УДК 510.62:519.68

ОБЪЕКТНО-ОРИЕНТИРОВАННЫЙ ВАРИАНТ ЯЗЫКА Σ -СПЕЦИФИКАЦИЙ *)

В.Ш.Гумиров

Введение

Объектно-ориентированный стиль программирования, явившийся,на наш взгляд,прагматическим воплощением идеи абстрактных типов данных, становится в настоящее время идеологической основой в программной индустрии. Классические работы по объект ной ориентации [5,6] выделяют следующие основные признаки использования ее методов в некотором языке программирования: 1) абстрагирование; 2) ограничение доступа; 3) иерархическое наследование; 4) полиморфизм; 5) устойчивость; 6) паралле лизм; 7) типизация. Последние три пункта считаются не обяза тельными и реализуются в основном в языках объектно-ориентированных баз данных или на многозадачных системах.

Базовым понятием в объектном подходе являются понятия объекта и класса объектов. У каждого класса обычно определяется некоторый набор характеристик (данных) и методов (функций членов класса), с помощью которых можно манипулировать этим классом. Оно в чем-то схоже с понятием абстрактного типа дан ных. Тогда объект - это представитель класса (элемент абстракт-

^{*&}lt;sup>)</sup> Работа частично поддержана РФФИ (грант № 093-01-01506).

ного типа данных). Создавать новые классы можно наследуя существующие (иерархическое наследование). Под наследованием понимается наследование свойств (методов и характеристик) ба зовых классов. При этом часть методов и характеристик можно спрятать внутри реализации класса, так что обратиться к этим характеристикам и методам можно будет только из методов данного или производных (наследниках) от него классов (ограничение доступа). Помимо этого можно переопределить методы базовых классов в производных от них (полиморфизм). Под абстраги рованием понимается создание абстрактных классов, имеющих нереализованные методы. Абстрактные классы используют в качестве базовых классов для других, имеющих тот же набор методов. уже переопределенных. Под устойчивостью понимают продолжительное время существования объектов в системе. Традиционные объектные языки программирования, такие как C++ или Smalltalk,позволяют объектам существовать только во время выполнения программы (runtime). Устойчивость в настоящее время реализована в языках объектных СУБД, в IBM System Object Model [8] (технология объектно-ориентированного программирования в OS/2 и новых проектах Workplase OS и Taligent), а также в Common Object Request Broker Architecture [7]. Естественность идей объектного подхода привлекает к нему внимание, что способствует расширению промышленного применения объектно-ориентированных языков программирования.

Наиболее используемые объектно-ориентированные языки программирования, такие как C++, Smalltalk, основываются на про - цедурном подходе. Именно это позволяет создавать с помощью этих языков эффективно работающие программные продукты, однако идет в ущерб выразительной мощи по сравнению, например, с той, которой обладают декларативные языки. С другой стороны, языки абстрактных типов данных, такие как ОВЈ, обладающие низкой производительностью, по этой причине практически не применяются в промышленном программировании.

Подход, начала которого излагаются в данной работе, осно - ван на идее совмещения выразительной мощи языка семантического программирования (Σ -языка) [1,2] и идеологической простоты объектного подхода к пооектированию и построению программ. Ограничения, накладываемые на синтаксис языка Σ -схем [3] (допускаются только ограниченные кванторы по классам объектов) в свете последних результатов А.В.Манциводы [4], могут позволить описать по-настоящему $3\phi\phiexmusyo$ операционную семантику для данного варианта языка Σ -спецификаций. С другой стороны, тот факт, что синтаксис последнего основан на синтаксисе вводимого здесь варианта программной логики (RDL), обладающей, на наш взгляд, весьма интересными свойствами, может позволить включить эти свойства в будущую операционную семантику.

§1. Ресурсная динамическая логика (RDL)

1. Введение в RDL. Будем рассматривать множество базових сортов Sort $_{0}$, предполагая, что \underline{bool} \in Sort $_{0}$; σ_{0} - ба - зовая сигнатура с множеством сортов Sort $_{0}$.

Множество $\delta asosmx$ типов Туре задается следующими условиями:

- Sort ⊆ Type;
- 2) если $s_1, s_2 \in Type$, то $(s_1 x s_2) \in Type$;
- 3) считается, что операция "х" ассоциативна.

Кроме того, на типах будем рассматривать частичный порядок \leq , удовлетворяющий следующему условию: если $t_1, t_2 \in T$ уре и $t = (t_1 \times t_2)$, то $t_1 \leq t$ и $t_2 \leq t$.

Пусть σ - многосортная сигнатура с множеством сортов Туре и множеством *переменних* V. Каждому функциональному (предикатному) символу F соответствует его тип type(F) (для преди-

катного символа P type $(P) = \underline{bool}$), а также тип его аргумента * arg(F). Каждая переменная $v \in V$ тоже имеет тип type(v).

Через M будем обозначать многосортную модель сигнатуры σ . Пусть $a\in |M|$, тогда через type(a) будем обозначать тип этого элемента модели M.

