СТРУКТУРНЫЕ АЛГОРИТМИЧЕСКИЕ СВОЙСТВА ВЫЧИСЛИМОСТИ

(Вычислительные системы)

1996 год

Выпуск 156

УДК 510.5+519.68

Σ -НУМЕРАЦИЯ И Σ -ОПРЕДЕЛИМОСТЬ В НГ_М

А. Н. Хисамиев

Ю.Л.Ершовым [4] введено понятие Σ -определимости модели \mathcal{M} в допустимом множестве \mathcal{A} . В случае, когда \mathcal{A} — наименьшее допустимое множество $HF_{\mathcal{N}}$, то данное понятие обобщает понятие конструктивизируемости модели [5]. Повтому представляет интерес нахождение условий для Σ -определимости модели \mathcal{M} в $HF_{\mathcal{N}}$.

В работе введено понятие Σ -нумерации модели \mathcal{N} , и для медели \mathcal{N} , допускающую такую нумерацию, получен критерий Σ -определимости модели \mathcal{M} в $\mathrm{HF}_{\mathcal{N}}$ на языке относительной рекурсивности (теорема 1). Отсюда следует, что для Σ -нумерованной модели \mathcal{N} справедливо: 1) модель \mathcal{M} Σ -определима в $\mathrm{HF}_{\mathcal{N}}$ тогда и только тогда, когда она Δ_1 -определима; 2) если абелева р-группа (булева алгебра) Σ -определима в $\mathrm{HF}_{\mathcal{N}}$, то в $\mathrm{HF}_{\mathcal{N}}$ Σ -определим и ее ульмов (ординальный) тип. Показано, что стандартная нумерация конечно порожденной алгебры является ее Σ -нумерацией. Получен критерий, когда модель \mathcal{M} допускает Σ -нумерацию.

§ 1. Σ-нумерация и Σ-определимость в HFM

Здесь вводится понятие Σ -нумерации модели $\mathcal M$ и дан критерий Σ -определимости модели $\mathcal N$ в $\mathrm{HF}_{\mathcal M}$ для Σ -нумерованной модели $\mathcal M$.

Рассматриваются только не более чем счетные модели конечных сигнатур, не содержащих функциональных символов. Знак "≓" означает выражение "равно по определению".

Приведем понятие Σ -определимости модели \mathcal{M} в допустимом множестве, введенное Ю.Л.Ершовым в [4].

ОПРЕДЕЛЕНИЕ 1. Говорят, что модель $\mathcal{M}_1 = (M_1, \sigma_1)$ сигнатуры $\sigma_1 = \langle P_1^{n_1}, \ldots, P_s^{n_s} \rangle$ Σ -определима в допустимом множестве \mathcal{A} , если существуют Σ -формула $\varphi(x,y)$ и Δ_1 -формулы $\eta(x_1, x_2, y)$, $\psi_1(x_1, \ldots, x_{n_1}, y), \ldots$ $\ldots, \psi_s(x_1, \ldots, x_{n_s}, y)$ сигнатуры модели \mathcal{A} и элемент $a \in \mathcal{A}$ такие, что формула $\eta(x_1, x_2, a)$ определяет конргруэнтность $\bar{\eta}$ на модели $\mathcal{M}'_1 = \langle X, P'_1, \ldots, P'_s \rangle$ и фактор-модель $\mathcal{M}'_1/\bar{\eta}$ изоморфна \mathcal{M}_1 , где

$$X = \{b \in A \mid A \models \varphi(b, a)\},$$

$$P'_i = \{(b_1, \dots, b_{n_i}) \mid b_i \in X, \quad A \models \psi_i(b_1, \dots, b_{n_i}, a)\}.$$

Если в этом определении $\varphi(x,y)$ также будет Δ_1 -формулой, то будем говорить, что модель \mathcal{M}_1 Δ_1 -определима в $\mathrm{HF}_{\mathcal{M}_2}$.

Пусть $\mathcal{M}_2 = \langle M_2, \sigma_2 \rangle$ — модель сигнатуры $\sigma_2 = \langle Q_1, \ldots, Q_k \rangle$. Если S — множество, то через $\mathrm{PF}(S)$ обозначим множество всех конечных подмножеств множества S. Допустимое множество $\mathrm{HF}_{\mathcal{M}_2}$ над моделью \mathcal{M}_2 есть модель $\langle M_2 \cup \mathrm{HF}_{\mathcal{M}_2}, \ U^1, \ \in, \ Q_1, \ldots, Q_k \rangle$, где предикат U выделяет множество M_2 правлементов, а множество $\mathrm{HF}_{\mathcal{M}_2}$ определено так:

$$\begin{aligned} &\operatorname{HF}_{M_2}(o) = \emptyset, \\ &\operatorname{HF}_{M_2}(n+1) = \operatorname{PF}(M \cup \operatorname{HF}_M(n)), \\ &\operatorname{HF}_{M_2} = \bigcup_{n < \omega} \operatorname{HF}_M(n). \end{aligned}$$

