УДК 519,685

S-ПРОГРАММЫ*)

0.Г.Юрченко

В работе сделана попытка построить на основе концепции семантического программирования [1,2] теоретический базис языка запросов к базам данных. Вводятся понятия S-формулы, истинности S-формулы на модели, S-схемы и S-программы (§1), определяется декларативная (денотационная) семантика S-программ (§2) и для S-программ, удовлетворяющих ограничению, что все базовые предикаты, входящие в них, интерпретируются конечными отноше ниями, задается операционная семантика (§3). Показано, что операционная семантика корректна и полна относительно декларативной и не дает бесконечных вычислений.

§1. S-программы

Пусть <Sort, \subseteq > - частично-упорядоченное множество сор - тов. Если $s,t\in$ Sort и $s\subseteq t$, то будем говорить, что s - подсорт сорта t. Последовательность сортов $s_1;\dots;s_n$ будем называть типом над Sort. Зададим на множестве типов отношения порядка \leq : $s_1;\dots;s_n \leq t_1;\dots;t_m \Leftrightarrow (m=n) \land \forall i \leq n. (s_i \subseteq t_i)$.

Введем множество предикатных символов P и множество констант C. Считаем, что каждому символу из P приписан тип над Sort и каждому символу из C приписан сорт. Сорт константы также будем называть типом константы.

^{*&}lt;sup>*)</sup> Работа частично поддержана РФФИ (грант № 093-01-01506).

Обозначим через σ_{C} сигнатуру <Sort,P,C>.

Введем множество предикатных переменных \overline{P} . Считаем, что каждому символу из \overline{P} приписан тип над Sort и для каждого типа имеется бесконечное множество предикатных переменных этого типа.

Пусть σ = σ \cup \overline{P} - расширенная сигнатура.

Введем в рассмотрение для каждого сорта s из Sort бес - конечное множество предметных переменных X(s) этого сорта.Считаем, что X(s) и X(t) для различных s и t не пересекаются. Сорт переменной будем также называть типом переменной.

Пусть Х - множество всех предметных переменных.

Если a есть нечто, имеющее тип T, то будем это обозначать через a:T, либо писать mun(a) = T,

ОПРЕДЕЛЕНИЕ. Предметная переменная или константа сорта s является термом этого сорта.

Введем понятие S-формулы Ф сигнатуры σ и множества сво - бодных предметных переменных ${\tt FV}(\Phi)$, входящих в Φ .

ОПРЕДЕЛЕНИЕ.

- 1) Если $P\in P\cup \overline{P},\ \min(P)=s_1;\ldots;s_n$ и $t_1:s_1,\ldots,t_n:s_n$ термы, то $\Phi=P(t_1,\ldots,t_n)$ S-формула. FV(Φ) состоит в точности из всех предметных переменных, входящих в Φ .
- 2) Если Φ_1 и Φ_2 S-формулы, то $\Phi=\Phi_1\epsilon\Phi_2$, где $\epsilon\in\{\wedge, \vee, \setminus\}$, является S-формулой и $FV(\Phi)=FV(\Phi_1)\cup FV(\Phi_2)$.
- 3) Если x предметная переменная сорта s, Ψ S-формула и c_1, \ldots, c_n константы сорта s $(n \ge 1)$, то Φ = $Qx \in \{c_1, \ldots, c_n\} \circ \Psi$, где $Q \in \{\forall, \exists\}$, является S-формулой и $FV(\Phi)$ = $FV(\Psi) \setminus \{x\}$.
- 4) Если Ψ S-формула, $P \in P \cup \overline{P}$, $\min(P) = s_1; \dots; s_n$, x предметная переменная сорта s_i , где $i \in \{1, \dots, n\}$, то $\varphi = Qx \in P[i]$. Ψ , где $Q \in \{\forall, \exists\}$, является S-формулой и $FV(\varphi) = FV(\Psi) \setminus \{x\}$.
- 5) Если Ψ S-формула, x предметная переменная,то Φ = $\exists x.\Psi$ является S-формулой и $FV(\Phi) = FV(\Psi) \setminus \{x\}$.

ОПРЕДЕЛЕНИЕ. Пусть $P\in P\cup \overline{P}$, будем говорить, что P имеет кванторное вхождение в S-формулу Φ , если Φ содержит подформулу вида $Qx\in P$ [i]. Ψ , где $Q\in \{\forall,\exists\}$.

ОПРЕДЕЛЕНИЕ. S-формулу Φ будем называть допустимой, если выполнены следующие условия:

- 1) для любой подформулы Φ вида $\Phi_1 \setminus \Phi_2$ выполнено FV(Φ_2) \subseteq FV(Φ_1);
- 2) для любой подформулы Φ вида Φ_1 \vee Φ_2 выполнено FV(Φ_1) = FV(Φ_2).

Пусть M - модель сигнатуры σ_0 , $M = \langle (M_s)_{s \in Sort}, v \rangle$, где M_s - носитель сорта s,v - интерпретация символов из $P \cup C$, причем если $P \in P$ и $mun(P) = s_1; \dots; s_n$, то $v(P) \subseteq M_s$ $x \dots x M_s$; если $c \in C$, mun(c) = s, το $v(c) \in M_s$.

Пусть G - семейство всевозможных отношений на M. Моделью N сигнатуры σ будем называть пару M, G >.

Означиванием параметров назовем пару отображений $<\xi,\mu>:\xi:X \to \cup (M_s)_{s\in Sort}, \quad \mu:\overline{P} \to G,$ удовлетворяющих условиям:

- 1) если $x \in X(s)$, то $\xi(x) \in M_s$;
- 2) если $mun(P) = s_1; ...; s_n$, то $\mu(P) \subseteq M_{s_1} \times ... \times M_{s_n}$.

Будем называть ξ интерпретацией предметных переменных,μ - интерпретацией предикатных переменных.

ОПРЕДЕЛЕНИЕ истинности S-формулы Ф на модели N при озна - чивании параметров $<\xi,\mu>$.