Пусть Res — множество ресурсных символов. Каждому ресурсному символу R соответствует его тип $type(R) \in Type$. Кроме того, на множестве Res задан частичный порядок \sqsubseteq , удовлетво — ряющий следующему условию: если $R_1, R_2 \in Res$ и $type(R_1) \le$ $\le type(R_2)$, то $R_1 \sqsubseteq R_2$. Пусть $R \in Res$, тогда обозначим $R_{\sqsubseteq} = \{R_0 \in Res | R_0 \subseteq R\}$ и $Res_{\sqsubseteq} = \{R_{\sqsubseteq} \mid R \in Res\}$. Будем так-

же считать, что type($R_{\underline{\ }}$) = sup{type($R_{\underline{\ }}$) $|R_{\underline{\ }} \in R_{\underline{\ }}$ }.

Означиванием переменных из V будем называть такое отображение s: V $\rightarrow |M|$, что ($\forall v \in V$)(type(s(v)) \leq type(v)).

Через S(M) будем обозначать множество всех таких означиваний.

Введем еще некоторые обозначения. Пусть A - некоторое множество, тогда $FL(A) = \{\tau \colon A \to N | dom(\tau) - конечное множест - во\}, где <math>dom(\tau) = \tau^{-1}(N\setminus\{0\})$. Определим также операции $\bigoplus \colon FL(A) \times A \to FL(A)$ и $\bigoplus \colon FL(A) \times A \to FL(A)$ следующим образом: для $y \in A \setminus \{x\}(\tau \bigoplus x)(y) = \tau(y)$ и $(\tau \bigoplus x)(y) = \tau(y)$, для $y = x(\tau \bigoplus x)(y) = \tau(y)+1$ и $(\tau \bigoplus x)(y) = \tau(y)-1$. Заметим, что любой $\tau \in FL(A)$ можно представить в виде $\tau = \Sigma_{x \in dom(\tau)} \tau(x) \times x$.

Положим $\mathcal{P}_{res} = \{ \text{ P:Res}/\underline{\subseteq} \text{ xN} \rightarrow \bigcup_{\mathbf{R}_{\underline{\subseteq}}} \in \text{Res}/\underline{\subseteq} \text{ }^{\mathrm{FL}(\mathbf{R}_{\underline{\subseteq}})} \}.$ Множество cocmoshuŭ — это множество $\mathrm{ST} = \mathrm{S}(M) \times \mathcal{P}_{res} \times [M] \times \mathrm{N}.$ То есть каждое состояние $a \in \mathrm{ST}$ мы будем представлять четверкой: $\langle \mathrm{s}(a), \mathrm{pr}(a), \mathrm{rv}(a), \mathrm{ctxt}(a) \rangle$. При этом через $a[s=s_1]$ будем кратко обозначать состояние $\langle \mathrm{s}_1, \mathrm{pr}(a), \mathrm{rv}(a), \mathrm{ctxt}(a) \rangle$.

^{*)} Поскольку операция "x" на типах ассоциативна, то можно считать все предикаты и функции унарными.

Аналогично для остальных компонент.

- 2. Термы RDL. Здесь мы определим термы RDL TR(RDL) или просто TR. Помимо этого для каждого $p \in TR$ определим type(p) (тип терма p), $par(p) \subseteq V$ (параметры терма p) и $sv(p) \subseteq V$ (присвоенные переменные терма p). Определяем по индукции.
- 1. Каждая переменная $v \in V$ есть терм RDL, тип которого совпадает с type(v), par $(v) = \{v\}$, sv $(v) = \emptyset$.
- 2. Пусть F функциональный символ сигнатуры σ , $p \in TR$, type(p) = arg(F). Тогда $F(p) \in TR$, type(F(p)) = type(F), par(F(p)) = par(P(p), sv(P(p)) = sv(P(p)).
- 3. Пусть p,q \in TR и выполнено условие: par(p) \cap sv(q) = $\emptyset \land$ par(q) \cap sv(p) = $\emptyset \land$ sv(p) \cap sv(q) = \emptyset . Тогда t = $(p|q) \in$ TR, при этом type(t) = (type(p)xtype(q)), par(t) = par(p) \cup par(q), sv(t) = sv(p) \cup sv(q).
- 4. Пусть $v \in V$, $t \in TR$, при этом $type(v) \le type(t)$. Тогда $(v := t) \in TR$, type(v := t) = type(v), par(v := t) = par(t), $sv(v := t) = sv(t) \cup \{v\}$.
- 5. Пусть $p,q \in TR$, тогда $(p;q) \in TR$, type(p;q) = type(q), par $(p;q) = par(p) \cup par(q) \setminus sv(p)$.
- 6. Пусть $t \in TR$, тогда $\{t\} \in TR$, type($\{t\}$) = type(t), par($\{t\}$) = par(t), sv($\{t\}$) = \emptyset .
- 7. Пусть Φ Φ Φ ормула сигнатуры σ , тогда $[\Phi] \in TR$, Φ ($[\Phi]$) = Φ .
- 8. Пусть $\widetilde{R} \in \operatorname{Res}_{/\sqsubseteq}$, B формула сигнатуры $\mathfrak{G} \cup \{\operatorname{rv}\}$, тогда $\mathsf{t} = [\mathsf{B} \circ \widetilde{\mathsf{R}}] \in \mathsf{TR}$, $\mathsf{type}(\mathsf{t}) = \mathsf{type}(\widetilde{\mathsf{R}})$, $\mathsf{sv}(\mathsf{t}) = \emptyset$, $\mathsf{par}(\mathsf{t}) = \mathsf{par}(\widetilde{\mathsf{R}})$.

