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Introduction

Polynomial graph invariants have found interesting appli-
cations in organic chemistry and biology for characterization
molecular graphs and DNA [1-5). These applications stimulates
intensive theoretical studies of polynomial invariants.In this
paper we consider a general calculation scheme of one type po-
lynomial invariant for classes of polygon graphs. A graph of
such class may be presented as n-gons in a plane connected
with each other by an edge. Some of these classes include mo-
lecular graphs of polycyclic chemical compounds. The scheme is
based on recurrent relations which are induced by two elemen -
tary graph operations: deletion and contraction of an edge. By
a simple way we present a general explicit formulae for the po-
lynomial. Then we show that several well known polynomials may
by injected into this scheme with suitable coefficients.By con-
struction the polynomials are similar to the dichromate of

Tutte, i.e. they don't distinguish 2-isomorphic graphs. There-

*) This work was supported by the Russian Foundation of Funda-
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fore they characterize a whole class of considered graphs with

equal numbers of n-gons.

1. Basic notations and definitions

All graphs considered in this paper are finite, undirec-
ted, connected, with or without loops or multiple edges. If G
is a graph, V(G) and E(G) will denote its sets of vertices and
edges, |[V(G)| = p and |E(G)| = q. The graphs called chains of
n~-gons consist of n-gons connected with each other by edges.
Two arbitrary n-gons either have only a common edge (i.e. they
are adjacent), or have no common vertices. Each n-gon is adja-
cent to no more than two other n-gons and no three n-gons which
share a common edge. Two terminal n-gons of a chain are adja -
z be the class of all
chains with k copies of n-gons. Then graphs of UE may be de-

cent to exactly one other n-gon. Let U

. . n .
fined by recursion. We assume that Uo’ n 2 2, consists of the
degenerate n-gon which is the tree with a single edge on two

vertices., Every G € Un, k 21, n2 2, is obtained from some

H € U:_] by identifying an edge of a new n-gon with an edge of
the terminal n-gons in H. A chain of U; may be embedded into
the plane such that all its interior faces will be n-goms. All
graphs of UE for 2 S ns6and 1 £ k S 4 are presented on
Fig. 1.

We remark that the class UE contains graphs which play an
important role in organic chemistry. Let Ci be subset of graphs
of U:,for which each vertex is common not more than for two n-—
gons. Therefore the degree of any vertex of graph of CE equals
two or three. Graphs of Cg are well-known as molecular graphs
of unbranched catacondensed aromatic hydrocarbons [!,2,6]. Mo-

reover there is one-to-one correspondence between graphs of



n +2
classes Uk and C: . In particular, for classes Ui and Ui we
have [7,8]:

5 2274 4 292 e 2 4 even,
03] -

K4 w2 &2 ey 25 oaa

4| {(3(k-2)/2+ 1)2/4, if k 2 2 even,

KD L@k 23 D2 5320 130 ie 12 3 oda.

In general case the numbers of all graphs in U; are given

by the following compact expression (k > 1, n > 5) [9]:
n-2, _ 1 k=2 1 n 1 ny.k
|Uk | = 7 (0=3)" T+ 3 [1+(-1)"] + g [1-¢-1) 102 +
+ g (4D 5 DD+ DR +

+ [‘~(-1)k]l(n-3)/21}(n_3)lk/21-1.

Two graphs are said to be 2-isomorphic if there is a
bijection between its edges which induces a one-to-one corres-
pondence between its cycles [10]. It easy to see that two arbi-
trary chains of U2 are 2-isomorphic graphs.

We recall two well-known polynomial invariants for graphs.
The dichromate of Tutte x(G;x,y) of a graph G is defined by
the following equality [11]:

$(G5x,y) = =D®® £ e

YCE (G)

w(G-¥) (o B(G-Y)

-1

where the summation goes over all edge subsets Y of E(G),w(G)
is the number of connected components in G, and B(G) is the
cyclomatic number of a graph: B(G) = q(G)- p(G)+ w(G).

The polynomial N(G;t,x,y) of a graph G was introduced by

=Y Y
Negami in [12]): N(G;t,x,y) = T tw(G-X)xq(G )Yq( )-

YCE(G)
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We will present recurrent relations and explicit formulae
for the dichromate of Tutte and Negami's polynomial for graphs
of U

K

2. The 2-invariant function

We now define a function f by a recursive scheme with
formal coefficients. Our aim is to derive an explicit formula
of £ for chains of n-gons. As elementary operation of connect-
ed graphs, we consider the deletion and the contraction of ed-
ges. We denote the resulting graph of deletion and contraction
of an edge e by G-e and G/e respectively. A graph G/e is
obtained from G by deleting e and identifying its ends to a
single vertex. An edge is called the isthmus if its removal in-
creases the number of connected components in a graph. A graph
function is called a 2-invariant if it assigns to 2-isomorphic
graphs the same value.