- 1. Если $\Phi = P(\mathbf{t_1}, \dots, \mathbf{t_n}), P \in P$, то $\mathbf{N} \models \Phi \Leftrightarrow <\mathbf{a_1}, \dots, \mathbf{a_n}>\in \mathbb{C}$ $\in \mathcal{V}(P)$, где $\mathbf{a_j} = \mathcal{V}(\mathbf{t_j})$, если $\mathbf{t_j} \in C$, либо $\mathbf{a_j} = \xi(\mathbf{t_j})$, если $\mathbf{t_i} \in X$.
- 2. Если $\Phi = P(t_1, ..., t_n), P \in \overline{P}$, то $\mathbb{N} \models \Phi \Leftrightarrow \langle a_1, ..., a_n \rangle \in \mu(P)$, где $a_j = \nu(t_j)$, если $t_j \in \mathbb{C}$, либо $a_j = \xi(t_j)$, если $t_i \in \mathbb{X}$.

- 3. Если $\Phi = \Phi_1 \wedge \Phi_2$, то $N \models \Phi_1 \Leftrightarrow N \models \Phi_1 \cup N \models \Phi_2$.
- 4. Если $\Phi = \Phi_1 \vee \Phi_2$, то $\mathbb{N} \models \Phi \Leftrightarrow \mathbb{N} \models \Phi_1$ или $\mathbb{N} \models \Phi_2$.
- 5. Ecπи $Φ = Φ_1 \setminus Φ_2$, το N $\models Φ ⇔ N \models Φ_1$ и N $\not\models Φ_2$.
- 6. Если $\Phi=\exists x.\Psi$, то $N\models\Phi\Rightarrow$ существует такая интерпре тация предметных переменных ξ_1 , что $\xi_1(y)=\xi(y)$, для всех $y\in X\backslash\{x\}$, и $N\models\Psi$, при означивании параметров $<\xi_1,\mu>$.
- 7. Если $\Phi = \exists_{\mathbf{X}} \in P[\mathtt{i}].\Psi$, то $\mathbf{N} \models \Phi \Leftrightarrow \mathbf{N} \models \Psi$ для некоторого означивания параметров $<\xi_1,\mu_1>$, удовлетворяющего следующим условиям:
 - 1) $\mu_1 = \mu$;
 - 2) для любого $y \in X \{x\} \setminus \xi_1(y) = \xi(y);$
- 3) если $\min(P) = s_1; ...; s_n$ и $P \in P$, то существует набор $< a_1, ..., a_i > \in v(P)$ такой, что $a_1 = \xi_1(\mathbf{x});$
- 4) если $\min(P)=\mathbf{s_1};\ldots;\mathbf{s_n}$ и $P\in\overline{P}$, то существует набор $<\mathbf{a_1},\ldots,\mathbf{a_n}>\in\mu(P)$ такой, что $\mathbf{a_i}=\xi_1(\mathbf{x})$.
- 8. Пусть $\Phi = \forall \mathbf{x} \in P[\mathbf{i}]$. Ψ , тогда если интерпретация P непустое отношение, то $\mathbb{N} \models \Phi \Leftrightarrow \mathbb{N} \models \Psi$ для всех означиваний параметров $\langle \xi_1, \mu_1 \rangle$, удовлетворяющих условиям 1-4 из п.7 данного определения; если интерпретация P пустое отношение, то $\mathbb{N} \models \Phi \Leftrightarrow \mathbb{N} \models \exists \mathbf{x} \Psi$.
- 9. Если $\Phi=\exists x\in\{c_1,\ldots,c_2\}$. Ψ , то $N\models\Psi$ для некоторого означивания параметров $\{\xi_1,\mu_1>$, удовлетворяющего следующим условиям:
 - 1) $\mu_1 = \mu_1$
 - 2) для любого $y \in X \setminus \{x\}$ $\xi_1(y) = \xi(y)$;
 - 3) для некоторого с из $\{c_1, ..., c_n\} \xi_1(x) = v(c)$.
- 10. Если $\Phi = \forall \mathbf{x} \in \{\mathbf{c}_1, \dots, \mathbf{c}_n\}$. Ψ , то $\mathbf{N} \models \Phi \Leftrightarrow \mathbf{N} \models \Psi$ для всех означиваний параметров $\langle \xi_1, \mu_1 \rangle$, удовлетворяющих условиям 1-3 из п.9 данного определения.

ОПРЕДЕЛЕНИЕ. Если P - предикатная переменная типа $s_1; \ldots; s_n, x_1; s_1, \ldots, x_n; s_n$ - предметные переменные, Φ - S-формула, удовлетворяющая условиям:

- 1) $x_1, ..., x_n$ входят свободно в ϕ ;
- 2) P не имеет кванторных вхождений в Φ ;
- 3) если для каждой подформулы Φ , вида Φ Φ_1 , Φ не входит в Φ_1 , то $P(\mathbf{x}_1,\dots,\mathbf{x}_n)$ def Φ S-onpedenenue.

Набор $\overline{\mathbf{v}}$ всех свободных предметных переменных $\mathbf{\Phi}$, отличных от $\mathbf{x}_1,\dots,\mathbf{x}_n$, будем называть набором параметров данного S-оп - ределения. Формулу $\mathbf{\Phi}$ будем называть правой частью данного S-определения.

ОПРЕДЕЛЕНИЕ. Графом зависимостей набора S-определений

$$P_{1}(\overline{x}_{1}) \operatorname{def} \Phi_{1},$$

$$\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$$

$$P_{n}(\overline{x}_{n}) \operatorname{def} \Phi_{n}$$
(1)

(здесь и далее P_1, \dots, P_n попарно различны) назовем ориентиро - ванный граф G = (V,E) с множеством вершин V = $\{P_1, \dots, P_n\}$ и множеством дуг E = $\{(P_1, P_1) | P_1$ входит в $\Phi_1\}$.