Определением ресурсного символа $R \in Res$ будем называть конструкцию вида: Rdefbody(R), где $body(R) \in TR$ и type(R) = type(body(R)).

3. формулы RDL. F-множество формул RDL определяется следующим образом:

- 1) true, $\underline{false} \in F$;
- 2) формулы сигнатуры о являются формулами RDL;
- 3) пусть $\Phi, \Psi \in F$, тогда $\Phi \wedge \Psi$, $\Phi \vee \Psi$, $\neg \Phi \in F$;
- 4) пусть $t \in TR$, $\phi \in F$, тогда $\langle t \rangle \phi \in F$.

Пусть α - набор определений ресурсных символов. Означивание термов RDL - это отображение m_{α} :TR + (ST + FL(ST)). Означивание формул RDL - это отображение π_{α} F + 2^{ST} . Эти отображения определяются ниже.

4. Модель RDL. Моделью RDL будем называть тройку N = $= \langle M, m_{\alpha}, \pi_{\alpha} \rangle$. Пусть $\phi \in F$, тогда будем говорить, что формула ϕ истинна на модели RDL N в состоянии $a \in ST$, и писать N $\models_{\alpha} \phi$ тогда и только тогда, когда $a \in \pi_{\alpha}(\phi)$.

Теперь определим отображение π_{α} .

- 1. Если Φ Φ
 - 2. $\pi_{\alpha}(\underline{\text{true}}) = ST, \pi_{\alpha}(\underline{\text{false}}) = \emptyset.$
 - 3. $\pi_{\alpha}^{\circ}(\Phi \ \forall \ \Psi) = \pi_{\alpha}^{\circ}(\Phi) \ \cup \ \pi_{\alpha}^{\circ}(\Psi)$.
 - 4. $\pi_{\alpha}(\Phi \wedge \Psi) = \pi_{\alpha}(\Phi) \cap \pi_{\alpha}(\Psi)$.
 - 5. $\pi_{\alpha}(\phi) = ST \setminus \pi_{\alpha}(\phi)$.

į

6. $\pi_{\alpha}((t)) = \{a \in ST \mid (\exists a') (a' \in \pi_{\alpha}(\phi) \& a' \in m_{\alpha}(t,a))\}.$

Теперь определим отображение m_{α} : TR + (ST \rightarrow FL(ST)) (предполагается, что a,b,... \in ST, x,y \in V, t,p,q,... \in TR):

- 1) $m_{\alpha}(x,a) = a[rv = s(a)(x)],$
- 2) $m_{\alpha}^{\alpha}(F(t),a) = \Sigma_{b \in m(t,a)}^{m_{\alpha}(t,a)(b)} \times b[rv = F^{M}(rv(b))];$
- 3) $\mathbf{m}_{\alpha}((\mathbf{p};\mathbf{q}),\mathbf{a}) = \Sigma_{\mathbf{b}\in\mathbf{m}(\mathbf{p},\mathbf{a})}^{\mathbf{m}_{\alpha}(\mathbf{p};\mathbf{a})(\mathbf{b})\mathbf{x}}$ $\mathbf{x}(\Sigma_{\mathbf{c}\in\mathbf{m}(\mathbf{q},\mathbf{b})}^{\mathbf{m}_{\alpha}(\mathbf{q},\mathbf{b})(\mathbf{c})\mathbf{x}\mathbf{c});$
- 4) $m_{\alpha}(p|q,a) = \sum_{b \in m(p,a) \& c \in m(q,a)} (m_{\alpha}(p,a)(b) \times xb[rv = \langle rv(b), rv(c) \rangle] + m_{\alpha}(q,a)(c) \times xc[rv = \langle rv(b), rv(c) \rangle]);$

5)
$$m_{\alpha}((x:=t),a) = \sum_{b \in m(t,a)} m_{\alpha}(t,a)(b) x$$

 $x b[s = s(b)[x = rv(b)]];$

6)
$$m_{\alpha}(\{t\},a) = \sum_{b \in m(t,a)} m_{\alpha}(t,a)(b) \times a[rv = rv(b)];$$

- 7) если ϕ формула сигнатуры σ , то $m_{\alpha}(\phi,a) = a$, если $M \triangleright a(\phi)$, и $m_{\alpha}(\phi,a) = 0$, если $M \triangleright a(\phi)$;
 - 8) $m_{\alpha}([B \circ \tilde{R}]) =$ $= \Sigma_{R \in \tilde{R}}(\Sigma_{b \in m_{\alpha}(body(R), \tilde{a})\&N} \models_{b} B^{m_{\alpha}(body(R), \tilde{a})(b)} x$

$$xb[pr=pr(b) \oplus R] \oplus \Sigma_{b \in m_{\alpha}(body(R), \widetilde{a})\&N \not=_{b} B} m_{\alpha}(body(R), \widetilde{a})(b)x$$

xb[pr=pr(b) Θ R]) xctxt(a)),где \tilde{a} = a[ctxt = pr(a)(\tilde{R})(R)]. 5. Исчисление RDL.