Let f be a 2-invariant graph function with values from
some ring R. We will assume that a function f satisfies the
following conditions:

1) if an edge e is not a loop or an isthmus, then
£(G) = Af(G/e) + Bf(G-e), Q)]

where the coefficients A and B don't depend on the choice of ej;
2) if H-K is a union of two subgraphs H and K which have
only a common vertex, then
£(H-K) = CEH)E(K), (2)
where the coefficint C does not depend on the subgraphs H and
K3
3) if a graph Tl is a tree with a single edge on two ver-

tices, then

f(Tl) = D; 3)
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4) if a graph L, is a single vertex with only loop, then
£(L,) = E. (%)

Applying the above properties of the function f, we may
immediately calculate f for the simplest classes of graphs.

If a graph Tq is a connected tree with q edges, then
£ - cd-'pd, (5)
If a graph Lq is a single vertex with q edges, then
£ ) = c3-'gq,
q
If a graph Dq consists of two vertices joining by multiple

q edges, then

34! _ (cpyd-!

- gi-!
f(Dq) B D + AE ]

If a graph Cq is a simple cycle with q edges, then

q-1 q-1
_ ,q-l AT - (cp)
£ ) = ATE + BD T (6)
3. Function f for graphs of Uz
Since the function f 1is 2-invariant, we shall denote

the value f£(G) for an arbitrary graph G € UE by fﬁ. Recall

that the class Ug, n 2 2, contains the degenerate n-gons. Then

“by (3)

n
fo = f(T]) D. €))

n .
Furthermore, the class Ul’ n 2 2, contains an n-gon only.

By (6) n-1 n-1
n _ _ ,n-l AT - (D)~
fl = f(cn) =ATE+B —g—FG — - (8)

The following theorem gives a recurrent formula of the

function f for chains of n-gons.
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THEOREM 1. For a chain with k n-gons, n 2 2 and k 2 2 ,

we have:

n-1 n-1
- [Bﬂ_ +An-2CE]fn _

A - CD k-1
n-2__n-l _n-2_.n
-A "BC D Efk—Z' 9)
PROOF. Let G: € UE. Consider a calcualation scheme for
f(Gn) presented on Fig.2. Graph H: is obtain from Gn by cont-
racting an edge of its terminal n-gon. Graph Gk n-2 is con-
structed from G by deleting the edge. Using (1), (2) and (5),

k
we have

£ = Af(H ) + Bf(G

k 1" T2 =

_ n n-2_,..n
= Af(Hk) + B(CD) f(Gk—l)'

Fhrrm Pt

Fig.2. Calculation scheme for Gl .
Hence

n, _ | n-2 £
f(Hk) —7; - B(CD) k |). (10)

Consider now a calculation scheme for f(HE) shown on
Fig.3. In this case we can written f(ﬂ;) through the function

f for graphs HE_]'L], ey

k-1 and G -Ti for 1 €1 £n-3,

k-1
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Fig.3. Calculation scheme for H:.

From (1), (2) and (5), we have

-4,
n, _ ,n-2_,n n i, .n
@) = 78 L) + B I ATE(G (0T 4 )+
1=0
n-3_,.n n-2 n
4 BAT (B ) = AT CEEMH, ) +
n-3 . .
+B [ > A‘(cn)“'3"] £(G,_) =
i=0
n-2 n-2
_ ,n=2 n A - (Cp) n
= A CEf(Hk-l) + B _AT fk-l . (11)
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Substituting f(HE) and f(H:_l) from (10) into (11) and

writing £ through f:—l and fg_z, we obtain

k
-2 n-2
n _ n-2 n-2 A" - (CD) n
fk [B(CD) + A °CE + AB - D ]fk-l -
n- 2 n
- CEB(CD) k 2 =
I (e ) a0-2cg | e
A - CD k-1

n-2_.n-1_n-2__n
A" "BC D Efk_2 .

This completes tha proof.

