5] и предложение 1 из [3].

Литература

- 1. ЕРШОВ Ю.Л. Σ -допустимые множества //Логические вопросы теории типов данных. Новосибирск, 1986. Вып. 114: Вычислительные системы. С. 35-39.
- 2. EPWOB Ю.Л. Форсинг в допустимых множествах //Алгебра и логика. 1990. Т. 29, № 6. С. 648-658.
- 3. ЕРШОВ Ю.Л. Любое семейство подмножеств праэлементов порождает допустимое множество //Сиб.мат.журн. 1989. T.30, M6. C. 65-67.
- 4. ADAMSON A. Admissible sets and saturation of structures //Ann. Math. Log. 1978. Vol.14, N 2. -P. 111-157.
- 5. ADAMSON A. Saturated structures, unions of chains, and preservation theorems //Ann.Math.Log. 1980. Vol.19, N 1-2. P. 67-96.
- 6. LAVINE S. A Spector-Gandy Theorem for cPC_d(A)-classes //J.Symbolic. Logic. 1992. Vol. 57, N 2. P.478-500.

Поступила в ред.-изд.отд. 18 февраля 1993 года