Аксиомы RDL.

- (A1) все тавтологии классической логики предикатов,
- (A2) $\langle p \rangle$ ($\Phi \lor \Psi$) $\equiv (\langle p \rangle \Phi \lor \langle p \rangle \Psi)$,
- (A3) $\langle (p;q) \rangle \Phi \equiv \langle p \rangle \langle q \rangle \Phi$,
- (A4) $\langle p | q \rangle \Phi \equiv \langle p \rangle \Phi \vee \langle \tilde{q} \rangle \Phi$,
- (A5) если $\phi \in F$, то $\langle \phi \rangle \Psi \equiv \phi \wedge \Psi$,
- (A6) $[p](\phi \rightarrow \Psi) \rightarrow ([p]\phi \rightarrow [p]\Psi)$,
- (A7) если $R \in \widetilde{R}$ и r = body(R), то $[r] \Phi + \langle [B \bullet \widetilde{R}] \rangle \Phi$.

Правила вывода RDL:

$$(MP) \xrightarrow{\phi, \phi \rightarrow \psi} modus ponens,$$

(G)
$$\frac{\Phi}{[p]\Phi}$$
 generalization.

ЛЕММА 1. Ecnu $a \in \pi(\phi_0)$, то для всех $d \in |N|$ выполня- ется $a[rv=d] \in (\phi_0)$.

ДОКАЗАТЕЛЬСТВО. Обозначим a' = a[rv = d].

1. Если $\Phi_{_{\mbox{O}}}$ - формула сигнатуры σ , то очевидно из определения.

- 2. Пусть $\Phi_0 = \Phi \lor \Psi$. Тогда $a \in \pi(\Phi \lor \Psi) \Leftrightarrow a \in \pi(\Phi) \lor a \in \pi(\Psi)$. По индукции имеем $a' \in \pi(\Phi)$ или $a' \in \pi(\Psi)$, что эквивалентно утверждению $a' \in \pi(\Phi)$. Аналогично для формул вида $\Phi \land \Psi$, $\neg \Phi$.
- 3. Пусть $\phi_O = \langle p \rangle \phi$. $a \in \pi(\phi_O) \Leftrightarrow (\exists b \in \pi(\phi)) (b \in \mathfrak{m}_{\alpha}(p,a))$. Нужно доказать, что в этом случае $(\exists b' \in \pi(\phi)) (b' \in \mathfrak{m}_{\alpha}(p,a'))$. Это верно, поскольку верно утверждение $b \in \mathfrak{m}_{\alpha}(p,a) + b \in \mathfrak{m}_{\alpha}(p,a')$, что легко доказывается по индукции построения терма RDL.

Лемма доказана.

ТЕОРЕМА 1 (о кратности). Если формула Φ виводима, то она общезначима. То есть для любой модели RDL N и для любого состояния $s \in ST(N)$ виполняется $N \models_{\Phi} \Phi$.

ДОКАЗАТЕЛЬСТВО.

Аксиома (A1). Для примера докажем, что если выводима формула $^{\neg \varphi}$, то она истинна в RDL-семантике. Таким образом, нужно показать, что $N \models_{c} ^{\neg \varphi}$ тогда и только тогда, когда $N \not\models_{c} ^{\varphi}$.

 $s\in\pi(\lnot\Phi)\Leftrightarrow s\in ST(N)\setminus\pi(\Phi) \iff s\notin\pi(\Phi) \Leftrightarrow N\not\models_S^c\Phi\ ,$ что и требовалось.

Аналогично: $N \models_S \Phi \lor \Psi \Leftrightarrow N \models_S \Phi$ или $N \models_S \Psi$. Аксиома (A2). Докажем, что

$$N \models_{c} <_{p} > (\Phi \lor \Psi) \Leftrightarrow N \models_{c} <_{p} > (\Phi) \lor <_{p} > (\Psi).$$

Для этого достаточно показать $\pi((\Phi \lor \Psi))=$ = $\pi((\Phi) \lor (\Psi)). Обозначим правую часть через A. По оп - ределению <math>\pi$ имеем $\pi((\Phi) \lor (\Psi))=\pi((\Phi) \cap \pi((\Psi))$. Тогда

$$a \in A \Leftrightarrow (\exists b \in \pi(\phi) \cap \pi(\Psi))(b \in m_{\alpha}(p,a)) \Leftrightarrow$$
 $\Leftrightarrow (\exists b \in \pi(\phi))(b \in m_{\alpha}(p,a)) \lor (\exists b \in \pi(\Psi))(b \in m_{\alpha}(p,a)) \Leftrightarrow$ $\Leftrightarrow a \in \pi(\langle p \rangle(\phi))$ или $a \in \pi(\langle p \rangle)\Psi$,