Известно, что множество ω всех натуральных чисел в $\mathrm{HF}_{\mathcal{M}_2}$ выделяется Δ_{o} -формулой. Отображение ν множеств ω на основное множество M модели \mathcal{M} называется нумерацией модели \mathcal{M} , а пара (\mathcal{M},ν) — нумерованной моделью. Через η_{ν} обозначим нумерационную эквивалентность, т.е. $\eta_{\nu} = \{(n,m)|\ \nu n = \nu m\}$. Нумерацию ν модели \mathcal{M} можно рассматривать как функцию в $\mathrm{HF}_{\mathcal{M}}$.

ОПРЕДЕЛЕНИЕ 2. Если нумерация ν модели \mathcal{M} является Σ -функцией в $\mathrm{HF}_{\mathcal{M}}$, то ν называется Σ -нумерацией модели \mathcal{M} . Если существует Σ -нумерация ν модели \mathcal{M} , то \mathcal{M} назовем внутреннее перечислимой или Σ -перечислимой.

Пусть (\mathcal{M}_1, ν_1) — нумерованная модель сигнатуры σ_1 . Через $\mathcal{M}_1^{\nu_1}$ обозначим модель $(\omega, \bar{P}_1, \dots, \bar{P}_s)$, где предикаты \bar{P}_i определяются так:

$$\bar{P}_i(m_1,\ldots,m_{n_i}) \Leftrightarrow P_i(\nu_1 m_1,\ldots,\nu_1 m_{n_i}).$$

Ясно, что фактор-модель $\mathcal{M}_1^{\nu_1}/\eta_{\nu_1}$ изоморфна модели \mathcal{M}_1 . Пусть (\mathcal{M}_2,ν_2) — нумерованная модель сигнатуры $\sigma_2=\langle Q_1,\dots,Q_k\rangle$. Если предикаты $\eta_{\nu_1},\bar{P}_i,\ 1\leq i\leq s,$ модели $\mathcal{M}_1^{\nu_1}$ рекурсивны относительно предикатов $\eta_{\nu_2},\bar{Q}_1,\dots,\bar{Q}_k$ модели $\mathcal{M}_2^{\nu_2},$ то говорят, что нумерованная модель (\mathcal{M}_1,ν_1) рекурсивна относительно нумерованной модели (\mathcal{M}_2,ν_2) . Если n-местный предикат $S\subseteq\omega^*$ рекурсивен относительно предикатов $\eta_{\nu_2},\bar{Q}_1,\dots,\bar{Q}_k$, то говорят, что S рекурсивен относительно нумерованной модели (\mathcal{M}_2,ν_2) .

Аналогично определяются понятия рекурсивной перечислимости модели (\mathcal{M}_1, ν_1) и предиката S относительно модели (\mathcal{M}_2, ν_2) .

Основным результатом работы является

TEOPEMA 1. Пусть \mathcal{M}_1 , \mathcal{M}_2 — не более, чем счетные модели соответственно сизнатур σ_1 , σ_2 и ν_2 — Σ -нумерация модели \mathcal{M}_2 . Тогда модель \mathcal{M}_1 Σ -определима в $\mathrm{HF}_{\mathcal{M}_2}$ тогда и только тогда, когда существует такая нумерация ν_1 модели \mathcal{M}_1 , что пара $(\mathcal{M}_1,\ \nu_1)$ рекурсивна относительно $(\mathcal{M}_2,\ \nu_2)$.

ДОКАЗАТЕЛЬСТВО. Если модель \mathcal{M}_1 конечна, то теорема очевидна. Поэтому будем считать, что модель \mathcal{M}_1 бесконечна.

Докажем сперва теорему справа налево. Пусть (\mathcal{M}_1, ν_1) рекурсивна относительно пары (\mathcal{M}_2, ν_2) . Покажем, что модель \mathcal{M}_1 Σ -определима в $\mathrm{HF}_{\mathcal{M}_2}$. В качестве X в определении 1 нужно взять множество ω , которое в $\mathrm{HF}_{\mathcal{M}_2}$ выделяется Δ_{o} -формулой $\varphi(x)$. Покажем, что нумерационная эквивалентность η_{ν_1} и предикаты \bar{P}_1 Δ_1 -определимы в $\mathrm{HF}_{\mathcal{M}_2}$. Для этого достаточно дока-