ОПРЕДЕЛЕНИЕ. Если в графе зависимостей набора S-определений (1) существуют пути из $P_{\bf i}$ в $P_{\bf j}$, то S-определения $P_{\bf i}(\overline{\bf x}_{\bf i})$ def $\Phi_{\bf i}$, $P_{\bf j}(\overline{\bf x}_{\bf j})$ def $\Phi_{\bf j}$ будем называть взаимно-рекурсивними.

Если в Е содержится (P_i,P_i) , то S-определение $P_i(\overline{\mathbf{x}}_i)$ def Φ_i будем называть рекурсивным.

ОПРЕДЕЛЕНИЕ. Набор S-определений (1) назовем S- $cxemo ilde{u}$, если он удовлетворяет условию: если S-определения $P(\overline{x}_i)$ def Φ_i , $P_i(\overline{x}_i)$ def Φ_i взаимно-рекурсивны, то

- 1) P_{i} не имеет кванторных вхождений в Φ_{i} ,
- 2) для каждой подформулы $\Phi_{\mathbf{i}}$, вида $\Phi \setminus \Psi$, $P_{\mathbf{i}}$ не входит в Ψ .

Набор $\overline{\mathbf{v}}$, полученный объединением всех наборов $\overline{\mathbf{v}}_1,\dots,\overline{\mathbf{v}}_n$ параметров S-определений из S-схем, будем называть набором предметних параметров схеми. Набор $\overline{\mathbf{v}}$ всех предикатных переменных, отличных от P_1,\dots,P_n и входящих в правые части S-оп-

ределений из S-схемы, будем называть набором предикатних параметров схеми. $\{P_1,\ldots,P_n\}$ будем называть сигнату – рой схеми.

ОПРЕДЕЛЕНИЕ. S-npoepammoй сигнатуры σ над моделью N сигнатуры σ будем называть четверку <Sch, ξ , μ , Φ >, где Sch - S-cxema c наборами параметров \overline{v} и \overline{V} ; ξ - означивание предмет - ных параметров схемы Sch, τ , e. $\xi:\overline{v}$ \rightarrow U M_s $_s \in S$ ort, e \in X(s), to $\xi(x) \in M_s$; μ - означивание предикатных парамет - ров схемы Sch, τ .e. $\mu:\overline{v}$ \rightarrow G, если $\min(R)$ = s_1 ;..., s_n , $R \in \overline{V}$, to $\mu(R) \subseteq M_{s_1} \times \ldots \times M_{s_n}$; Φ -допустимая S-формула сигнатуры σ , причем каждая предикатная переменная, встречающаяся в Φ , содержится либо в \overline{V} , либо в сигнатуре схемы Sch.

§2. Декларативная семантика

Пусть N - модель сигнатуры σ . Пусть Φ - допустимая S-формула, FV(Φ) = $\overline{x} \cup \overline{y}$, где $\overline{x} \cap \overline{y} = \emptyset$; Q_1 ,,,, Q_m , R_1 ,..., R_k - все предикатные переменные, входящие в Φ , причем Q_1 ,..., Q_m не именот кванторных вхождений в Φ и для любой подформулы Φ , вида $\Phi_1 \setminus \Phi_2$, Q_1 ,..., Q_m не входят в Φ_2 .

Зафиксируем означивание параметров < ξ, μ>.

Если $mun(Q_i) = s_1; \dots, s_n$, то обозначим через $D_i = M_s \times \dots \times M_s$.

Если $\bar{x} = x_1; ...; x_n, x_1: k_1 ..., x_n: k_n$, то обозначим $D = M_{k_1} x ... x_n M_{k_n}$.

Обозначим через $\mathbf{f}_{\xi_{\bullet}\mathbf{L}} < \Phi >$ следующую функцию:

$$f_{\xi,\mu}^{(\Phi)} : \mathcal{P}(D_1) \times \dots \times \mathcal{P}(D_m) + \mathcal{P}(D),$$

$$f_{\xi,\mu} < \Phi > (A_1; ...; A_m) = \{(a_1; ...; a_n) | a_i \in M_{TU\Pi(x_1)}, ..., a_n \in M_{TU\Pi(x_n)}, ..., a_n \in M_{TU\Pi(x_n)}$$

 $N \models \Phi$, при некоторой интерпретации параметров $<\xi_1,\mu_1>$, удов - летворяющей условиям:

- 1) если $y \in \overline{y}$, то $\xi_1(y) = \xi(y)$;
- 2) для каждого $i \in \{1,...,n\}$ $\xi_1(x_i) = a_i;$
- 3) для каждого $i \in \{1,...,k\}$ $\mu_1(R_i) = \mu(R_i);$
- 4) для каждого $i \in \{1, ..., m\}$ $\mu_1(Q_i) = A_i\}$, тде $\mathcal{P}(D)$ множество подмножеств D.

Из определения истинности S-формулы на модели следует, что если $<\xi_1,\mu_1>$, $<\xi_2,\mu_2>$ - два означивания параметров, удовлет - воряющих условиям 1-4 для фиксированных a_1,\dots,a_n , A_1,\dots,A_n и фиксированном $<\xi,\mu>$, то $N\models \Phi$ при $<\xi_1,\mu_1> \Leftrightarrow N\models \Phi$ при $<\xi_2,\mu_2>$.

В связи с этим отметим, что в определении $f_{\xi,\mu}$ <б> вместо "общего" фиксированного означивания параметров $\langle \xi, \mu \rangle$ ($\xi: X \to U(M_s)_{s \in Sort}, \mu: \overline{P} \to G$) можно использовать "частное", т.е. $\xi: \overline{y} \to U(M_s)_{s \in Sort}, \mu: \{R_1, \dots, R_k\} \to G.$

В дальнейшем будем поступать именно таким образом.