Аксиома (A3). Нужно доказать, что $\pi(\langle p;q \rangle \Phi) = \pi(\langle p \rangle \langle q \rangle \Phi)$. Тогда $\mathbf{a} \in \pi(\langle p;q \rangle \Phi) \Leftrightarrow (\exists \mathbf{c} \in \pi(\Phi))(\mathbf{c} \in \mathfrak{m}_{\alpha}((p;q),\mathbf{a})) \Leftrightarrow \Leftrightarrow (\exists \mathbf{c} \in \pi(\Phi))(\exists \mathbf{b} \in \mathfrak{m}_{\alpha}(\mathbf{p},\mathbf{a}))(\mathbf{c} \in \mathfrak{m}_{\alpha}(\mathbf{q},\mathbf{b}))$. С другой стороны, $\mathbf{a} \in \pi(\langle p \rangle \langle q \rangle \Phi) \Leftrightarrow (\exists \mathbf{b} \in \pi(\langle q \rangle \Phi)) \Leftrightarrow (\exists \mathbf{b})(\mathbf{b} \in \pi(\langle q \rangle \Phi)) \wedge \mathbf{b} \in \mathfrak{m}_{\alpha}(\mathbf{p},\mathbf{a}) \Leftrightarrow (\exists \mathbf{b})(\exists \mathbf{c})(\mathbf{c} \in \pi(\Phi) \cap \mathfrak{m}_{\alpha}(\mathbf{q},\mathbf{b}) \wedge \mathbf{b} \in \mathfrak{m}_{\alpha}(\mathbf{p},\mathbf{a}),$ что и требовалось.

Аксиома (A4). Нужно доказать, что $\pi(\langle p|q\rangle \Phi) = \pi(\langle p\rangle \Phi) \cup \pi(\langle q\rangle \Phi)$. Пусть $a\in \pi(\langle p|q\rangle \Phi)$. По определению это означает, что $(\exists b\in \pi(\Phi))(b\in m_{\alpha}(p|q,a)) \iff (\exists b)(b\in \pi(\Phi) \land \land (\exists c)(\exists d)(c\in m_{\alpha}(p,a) \land b=c[rv=\langle rv(c),rv(d)\rangle] \land \land (d\in m_{\alpha}(q,a) \lor b=d[rv=\langle rv(c),rv(d)\rangle]))$.

Из леммы 1 следует (\exists c)(\exists d)($c \in m_{\alpha}(p,a) \land d \in m_{\alpha}(q,a) \land (c \in \pi(\Phi) \lor d \in \pi(\Phi)) + a \in \pi(\Phi) \cup \pi(<q>\Phi).$

Таким образом, получили включение $\pi(\langle p \mid q \rangle \ \Phi) \subseteq \pi(\langle p \rangle \Phi) \cup \pi(\langle q \rangle \ \Phi)$.

Теперь докажем обратное включение. Пусть $a\in\pi(\Phi)$ U $\pi(< q>\Phi)$. Тогда $(\exists c\in\pi(\Phi))(c\in m_{\alpha}(p,a))$ или $(\exists d\in\pi(\Phi))(d\in m_{\alpha}(q,a))$. Предположим, выполнена первая альтернатива. Тогда пусть b=c[rv=< rv(c), rv(d)>]. По лемме 1, $b\in\pi(\Phi)$ и,по определению, $b\in\pi_{\alpha}(p|q,a)$ влечет $a\in\pi(< p|q>\Phi)$.

Аксиома (A5). Нужно доказать, что $\pi(\langle \Phi \rangle \Psi) = \pi(\Phi \wedge \Psi)$. Тогда $\mathbf{a} \in \pi(\langle \Phi \rangle \Psi) \Leftrightarrow (\exists \mathbf{b} \in \pi(\Phi)) (\mathbf{b} \in \mathbf{m}_{\alpha}(\Phi, \mathbf{a})) \Leftrightarrow \mathbf{b} \in \pi(\Phi) \wedge \mathbf{b} = \mathbf{a} \wedge \mathbf{b} \wedge \mathbf{b} = \mathbf{a} \wedge \mathbf{b} + \mathbf{b} \wedge \mathbf{b} = \mathbf{a} \wedge \mathbf{b} \wedge \mathbf{b} \wedge \mathbf{b} \wedge \mathbf{b} = \mathbf{a} \wedge \mathbf{b} = \mathbf{a} \wedge \mathbf{b} \wedge \mathbf{$

Аксиома (Аб). Нужно доказать, что $\pi([p](\phi + \Psi)) \subseteq \pi([p]\phi + [p]\Psi)$.

Пусть $a \in \pi([p]\Phi) = \pi(\neg \neg \Phi) = ST \setminus \pi(\neg \Phi) \Leftrightarrow$ $(\forall b) (b \notin \pi(\neg \Phi) \lor b \notin m_{\alpha}(p,a)) \Leftrightarrow (\forall b) (b \in m_{\alpha}(p,a) \Rightarrow b \in \pi(\Phi)).$

Теперь пусть $a \in \pi(\neg (\Phi \land \neg \Psi))$. Нужно показать, что в этом случае $a \in \pi(\neg \Phi \lor \neg \neg \Psi) = \pi(\neg \Phi \lor \cup (p > \neg \Psi))$ на серествения обществения $a \notin \pi([p]\Phi) \lor a \in \pi([p]\Psi) \Rightarrow (\forall b) (b \in \mathfrak{m}_{\alpha}(p,a) \Rightarrow b \in (ST \setminus \pi(\Phi)) \cup \pi(\Psi)) \Rightarrow (\exists b) (b \notin \pi(\Phi) \land b \in \mathfrak{m}_{\alpha}(p,a)) \lor (\forall c) (c \in \mathfrak{m}_{\alpha}(p,a) \Rightarrow c \in \pi(\Psi))$.