Note that the expressions at fk 1 and fk 2 in (9) don't
depend on k. Denote these coefficients by a, and bn:
A" ™! a2
an=BT_CD——- + A "CE,

b = AM2pcn=ipn-2g

Hence the formula (9) may be written in the form

n_ .n n
fe = 4nfer ~ Pafkz -

Substituting the analogous expression for f:-l and f: 2
into the later equation, we have

n _ n _ n =
fk - a (an k-2 bnfk-3) bnfk-Z

= 2 n
(ap = b B o= agb £ 5.

Repeating this process, we can present fk through fi and

. k-1
£f%  for an arbitrary | s i S k-l. Denote by < t

and a7 the
i-1 n

|
corresponding coefficients af f and f _1e where c, =3, and

d; = bn. This implies the followlng s1mp1e
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LEMMA. For arbitrary n 2 2 and | £ i < k-2,

i+1 i
c 1

n an -1 c,
i+1 | © il.
dn bn 0 dn

Using (7) and (8),we get for the function f the following
THEOREM 2. For a chain with k n-gons, n 2 2 and k22,

we have:
n_ k-l n k=1 _n
fk =c) fI - dn fO .
where
n-1 n-1
n _ n n-1 A - (CD)
f =D, f =A E+B———" |
A - CD
ck a -1 k-1
n | _ n 4
k ’
dn bn 0 bn
n-1 n-1 ,
a = AM2cg . pA - (CD) b= AM2pen-lpn-Zg

A - CD

4. The dichromate of Tutte,Negami's and Yamada's polynomils

In this section we show that the properties of the func -
tion f coincides with the properties of the dichromate of Tut-
te, Negami's and Yamada's polynomials for chains of n-gons. We
also consider the chromatic and the flow polynomials. This al-
low to obtain recurrent relations and explicit formulae for
the polynomials as a corollary of Theorems 1 and 2.

The dichromate of Tutte. It is well known that the dich -

romate of Tutte x(G;x,y) satisfies the following recursive re-

lation for an arbitrary graph G [11]:

x(G;x,y) = x(G/e;x,y) + x(G-e;x,y),
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where e is not a loop or an isthmus, Further, if sub-
graphs H and K have only a common vertex, then x(H.-K;x,y) =
= x(H;x,y)x(K;x,y). For graphs Tl and L, the dichromate is equ-
al to X(Tl;x,y) = x and x(Ll;x,y) = y. This polynomial is al-
so a 2-invariant of graphs. Therefore, the properties of the
dichromate are identical with the corresponding properties of
the function f under the coefficients: A=1, B=1,C=1,D=

=x, E =y, In this case for other quantities from Theorem 2,

- 1 - x = o N2 n o n _
wehavean-y+_,bn yx ’fo X and £, =
l - x
xn-l
=y 4+ X — .
1 - x

COROLLARY 1. For chains with k n-gons, the dichromate

of Tutte satisfies the following recurrent relation

1 n-1 _
x(Gy3x,y) = [y T ]x(G{:_,;x,y) -y x ey

and it may be presented as

-1
-1 1-x" -1
x(G:;x,y) =k [y +x == ] -k X,

n 1-x
where
dﬁ yxn'2 0 yxn_2

The polynomial of Negami. By construction, the polynomial
of Negami N(Gjt,x,y) is defined by the equation [12]:

N(G;t,x,y) = xN(G/e;t,x,y) + yN(G-e;t,x,y),

where e 1is an arbitrary edge of a graph G. For graphs H'K,
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1
T, and LI’ we have N(H-K;t,x,y) =-E-N(H;t,x,y)N(K;t,x,y),

N(T,5t,x,y) = t(x+ty) and N(Ll;t,x,y) = t(x+y). The polynomial
is a 2-invariant of graphs. Hence, the properties of f and
Negami's polynomial are the same under coefficients: A=x,
B=y, C=1/t, D= ct(x+ty), E = t(x+y). For other quantities

from Theorem 2, we have a =-%((x + ty)“'l - xn'l)+ (x+y)xn'2,

b = xn'zy(x+ty)n-2(x+y), fg = t(x+ty) and f?- (x+ty) M+ (e-1)x",

COROLLARY 2. For chains with k n-gons, the polynomial of

Negami satisfies the following recurrent relation

NG (x+ n-2 (x+ty)n'l - ! NG )
(G = |Gyt ™+ t k=17 ~

- y(X+y)xn'z(X+ty)n'2N(G§_2)

and it may be presented in the form

n k-1_n k-1_n
N(Gk,t,x,y) =c, f| - dn fo’