ЛЕММА 1. $f_{\xi,\mu} < \Phi >$ монотонна, т.е. если $A_1 \subseteq B_1, \ldots, A_m \subseteq B_m,$ то

$$f_{\xi,\mu} < \phi > (A_1; ...; A_m) \subseteq f_{\xi,\mu} < \phi > (B_1; ...; B_m).$$

ДОКАЗАТЕЛЬСТВО проводим индукцией по строению Φ . Для Φ = = $P(\overline{t})$ P \in P \cup \overline{P} очевидно. Сделаем полезное

ЗАМЕЧАНИЕ. Лемма 1 равносильна тому, что из $A_1\subseteq B_1, \ldots, A_m\subseteq B_m$ и $N\models \Phi$ при $<\xi_1,\mu_1>$ следует, что $N\models \Phi$ при $<\xi_2,\mu_2>$, где пара означиваний $<\xi_1,\mu_1>,<\xi_2,\mu_2>$ удовлетворяет следующим условиям:

- 1) ξ_1 совпадает с ξ_2 ;
- 2) $\mu_1(R_i) = \mu_2(R_i) = \mu(R_i);$
- 3) $\mu_{1}(Q_{i}) = A_{i};$
- 4) $\mu_2(Q_i) = B_i$.
- 1. Пусть $\Phi=\Phi_1 \wedge \Phi_2$. Рассмотрим два означивания параметров $<\xi_1,\mu_1>$ и $<\xi_2,\mu_2>$, удовлетворяющих условиям 1-4 из замечания.

$$N \models \Phi \quad \mathsf{пр} \quad \langle \xi_1, \mu_1 \rangle. \tag{*}$$

В силу замечания нужно показать, что N \models Ф при $<\xi_2,\mu_2>$.

- Из (*) следует, что при $<\xi_1,\mu_1>$ N \models Φ_1 и N \models Φ_2 . Но Φ_1 и Φ_2 удовлетворяют предположению индукции, следовательно, при $<\xi_2,\mu_2>$ N \models Φ_1 и N \models Φ_2 . Откуда N \models Ф при $<\xi_2,\mu_2>$.
 - 2. Случай $\Phi = \Phi_1 \ \lor \Phi_2$ доказывается аналогично.
- 3. Пусть $\Phi=\Phi_1 \setminus \Phi_2$. Снова рассмотрим два означивания параметров $<\xi_1$, $\mu_1>$ и $<\xi_2$, $\mu_2>$, удовлетворяющих условиям 1-4 из замечания.

Пусть N \models Ф при $<\xi_1,\mu_1>$, следовательно, при $<\xi_1,\mu_1>$ N \models Ф $_1$ и N $\not\models$ Ф $_2$. Поскольку, по предположению на Ф, Q $_1,\ldots,Q_m$ не входят в Ф $_2$, верно, что N $\not\models$ Ф $_2$ при $<\xi_2,\mu_2>$.

Из предположения индукции и замечания следует, что N \models Ф при $<\xi_2,\mu_2>$. Откуда N \models Ф при $<\xi_2,\mu_2>$.

4. Все случаи с кванторами очевидны (Q_1,\ldots,Q_m) не имеют кванторных вхождений в Φ , по предположению на Φ). Для примера рассмотрим случай $\Phi=\exists x\in P[i].\Psi$. Снова рассмотрим два означивания параметров $<\xi_1,\mu_1>$ и $<\xi_2,\mu_2>$, удовлетворяющих условиям 1-4 из замечания.

Пусть N \models Ф при $<\xi_1^{}$, $\mu_1^{}>$. Берем какое-нибудь означивание $<\xi_1^{}$, $\mu_1^{}>$ такое, что N \models Ψ при $<\xi_1^{}$, $\mu_1^{}>$ и удовлетворяет условиям:

- 1) $\mu_1' = \mu_1;$
- 2) для любого $y \in X \setminus \{x\}$ $\xi_1'(y) = \xi_1(y);$
- 3) если $\min(P) = s_1; \dots, s_n$ и $P \in P$, то существует набор $< a_1, \dots, a_n > \in \nu(P)$ такой, что $a_i = \xi_1'(x)$ для данного i (из Φ);
- 4) если $\min(P)=s_1;\ldots;s_n$ и $P\in\overline{P}$, то существует набор $\langle a_1,\ldots,a_n\rangle\in\mu_1(P)$ такой, что $a_i=\xi_1^i(x)$ для данного i.

По определению индукции и замечанию N $\models \Psi$ при некотором $<\xi_2^{\, 1},\mu_2^{\, 1}>$, где $<\xi_2^{\, 1},\mu_2^{\, 1}>$ удовлетворяет условиям:

- 1) $\mu_2' = \mu_2;$
- 2) для любого $y \in X \setminus \{x\}$ $\xi_2^*(y) = \xi_2(y);$
- 3) если $\min(P) = s_1; ...; s_n$ и $P \in P$, то существует набор $\langle a_1, ..., a_n \rangle \in v(P)$ такой, что $a_i = \xi_2^i(x)$ для данного i;
- 4) если $\min(P)=s_1;\ldots;s_n$ и $P\in\overline{P}$, то существует набор $\langle a_1,\ldots,a_n\rangle\in\mu_2(P)$ такой, что $a_1=\xi_2^1(x)$ для данного i.

По определению истинности на модели $N \models \exists x \in P[i]. \Psi$ при $<\xi_2,\mu_2>$.

Лемма 1 доказана.

ОПРЕДЕЛЕНИЕ. Пусть

$$P_1(\overline{x}_1) \text{ def } \Phi_1,$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$P_1(\overline{x}_1) \text{ def } \Phi_1$$
(2)

- S-схема Sch с наборами предметных параметров $\overline{\mathbf{v}}$ и предикат - ных параметров $\overline{\mathbf{v}}$.

Будем называть Sch npocmoй S-схемой, если 1) P_1,\dots,P_1 не имеют кванторных вхождений в Φ_1,\dots,Φ_1 ; 2) для любой Φ_i , $1\leq i\leq 1$, для любой ее подформулы вида $\Psi_1\setminus\Psi_2, \qquad P_1,\dots,P_1$ не входят в Ψ_2 .

Пусть Sch - простая S-схема (2); ξ - означивание пере - менных из \overline{v} , τ - означивание переменных из $\overline{\overline{v}}$.