Аксиома (A7). Пусть $p \in R$, type(b) = \underline{bool} . Нужно доказать $\pi(\langle p \rangle \Phi) \subseteq \pi(\langle [BO\ \widetilde{R}] \rangle \Phi)$. Пусть $a \in \pi(\langle p \rangle \Phi)$. Тогда ($\exists b \in \pi(\Phi)$)($b \in \mathfrak{m}_{\alpha}(p,a)$). Положим $c = b[pr = pr(b)\ O\ p]$, где $O \in \{+,-\}$ в зависимости от того $N \models_b B$ или $N \not\models_b B$. По лемме 1, $c \in \pi(\Phi)$. Таким образом, ($\exists c \in \pi(\Phi)$) ($c \in \mathfrak{m}_{\alpha}([BO\ \widetilde{R}],a)$) $\Rightarrow a \in \pi(\langle [BO\ \widetilde{R}] \rangle \Phi)$, что и требовалось.

Правило вывода (МР). Пусть $N \models_a \Phi \cup N \models_a \Phi \to \Psi$. Нужно доказать, что $N \models_a \Psi$. Для этого докажем $\pi(\Phi) \cap \pi(\Phi \to \Psi) \subseteq \pi(\Psi)$. Это так, поскольку $\pi(\Phi) \cap \pi(\Phi \to \Psi) = \pi(\Phi) \cap (\pi(\neg \Phi) \cup \pi(\Psi)) = (\pi(\Phi) \cap \pi(\neg \Phi)) \cup (\pi(\Phi) \cap \pi(\Psi)) = (\pi(\Phi) \cap \pi(\Psi)) \subseteq \pi(\Phi)$.

Правило вывода (G). Нужно доказать, что если ($\forall a \in ST$) $\mathbb{N} \models_a \Phi$, то ($\forall a \in ST$) $\mathbb{N} \models_a [p]\Phi$. Поскольку ($\forall a \in ST$) $\mathbb{N} \models_a \Phi$, то $\pi(\Phi) = ST$. Тогда очевидно ($\forall a \in ST$) ($\forall b \in \mathfrak{m}_{\alpha}(p,a)$) ($b \in \pi(\Phi) = ST$), т.е. ($\forall a \in ST$) ($\mathbb{N} \models_a [p]\Phi$). Теорема 1 доказана.

§ 2. Синтаксис описания классов

- 1. <u>Базовые и определяемые классы</u>. Мы будем рассматривать следующее множество базовых классов $BC = \{int, real, char, string, bool, void\}$. Множество определяемых классов мы будем обозначать DC, причем $BC \cap DC = \emptyset$. Множество всех классов Class= $BC \cup DC$. Введем несколько базовых понятий.
 - 1. Множество полей класса A будем обозначать Field(A).
- 2. Каждому $A \in DC$ соответствует некоторый класс $B \in Class$, являющийся для A родительским классом. Этот факт мы будем обозначать следующим образом: B = ancestor(A). Это отношение между классами индуцирует частичный порядок на множестве всех классов, задаваемый следующим образом: $B \sqsubseteq A \text{ iff } B = ancestor(A) \lor B \sqsubseteq ancestor(A)$.
- 3. Каждому $A \in Class$ соответствует его метакласс metaclass(A). Мы будем предполагать, что каждый класс C является объектом класса metaclass(A).

Для каждого класса $A \in DC$ существуют следующие множества имен методов и отношений:

- Meth(A) все методы класса А;
- ProtMeth(A)-- методы класса A, видимые для наследников класса A (т.е. всех классов C таких, что A \subseteq C);
 - PubMeth(A) методы класса А,видимые для всех классов;
 - Re1(A) все отношения класса A;
- ProtRel(A) отношения класса A, видимые для наследни ков класса A;
- PubRel(A) отношения класса A,видимые для всех классов;
 - $PermMeth(A) = (U PubMeth(C)) U Meth(A) U C \in Class$
- \cup PermMeth(ancestor(A)) множество видимых в классе A мето дов. Аналогично для отношений: PermRel(A) = (\cup PubRel(C)) \cup C \in Class
- U Rel(A) U PermRel(ancestor(A)).

Помимо этого для любого $C \in BC$ имеем $PermRel = \emptyset$, $PermMeth = \emptyset$, Meth = PubMeth = ProtMeth, Rel = ProtRel = PubRel и для $C \in Class$ имеем $PubMeth(C) \subseteq ProtMeth(C) \subseteq Meth(C)$ и $PubRel(C) \subseteq C$ $ProtRel(C) \subseteq Rel(C)$.