where f: = t(x+ty), f? = (x+ey)"+ (e-Dx",

K k-1
-1
Cn an 3n
= >
ak b 0 b
n n n

an = —t]-((xi'ty)n‘l + (tx+ty-X)xn-2),

b =yl 2 ey ™2,

The polynomial of Yamada. This polynomial h(G) (x,y) satis-

fies the following recursive expression (13,14]):

n(G) (x,y) = h(G/e)(x,y) - ?l{-h(G-e)(X,y).
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According to the properties of the polynomial, we
1
have h(G-H)(x,y) = ;h(c)(x,y)-h(ﬂ)(x,y), h(T;)(x,y) = 0 and

h(Ll)(x,y) = xy-1.
Then we can conclude that the properties of f and
h(G) (x,y) coincide under the coefficients: A=l, B=-1/x,C=1/x,
D=0, E=xy-1. For other quantities from Theorem 2, a = y=2/x,
b =0, i = ()", a2 0, £ =0 and £ = xy-1.
COROLLARY 3. For chains with k n-gons, the polynomial of

Yamada satisfies the following recurrent relation

h(G) (x,y) = [y - %] (G ) (x,y)

and it may be presented in the form

n 2 k
h(Gk)(x,y) = [y - ;J (xy - 1.

The chromatic polynomial. The chromatic polynomial P(G;A)

is the well known polynomial invariant of graphs. A recursive
formula under deleting and contracting an edge is as follow

[11]:

P(G3\) = -P(G/e;A) + P(G-e3)),
where e is not a loop. For graphs H:K, '1‘1 and L', we have
P(H-K;3\) =—}';p(u;>\)p(x;x),p('rl;>\) = A(A-1) and P(L;5A) = O,

Therefore, the properties of f and P(G;)\) coincide under the
coefficients: A= -1, B=1, C= I/A, D=2A(-1), E=0. Be-

. . -1 n-1 n- - k-l_
sides, we can write a K((h—l) - (=1 ), bn O,cn
k-1 k-1 _ n _ , n _ -
=a ., dn =0, fo A(A-1) and fl A l)an.

As a result we obtain the simple formulae which also fol-
low from other properties of the polynomial [11). Namely, the

chromatic polynomial satisfies the following recursive relati-
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on for chains with k n-gons:

n., __1 n-1 n-1 n
PG M) =5 [O-DT"" - (D)TTIRG, 50
and it may be presented in the form

n, _ 1 n-1 n=-1.k
P(G5\) =T A-DIa-n""" - D7)

The flow polynomial. For the flow polynomial F(G;A), the

recursive formulae is written as {11]
F(G;A\) = F(G/e;A) - F(G-e3MN),

where e is not a loop. Further, for graphs H¢K, Tl and L], the
equations F(H-K ;A) = FH;A)F(X;N), F(Tl;x) = 0 and F(Ll;h) =

= A-1 hold. Then the properties of f and F(G;A) are the same

under the coefficients: A=1, B=-1,C=1,D=0, E=\ -1.
For other quantities from Theorem 2, a = A-2, bn =0, ci-l =
= ai.l, di‘l =0, fz = 0 and f? = A-1. Hence, the flow plyno -

mial satisfies the following recurrent relation for chains with
k n-gons: F(G3A) = (A-2)F(Gy_ ;). This immediately implies

F(G:;l) = (X-Z)k-l(k-l). Notice that the flow polynomial is

the specific case of of Yamada's polynomial at x = | and y = A.

Table
Polynomial Al B|C D E
The dichromate of Tutte I . )
x(G3x,y) x y
The polynomial of Negami I
N(G;t,x,y) X |y ry t(x+ty) t(x+y)
The polynomial of Yamada 1 1
h(6) (x, y) x|z | © xy-1
The chromatic polynomial 1
P(G\) - = | A&-D) 0
The flow polynomial
F(G3)) 1 -1 1 o 21
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Now we present values of coefficients for all considered

polynomials (see table):

£(G) = Af(G/e) + Bf(G-e);
£(HeK) = CEH)E(K);

£(T) = D;

f(Ll) = E.

Conclusion

We have considered a general calculation scheme for the
polynomial graph invariant based on edge deletion and contrac-
tion in a graph. For chains of polygons recurrent and explicit
formulae of the invariant was derived. It was shown that some
well-know polynomials are injected into this scheme with sui-
table coefficients. As a consequence, the formulae for the

dichromate of Tutte and Negami's polynomial was presented.
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