Если $mun(P_i) = s_1; ..., s_n$, то обозначим $D_i = M_{s_1} \times ... \times M_{s_n}$. Определим оператор

$$\Gamma_{\xi,\tau} < Sch>: (D_1) \times ... \times (D_1) + \mathcal{P}(D_1) \times ... \times \mathcal{P}(D_1),$$

$$\Gamma_{\xi,\tau} < Sch> = \langle f_{\xi,\tau} < \phi_1 \rangle, ..., f_{\xi,\tau} < \phi_1 \rangle \rangle.$$

Очевидно, что $\Gamma_{\xi,\tau}$ <Sch> монотонный, а $\mathcal{P}(\mathsf{D}_1)$ х . . . х $\mathcal{P}(\mathsf{D}_1)$ - полная решетка.

Приведем известную теорему (см., например,[3,4]).

TEOPEMA 1. Монотонное преобразование T на полной решетке $<V, \le >$ имеет непустое множество неподвижних

точек. В частности, T имеет наименьшую неподвижную точку 1fp(T) такую, что $1fp(T) = inf(\{x \in V | T(x) \le x\})$.

ОПРЕДЕЛЕНИЕ. Денотационной семантикой простоты S-схемы Sch (2) назовем отображение $\operatorname{Den}(\operatorname{Sch})$ из $\{P_1,\dots,P_1\}$, сигнатуры простой S-схемы Sch (2),в набор отношений $\operatorname{1fp}(\Gamma_{\xi,\tau}<\operatorname{Sch}>)$, при этом P_i ставится в соответствие i-я компонента $\operatorname{1fp}(\Gamma_{\xi,\tau}<\operatorname{Sch}>)$.

Пусть Sch $P_1(\overline{x}_1)$ def $\Phi_1,\ldots,P_1(\overline{x}_1)$ def Φ_1 - произвольная S-схема с наборами предметных параметров \overline{v} и предикатных параметров \overline{v} . Пусть $\langle \xi, \mu \rangle$ - означивание параметров схемы. Будем считать, что μ ставит в соответствие каждому символу из \overline{v} конечное отношение.

Определим расширенный граф зависимостей G* S-схемы Sch. Вершины G* состоят из предикатных символов, входящих в сигнатуру Sch (т.е. P_1, \dots, P_1). Направленная дуга $\langle P_i, P_j \rangle$ существует в G* тогда и только тогда, когда P_j входит в Φ_i . Дуга $\langle P_i, P_j \rangle$ помечается знаком * тогда и только тогда, когда P_j имеет хотя бы одно кванторное вхождение в Φ_i или для некоторой подформулы Φ_i , вида $\Psi_1 \setminus \Psi_2$, P_i имеет хотя бы одно вхождение в Ψ_2 .

Разбиением сигнатуры схемы Sch называется разбиение множества $\{P_1,\dots,P_1\}$ на подмножества $\overline{\mathbb{Q}}_1,\dots,\overline{\mathbb{Q}}_{\mathfrak{m}}$, удовлетворяющее следующим условиям:

- a) если $P \in \overline{\mathbb{Q}}_{\mathbf{i}}$, $\mathbb{Q} \in \overline{\mathbb{Q}}_{\mathbf{i}}$ и $< P, \mathbb{Q}>$ есть дуга G^* , то $\mathbf{i} \geq \mathbf{j}$;
- б) если $P\in\overline{\mathbb{Q}}_{i}$, $\mathbb{Q}\in\overline{\mathbb{Q}}_{j}$ и $<\!P$, $\mathbb{Q}\!>$ есть дуга \mathbb{C}^* , помеченная *, то i>j.

Разбиение определяет порядок вычисления предикатов из S-cxeмы. Сначала вычисляются предикаты из $\overline{\mathbb{Q}}_1$. После этого вычисляются предикаты из $\overline{\mathbb{Q}}_2$ и т.д.

 $\mathsf{TEOPEMA}$ 2. Для любой S -схемы существует разбие - ние.

Ниже приведем способ нахождения разбиения.

Алгоритм разбиения

INPUT: S-cxemb Sch, G*.

OUTPUT: разбиение для сигнатуры Sch.

METHOD

Выполнить следующие шаги:

- 1. На основе графа G^* построить граф $G^*_{\rm tr}$ следующим об разом. Для каждой пары вершин P_i и P_j в G^* : если существует путь в G^* из P_i в P_j , содержащий дуги, помеченные знаком *, добавить дугу P_i , P_j >, помеченную знаком *, в результирующий граф (если такая дуга еще не существует).
 - 2. i:=1.
- 3. Определить множество K всех вершин графа $G_{ t r}^*$, из ко-торых не выходят дуги, помеченные знаком *.
 - 4. Q:=K.
- 5. Исключить все вершины множества K вместе с соответствующими им дугами из G_{rr}^{*} .
- 6. Если в $G_{ t tr}^*$ остались какие-нибудь вершины, то $i\!:=\!i\!+\!1$ и перейти к шагу 3, иначе закончить.

ENDMETHOD

Пусть Sch $_i$ — подсхема Sch с сигнатурой $\overline{\mathbb{Q}}_i$, множеством предметных параметров $\overline{\mathbb{V}}$ и множеством предикатных параметров $\overline{\mathbb{V}} \cup \bigcup_{i < i} \overline{\mathbb{Q}}_i$. Имеет место следующая

TEOPEMA 3. Sch. - npocmas S-cxema.

ДОКАЗАТЕЛЬСТВО. По построению Sch. имеем:

- 1) кванторные вхождения в правые части определений Sch могут иметь лишь те предикатные переменные из сигнатуры Sch, которые содержатся в $\bigcup_{i < i} \overline{Q}_i$;
- 2) если $P(\overline{x})$ def Φ содержится в $Sch_{\hat{1}}$, то для любой под Φ формулы Φ вида $\Psi_1 \setminus \Psi_2$ в Ψ_2 , могут иметь вхождения лишь те

предикатные переменные из сигнатуры Sch, которые содержатся в $\begin{tabular}{l} \cup & Sch \\ j < i \end{tabular} .$

Поскольку все символы из $\bigcup \overline{Q}_{j}$ являются предикатными па-

раметрами Sch., Sch. удовлетворяет определению простой S-схемы. Теорема доказана.