Заметим, что PubMeth(metaclass(A)) ⊂ PermMeth(A) и PubRel(metaclass(A)) ⊂ PermRel(A).

5. Каждому методу каждого класса поставим в соответствие n-ку имен классов, являющихся типами соответствующих парамет - ров метода:

arg:
$$\bigcup$$
 Meth(C) \rightarrow \bigcup (Class)ⁿ. $C \in Class$ $n=1$

6. Каждому классу $C \in Class$ соответствует множество имен реализаций этого класса Impl(C).

Для удобства будем считать, что Rel \subset Meth \wedge ProtRel \subset C ProtMeth \wedge PubRel \subset PubMeth. Это позволит нам обращаться сотношениями, как с булевыми методами классов.

Пусть VN - некоторое множество имен объектов (идентификаторов), для которого определена функция type: VN \rightarrow Class. Мы будем предполагать, что всегда Class \subseteq VN и (\forall C \in Class)(type(C) = meraclass(C)).В дальнейшем это предположение позволит нам обращаться к методам метаклассов. Каждому классу C \in DC поставим в соответствие множество "допустимых" термов T_C (VN), тип термов type: T_C (VN) \rightarrow Class и множество свободных переменных, соответствующее каждому терму fv: T_C (VN) \rightarrow VN, определяемые следующим образом.

- 1. Пусть $a \in VN$, тогда $t \neq a \in T_C(VN)$, $fv(t) = \{a\}$, type(t) = type(a).
 - 2. Nyctb t \neq this, torga t $\in T_{C}(VN)$, fv(t) = \emptyset , type(T) = C.
- 3. Пусть t \neq a \in Field(C), тогда t \in T_C(VN), f(v) = \emptyset , type(t) = type(a).
- 4. Пусть $F \in Meth(C)$, type(F) = A, $arg(F) = (C_1, ..., C_n)$ и $t_1, ..., t_n \in T_C(VN)$, $type(t_i) = C_i$. Тогда

$$t \neq F(t_1, ..., t_n) \in T_C(VN),$$

$$type(t) = type(F),$$

$$fv(t) = \bigcup_{i=1}^{n} fv(t_i).$$

5.
$$\exists C$$
, $\exists C$

6. Пусть $a \in Field(C) \cap VN$, $I \in Impl(type(A))$, $F \in PermMeth(C) \cap Meth(type(a))$, $arg(F) = (C_1, ..., C_n)$, $t_1, ...$..., $t_n \in T_C(VN)$, $type(t_i) = C_i$. Torga

$$t \neq a.I : F(t_1,...,t_n) \in T_C(VN),$$

 $type(t) = type(F),$

$$fv(t) = \bigcup_{i=1}^{n} fv(t_i).$$

- 7. Nyctb p,q \in T_C(VN), t₁ \neq (p|q) \in t₂ \neq (p;q), TorAa t₁ \in \in T_C(VN) \bowtie t₂ \in T_C(VN); type(t₁) = void, type(t₂) = type(q), fv(t₁) = fv(t₂) = fv(p) \cup fv(q).
- 8. Пусть $A \subseteq C$, $B \in T_C(VN)$, type(B)=bool и $F \in ProtMeth(A)$, $arg(F) = (C_1, ..., C_n)$, $t_1, ..., t_n \in T_C(VN)$, type $(t_i) = C_i$. Тогда $t \not\in [A :: F(t, ..., t_n)] \in T_C(VN)$.

$$t \neq [A::F(t_1,...,t_n) \cap B] \in T_C(VN),$$

$$type(t) = type(F),$$

$$fv(t) = \bigcup_{i=1}^{n} fv(t_i).$$

9. Пусть $a \in VN \cup Field(C)$, $B \in T_C(VN)$, type(B) = bool M $F \in PermMeth(A) \cap Meth(type(a))$, $arg(F) = (C_1, \ldots, C_n)$, t_1, \ldots , $t_n \in T_C(VN)$, type(t_1) = C_1 . Тогда

$$\begin{aligned} \texttt{t} & \neq [\texttt{a.F(t}_1, \dots, \texttt{t}_n) \, \texttt{OB}] \in \texttt{T}_{\texttt{C}}(\texttt{VN}), \\ & \texttt{type(t)} & = \texttt{type(F)}, \end{aligned}$$