Набор подсхем $\operatorname{Sch}_1,\dots,\operatorname{Sch}_m$ будем называть разбиением схемы Sch . Пусть $\operatorname{Sch}_1,\dots,\operatorname{Sch}_m$ - разбиение схемы Sch и $\overline{\mathbb{Q}}_1,\dots,\overline{\mathbb{Q}}_m$ - разбиение сигнатуры схемы Sch .

ОПРЕДЕЛЕНИЕ. Декларативной семантикой S-схемы Sch назовем отображение Den(Sch) сигнатуры Sch такое, что если $P\in \overline{\mathbb{Q}}_1$, то Den(Sch) (P) = Den(Sch, (P).

Пусть \Pr = (Sch, ξ , μ , Φ) - S-программа сигнатуры σ над моделью \Pr и \Pr (Φ) = $\{x_1,\dots,x_m\}$.

ОПРЕДЕЛЕНИЕ. Декларативной семантикой Den(Pr) S-программы Pr назовем

$$\{(a_1,\ldots,a_m)\,\big|\,a_1\in M_{\mathsf{TUR}(\mathbf{x}_1)},\ldots,a_m\in M_{\mathsf{TUR}(\mathbf{x}_m)},\; \mathbf{N}\models \Phi$$
 при

означивании параметров $<\xi_1,\mu_1>$, удовлетворяющем условиям:

- 1) ξ_1 на \overline{v} совпадает с ξ , μ_1 на \overline{v} совпадает с μ ,где $\overline{v},\overline{v}$ наборы предметных и предикатных параметров Sch.
 - 2) $\xi_1(x_i) = a_i, i \in \{1, ..., m\};$
- 3) если P из сигнатуры Sch, то $\mu_1(P) = \mathrm{Den}(\mathrm{Sch}_1(P), \mathsf{гдe})$ сигнатура Sch, содержит P.

§3. Операционная семантика

Пусть N - модель сигнатуры σ . Считаем, что в σ содержится константа для каждого элемента из носителя N. Будем считать, что все предикатные символы из P интерпретируются в N конечными отношениями.

Сделанные предположения таковы, что под базовой моделью M сигнатуры σ_{0} можно понимать некоторую реляционную базу данных, при этом предикатные символы сигнатуры σ_{0} символизируют таблицы этой базы данных.

Пусть Sch $P_1(\overline{x}_1)$ def $\phi_1,\ldots,P_1(\overline{x}_1)$ def ϕ_1 - простая S-схема с наборами пре**д**метных параметров \overline{v} и предикатных параметров \overline{V}_{\circ}

Пусть $<\xi\,,\mu>$ - означивание параметров схемы. Будем считать, что μ ставит в соответствие каждому символу из \overline{V} конеч - ное отношение.

Так же как в предыдущем параграфе, рассмотрим оператор

$$\Gamma_{\xi,\tau} \langle Sch \rangle : \mathcal{P}(D_1) \times \dots \times \mathcal{P}(D_1),$$

$$\Gamma_{\xi,\tau} \langle Sch \rangle = \langle f_{\xi,\mu} \langle \phi_1 \rangle, \dots, f_{\xi,\mu} \langle \phi_1 \rangle \rangle,$$

где если $\min(P_i) = s_1; ..., s_n$, $1 \le i \le 1, \text{то D}_i = M_{s_1} x ..., x_n M_{s_n}$.

Имеет место (см., например, [3]) известная

ТЕОРЕМА 4. Пусть (V,\leq) - полная решетка, T - моно-тонное преобразование на V. Пусть \bot_V - наименьший элемент (V,\leq) . Пусть $T^O(\bot_V)=\bot_V, T^{m+1}(\bot_V)=T(T^m(\bot_V))$. Тогда если существует $T^{m+1}(\bot_V)=T^m(\bot_V)$, то $T^{m}(\bot_V)$ - наименьшая неподвижная точка.

Покажем, что для оператора $\Gamma_{\xi,\tau}^{<\mathrm{Sch}>}$ имеет место следующая

ТЕОРЕМА 5. Существует п такое, что

$$\begin{split} \Gamma_{\xi,\tau}^{n+1} <& \mathrm{Sch}> (\emptyset,\ldots,\emptyset) = \Gamma_{\xi,\tau}^{n} <& \mathrm{Sch}> (\emptyset,\ldots,\emptyset)\,,\\ & \ell \partial \ell \quad \Gamma_{\xi,\tau}^{o} <& \mathrm{Sch}> (\emptyset,\ldots,\emptyset) = (\emptyset,\ldots,\emptyset) \text{ in } \Gamma_{\xi,\tau}^{k+1} <& \mathrm{Sch}> (\emptyset,\ldots,\emptyset) = (\emptyset,\ldots,\emptyset)\,. \end{split}$$

ДОКАЗАТЕЛЬСТВО.

Пусть P_1 - множество символов из P, встречающихся в Φ_1, \ldots, Φ_1 ; T_s - множество всех тех элементов a из M_s , для которых существует R из $P_1 \cup \overline{V}$, $\min(R) = s_1, \ldots, s_k$, существуют конс - танты $b_1 \colon s_1, \ldots, b_k \colon s_k$ такие, что $N \models R(b_1, \ldots, b_k)$ и для некоторого j из $\{1, \ldots, k\}$ $s_j = s$ и $v(b_j) = a$. Из сделанных предположений следует, что T_s конечное. Если $\min(P_i) = s_1, \ldots, s_m$, $1 \le i \le 1$, то обозначим через E_i множество $T_s \times \ldots \times T_s$. Поскольку для всех s T_s конечное, то E_i конечное.

УТВЕРЖДЕНИЕ. Для каждого ј

$$\Gamma_{\xi,\tau}^{j}$$
 $(\emptyset,\ldots,\emptyset) \in \mathcal{P}(E_1) \times \ldots \times \mathcal{P}(E_1)$.