$$fv(t) = \bigcup_{i=1}^{n} fv(t_i).$$

- 10. Nycrb t_1 , t_2 , $b \in T_C(VN)$ u type $(t_1) = \text{type}(t_2) = A$, type(b) = bool. Toras $t \neq \text{if } b$ then t_1 else $t_2 \in T_C(VN)$, type(t) = A, fv $(t) = \text{fv}(b) \cap \text{fb}(t_1) \cap \text{fv}(t_2)$.
- 11. Пусть t_1 , $b \in T_C(VN)$ м type (t_1) = A type(b) = bool.Tor-ga $t \neq while b do t_1 \in T_C(VN)$, type(t) = A, fv(t) = fb(b) \cap $fv(t_1)$.

```
Множество замкнутых термов класса C = CT_{C}(VN) = \{t \mid t \in CT_{C}(VN)\}
\in T_C(VN) \wedge fv(t) = \emptyset.
     2. Общий вид описания определяемых классов.
Class: <название класса>,
PARENT CLASS: <название_родительского_класса>;
METACLASS: <название мета класса>;
DATA:
     <поле>: <название_класса>
      [,<поле>: <название класса>];
METHODS:
      <название метода>:(<список классов>)-><название класса>
      [,<название метода>:(<список классов>)-><название класса>];
RELATIONS:
      < название отношения>:(<список классов>)
      [,<hasbahue othowehus>:(<cnucok knaccob>)];

    Синтаксис записи реализации класса

     Ниже приводится общий вид описания реализации класса
<реализация методов класса>=
CLASS IMPLEMENTATION < название реализации>: < название класса>;
       METHODS:
        <реализация метода>
        [<реализация метода>]
       RELATIONS:
        <реализация отношений>
     1. Реализация методов классов.
     Ниже приводится общий вид описания реализации метода клас-
ca:
<реализация метода>=
    <название класса> <название метода>(<список параметров>)
    BEGIN
```

<оператор>

END

<список параметров>=

<параметр>

[,<параметр>]

<параметр>=

< название класса> < идентификатор объекта>

где <onepatop> есть терм из $T_C(ObjId \cap Class \cap Field(C))$, причем множество ObjId содержит только <идентификаторы_объектов > из <списка_параметров> данного метода. Очевидным образом задается тип (функция type) идентификатора объекта.

- 2. Реализация отношений классов.Пусть VN множество имен объектов, для которого определена функция type : VN + Class и известно, что Class \subset VN. Определим множество допустимых фор мул класса $C \in DC$ $L_{\overline{C}}(VN)$, а также для каждой допустимой фор мулы $\Phi \in L_{\overline{C}}(VN)$ множество ее свободных переменных $fv(\Phi)$.
- 1. Если $t\in T_{\mathbb{C}}(VN)$ и type(t) \Rightarrow bool,то Φ = (t) \in $L_{\mathbb{C}}(VN)$ и $fv(\Phi)$ = fv(t).
- 2. Пусть ϕ , $\Psi \in L_{\overline{C}}(VN)$. Тогда $\phi \vee \Psi$, $\phi \wedge \Psi$, $\neg \phi \in L_{\overline{C}}(VN)$ fv $(\phi \vee \Psi) = \text{fv}(\phi \wedge \Psi) = \text{fv}(\phi) \cap \text{fv}(\Psi)$ и fv $(\neg \phi) = \text{fv}(\phi)$.
- 3. Пусть $\Phi \in L_{\overline{C}}(VN)$, $a \in fv(\Phi)$ и type(a) = A. Тогда Ψ = ($\forall a: A$)(Φ) $\in L_{\overline{C}}(VN)$ и $\Psi \Rightarrow (\exists a: A)(\Phi) \in L_{\overline{C}}(VN)$. При этом $fv(\Psi) = fv(\Phi) \setminus \{a\}$.

Ниже приводится общий вид описания реализации отношений класса:

<реализация_отношений>=

<название_отношения>:<тип>(<список_параметров>)

BEGIN

<формула>

END

```
<тип>={
         { IFF | RESTRICTION } /* orpanuvenue */
       | {IF
                     DATABASED } /* табличное отношение */
<список параметров>=
          <параметр>
          [,<napametp>]
<параметр> =
```

<название класса> <идентификатор объекта> где <формула> \in L_C(VN) и VN = Field(C) \cap Class \cap <cписок парамет-DOB>.

Заключение

Автор признателен за помощь в подготовке настоящей работы академику С.С.Гончарову, своему научному руководителю академику Д.И.Свириденко, а также В.В.Ващенко,С.В.Котову, С.А.Луговому, К.В.Селютину и О.Г.Юрченко, общение с которыми весьма способствовало работе.

Литература

- 1. ГОНЧАРОВ С.С., СВИРИДЕНКО Д.И. Математические семантического программирования //Докл. АН СССР.-1986. -Т.289, Nº 6.
- 2. СВИРИДЕНКО Д.И. Проект СИГМА. Цели и задачи //Логиче ские методы в программировании. - Новосибирск, 1990. - Вып. 133: Вычислительные системы. - С. 68-94.
- 3. СВИРИДЕНКО Д.И., КОТОВ С.В. СИГМА-язык //Логические методы в программировании.-Новосибирск, 1990. - Вып. 133: Вычислительные системы. - С. 95-134.
- 4. МАНЦИВОДА А.В. Σ-программирование и задачи дискретной оптимизации. - Иркутск. - 1994.
- 5. СТРАУСТРОП Б. Программирование на С++: Пер.с англ.-М.: 1992.
- 6. БУЧ Гради. Объектно-ориентированное программирование: Пер. с англ. - М.: 1992. - 502 с.

- 7. OpenDoc, Shaping Tomorrow's Software. (White Paper, Copyright 1993 Apple Computer, Inc.)
- 8. System Object Model (SOM) Reference.(IBM Technical Library 2.0, Copyright 1993 IBM Corp.)

Поступила в редакцию 20 апреля 1995 года