ДОКАЗАТЕЛЬСТВО проводим индукцией по ј. Обозначим

$$\Gamma_{\xi,\tau}^{\circ} < Sch > (\emptyset, ..., \emptyset) = (\emptyset, ..., \emptyset) \in \mathcal{P}(E_1) \times ... \times \mathcal{P}(E_1).$$

Πусть
$$\Gamma_{\xi,\tau}^k$$
 (Sch)($\emptyset,...,\emptyset$) $\in \mathcal{P}(E_1)$ x...x $\mathcal{P}(E_1)$.

Чтобы доказать утверждение для j = k + l, достаточно показать, что если $B_1 \subseteq E_1, \ldots, B_1 \subseteq E_1$, то $f_{\xi,\mu} < \phi_i > (B_1, \ldots, B_1) \subseteq E_i$. Для этого достаточно показать, что если $(a_1, \ldots, a_r) \in f_{\xi,\mu} < \phi_i > (B_1, \ldots, B_1)$, то каждый $a_p \in T_s$, где $\min(P_i) = f_{\xi,\mu} < \phi_i > (B_1, \ldots, B_1)$, то каждый $f_{\xi,\mu} < \phi_i > (B_1, \ldots, B_1)$, то каждый $f_{\xi,\mu} < \phi_i > (B_1, \ldots, B_1)$, то каждый $f_{\xi,\mu} < \phi_i > (B_1, \ldots, B_1)$, то каждый $f_{\xi,\mu} < \phi_i > (B_1, \ldots, B_1)$, то каждый $f_{\xi,\mu} < \phi_i > (B_1, \ldots, B_1)$, то каждый $f_{\xi,\mu} < \phi_i > (B_1, \ldots, B_1)$, то каждый $f_{\xi,\mu} < \phi_i > (B_1, \ldots, B_1)$, то каждый $f_{\xi,\mu} < \phi_i > (B_1, \ldots, B_1)$

Пусть $(a_1, \dots, a_r) \in f_{\xi, \mu} < \phi_i > (B_1, \dots, B_1)$. Воспользуемся индукцией по строению ϕ .

1. $\phi = P(t_1, \dots, t_n)$, $P \in P \cup \overline{P}$. По определению T_s имеем $a_p \in T_s$

2. Если $\Phi = \Psi_1 \wedge \Psi_2$, то очевидно, что a_p содержится либо в некотором $\overline{b} \in f_{\xi,\mu} < \Psi_1 > (B_1,\dots,B_1)$, либо в некотором $\overline{c} \in f_{\xi,\mu} < \Psi_2 > (B_1,\dots,B_1)$. Следовательно, $a_p \in T_s$,

- 3. Случай $\Phi = \Psi_1 \vee \Psi_2$ доказывается аналогично.
- 4. Если $\Phi = \Psi_1 \setminus \Psi_2$, то по определению истинности такого вида формулы имеем, что $f_{\xi,\mu} < \Phi > (B_1,\dots,B_1) \subseteq f_{\xi,\mu} < \Psi_1 > (B_1,\dots,B_1)$ и по предположению индукции доказано.
- 5. Пусть $\phi = \exists x \in P[i]$. Ψ . Тогда a_p содержится в некотором $\overline{b} \in f_{\xi,\mu} < \Psi > (B_1,\dots,B_1)$. Следовательно, $a_p \in T_s$.
- 6. Случаи $\Phi = \exists x. \Psi$ и $\Phi = \exists x \in \{c_1, \dots, c_n\}. \Psi$ доказываются аналогично.
- 7. Пусть $\Phi = \forall \mathbf{x} \in P[\mathbf{i}].\Psi$. Если P интерпретируется пус тым отношением, то по определению истинности такого вида формулы имеем, что $\mathbf{f}_{\xi,\mu} < \Phi > (B_1,\dots,B_1) = \mathbf{f}_{\xi,\mu} < \exists \mathbf{x}.\Psi > (B_1,\dots,B_1)$ и по п.5 все доказано. Если P интерпретируется непустым отношением, то $\mathbf{f}_{\xi,\mu} < \Phi > (B_1,\dots,B_1) \subseteq \mathbf{f}_{\xi,\mu} < \exists \mathbf{x}.\Psi > (B_1,\dots,B_1)$ и по п.5 все доказано.
 - 8. Случай $\Phi = \forall x \in \{c_1, \dots, c_n\}$. Ψ доказывается аналогично. Утверждение доказано.

Из монотонности $\Gamma_{\xi,\tau}$ <Sch> имеем бесконечную неубывающую последовательность элементов из $\mathcal{P}(\mathtt{E_1})$ х...х $\mathcal{P}(\mathtt{E_1})$:

$$\Gamma^{o}_{\xi,\tau} < Sch > (\emptyset, \dots, \emptyset) \subseteq \dots \subseteq \Gamma^{j}_{\xi,\tau} < Sch > (\emptyset, \dots, \emptyset) \subseteq \dots$$

Но множество $\mathcal{P}(E_1)$ х...х $\mathcal{P}(E_1)$ конечно. Значит, существует n такое, что $\Gamma_{\xi,\tau}^{n+1} < \mathrm{Sch} > (\emptyset, \ldots, \emptyset) = \Gamma_{\xi,\tau}^{n} < \mathrm{Scg} > (\emptyset, \ldots, \emptyset)$. По теореме 4, $\Gamma_{\xi,\tau}^{n} < \mathrm{Sch} > (\emptyset, \ldots, \emptyset)$ — наименьшая неподвижная точка опетора $\Gamma_{\xi,\tau} < \mathrm{Sch} >$. Теорема доказана.

Теорема 5 дает способ нахождения наименьшей неподвижной точки $\Gamma_{F-T} < Sch > .$

Алгоритм LFP

INPUT: Простая S-схема Sch с наборами параметров \overline{v} и \overline{V} , озна - чивание параметров $\langle \xi, \tau \rangle$.

OUTPUT:1fp($\Gamma_{\xi,\tau}$ <Sch>).

BEGIN

END.

Пусть Sch $P_1(\overline{\mathbf{x}}_1)$ def $\Phi_1,\dots,P_1(\overline{\mathbf{x}}_1)$ def Φ_1 – произволь – ная S-схема с наборами предметных параметров $\overline{\mathbf{v}}$ и предикатных параметров $\overline{\mathbf{v}}$. Пусть $<\xi$, $\mu>$ – означивание параметров схемы. Будем считать, что μ ставит в соответствие каждому символу из $\overline{\mathbf{v}}$ конечное отношение.

Пусть \Pr = (Sch, ξ , μ , Ψ) - S-программа над моделью $\mathbb N$ сигнатуры σ . Считаем, что в σ содержится константа для каждого элемента из носителя $\mathbb N$. Будем считать, что все предикатные символы из $\mathbb P$ интерпретируются в $\mathbb N$ конечными отношениями.

Теперь можно привести алгоритм вычисления значений предикатных переменных из сигнатуры схемы Sch с наборами предметных параметров \overline{V} и предикатных параметров \overline{V} относительно означи вания параметров $<\xi$, $\mu>$. Здесь же вычисляется значение отношения, определяемого S-программой $Pr=(Sch,\,\xi,\,\mu,\,\Phi)$.

Алгоритм вычисления Den (Sch) и Den (Pr)

<u>Шаг 1</u>. Находим разбиения сигнатуры Sch и схемы Sch. Алгоритм приведен в §2. Имеем $\overline{\mathbb{Q}}_1,\dots,\overline{\mathbb{Q}}_k$ — разбиение сигнатуры Sch; $\{\operatorname{Sch}_j\}_{1\leq j\leq k}$ — разбиение схемы Sch; $\overline{\mathbb{V}}_j=\overline{\mathbb{V}}$ — набор предметных

параметров S-схемы Sch $_{j}$, \overline{v}_{j} = U U $_{1 < j}$ — набор предикатных пара-

метров Sch;;

War 2. i:=1; $\mu':=\mu$.

шаг 3. Набору $\overline{Q_i}$ ставим в соответствие набор $1fp(\Gamma_{\xi,\mu}, Sch)$, вычисляемый алгоритмом LFP, входом которого будут S-схема Sch, с наборами предметных и предикатных параметров \overline{v}_i , \overline{V}_i и означивание параметров $\langle \xi, \mu' \rangle$. При этом если $\overline{Q}_i = (R_1, \dots, R_r)$, то R_k ставится в соответствие k-я компонента $1fp(\Gamma_{\xi,\mu}, Sch_i)$.

<u>Шаг 4.</u> Расширяем μ '. Пусть $\overline{Q}_i = (R_1, \dots, R_r)$. Считаем,что μ ' (R_k) совпадает с k-й компонентой $1 \mathrm{fp}(\Gamma_{\xi,\mu}, <\mathrm{Sch}>)$. Таким образом, μ ' определена на \overline{V}_{i+1} .

<u>Шаг 5.</u> Если i < k, то i := i + l и переходим к шагу 3. Определим означивание $Den_{op}(Sch)$ сигнатуры схемы Sch следующим образом: $Den_{op}(Sch)(P) := \mu'(P)$, где P - предикатная перемен - ная из сигнатуры схемы Sch.

Пусть
$$FV(\Phi) = \{x_1, ..., x_n\}$$
. Тогда
$$Den_{op}(Pr) := \{(a_1, ..., a_n) \mid a_1 \in M_{\mathsf{TUIN}}(x_n), ..., a_n \in M_{\mathsf{TUIN}}(x_n), ..$$

 $N = \Phi$ при означивании параметров $<\xi^{\,t}\,,\mu^{\,t}>$, которое удовлетворяет условиям:

- I) µ¹ вычислено ранее;
- 2) ξ' совпадает с ξ на $\overline{\mathbf{v}}$;
- 3) $\xi^{\dagger}(x_i) = a_i \text{ при } l \leq i \leq n$

На этом вычисления заканчиваются.

TEOPEMA 6. Den $_{
m op}$ (Pr) = Den (Pr), m.e. операционная се-мантика корректна и полна относительно декларативной при сделанних предположениях на S-программу Pr.

ДОКАЗАТЕЛЬСТВО. Сравнивая определение Den(Pr) с определением $Den_{op}(Pr)$, видим, что если декларативная семантика сим волов из сигнатуры схемы Sch совпадает с их операционной семантикой, то $Den_{op}(Pr) = Den(Pr)$.

А тот факт, что декларативная сементика символов из сиг - натуры схемы Sch совпадает с их операционной семантикой, следует из следствия теоремы 5. Теорема доказана.

Заметим, что в силу того, что алгоритмы LFP и построения разбиения всегда останавливаются (нет бесконечных вычислений), алгоритм вычисления $Den_{op}(Pr)$ и $Den_{op}(Sch)$ также не дает бесконечных вычислений.

Дальнейшим продолжением исследований может быть разработка на основе языка S-программ более выразительного языка, удовлетворяющего требованиям практики. Автор благодарен С.С.Гончарову за советы и замечания, сделанные по ходу работы.

Литература

- 1. ГОНЧАРОВ С.С., СВИРИДЕНКО Д.И. Σ -программы и их семантики //Логические методы в программировании.-Новосибирск,1987. Вып. 120: Вычислительные системы. С. 24-51.
- 2. ГОНЧАРОВ С.С., ЕРШОВ Ю.Л., СВИРИДЕНКО Д.И. Методологические аспекты семантического программирования //Научное знание: логика, понятия, структура. Новосибирск: Наука, 1987. С. 154-184.
- 3. ЧЕРИ С., ГОТЛОБ Г., ТАНКА Л. Логическое программирование и базы данных. М.: Мир, 1992.
- 4. TARSKI A. A lattice theoretical fixpoint theorem and its applications // Pacific J.Math.- 1955. N 5.

Поступила в редакцию 20 апреля 1995 года