зать, что каждая всюду определенная функция Θ , рекурсивная относительно характеристических функций предикатов η_{ν_2} , $\bar{Q}_1,\ldots,\bar{Q}_k$, является Σ -функцией в $\mathrm{HF}_{\mathcal{M}_2}$. Используя определения [10] относительно рекурсивности имеем, что функция Θ получается из базисных функций "+", ".", характеристической функции отношения "<", функции выборки и характеристических функций предикатов η_{ν_2} , $\bar{Q}_1,\ldots,\bar{Q}_k$, путем конечного числа применений операций суперпоэнций и минимизаций. Отсюда нетрудно доказать, что функция Θ является Σ_1 -функцией. Поэтому предикаты η_{ν_1} , \bar{P}_i являются Δ_1 -определенными в $\mathrm{HF}_{\mathcal{M}_2}$. Так как $\mathcal{M}_1^{\nu_1}/\eta_{\nu_1}\simeq \mathcal{M}_1$, то модель \mathcal{M}_1 Σ -определима в $\mathrm{HF}_{\mathcal{M}_2}$. Достаточность условий теоремы доказана.

Из доказанной части теоремы имеем:

ЗАМЕЧАНИЕ 1. Пусть S — рекурсивное отношение на ω . Тогда S рекурсивно относительно (\mathcal{M}_2 , ν_2), а значит отношение S Δ_1 -определимо в HF \mathcal{M}_2 .

ЗАМЕЧАНИЕ 2. Фактически мы доказали

УТВЕРЖДЕНИЕ. Если пара $(\mathcal{M}_1, \ \nu_1)$ рекурсивна относительно пары $(\mathcal{M}_2, \ \nu_2)$ и $\nu_2 - \Sigma$ -нумерация, то модель \mathcal{M}_1 Δ_1 -определима в НГ \mathcal{M}_2 .

Докажем теорему слева направо. Пусть ν_2 — Σ -нумерация модели \mathcal{M}_2 и счетная модель \mathcal{M}_1 Σ -определима в HF \mathcal{M}_2 . Доказательству теоремы предпошлем ряд лемм.

ЛЕММА 1 [10]. Существует взаимно-однозначное отображение $e: \omega \to HF$ такое, что выполнены условия

- 1) $e \Sigma$ -функция e HF;
- 2) e(m) = n perypeusnoe omnomenue om $m, n \in \omega$;
- 3) $e(m) \in e(n)$ perypcuence omnomenue om m, n.

Аналогом этой леммы является

ЛЕММА 2. Сущестует нумерация $\bar{e}:\omega\to \mathrm{HF}_{\mathcal{M}_2}$ множества $\mathrm{HF}_{\mathcal{M}_2}$ такая, что выполнены условия:

- 1) ē Σ-φункция;
- 2) $\bar{e}(m) = n$ perypous hoe omnomenue om m, n;

3) дая любой Δ_o -формулы $\varphi(x_1,\ldots,x_s)$ отношение

$$\mathrm{HF}_{\mathcal{M}_2} \models \varphi(\bar{e}(n_1), \ldots, \bar{e}(n_s))$$

от n_1, \ldots, n_s рекурсивно относительно нумерованной модели $(\mathcal{M}_2, \ \nu_2)$.

ДОКАЗАТЕЛЬСТВО. Определим множество $\omega_o \subseteq \omega$ и нумерацию $e_o: \omega_o \to \mathrm{HF}_{\mathcal{M}_2}$ множества $\mathrm{HF}_{\mathcal{M}_2}$ индуктивно следующим образом. Для любого числа $n \in \omega$, числа 2^n и 3^n принадлежат ω_o и $e_o(2^n) = \nu_2(n)$, $e_o(3^n) = e(n)$, где функция e определена в лемме 1. Пусть числа $n_1 > n_2 > \dots > n_s$ такие, что $n_i \in \omega_o$ и $e_o(n_i) = x_i, 1 \le i \le s$. Тогда число $m = 5^{2^{n_1} \dots p^{n_s}}$ принадлежит ω_o и $e_o(m) \rightleftharpoons \{x_1, \dots, x_s\}$. Определение множества ω_o и функции e_o закончено. Множество ω_o , очевидно, рекурсивно. Отсюда существует разнозначная рекурсивная функция g, перечисляющая множество ω_o в порядке возрастания его элементов. Положим $\bar{e} = eg$. Покажем, что \bar{e} является Σ -функцией. Так как g является Σ -функцией, то для этого достаточно поазать, что e_o явлется Σ -функцией. Покажем это. Определим функцию:

$$H(l) = \begin{cases} \{s_1, \dots, s_m\}, \text{ если } s_i \in \omega_o, \ s_1 > \dots > s_m, \\ l = 5^{2^{s_1} \dots p_m^{s_m}}; \\ 0, \text{ в противном случае}. \end{cases}$$

Покажем, что H(l) является Σ -функцией. Очвидно, что отношение $s \in H(l)$ от s и l рекурсивно. Поэтому по замечанию l оно Δ_1 -определимо. Справедлива эквивалентность:

$$H(l) = y \Leftrightarrow (l \notin \omega_o \land y = 0) \lor$$

$$\forall \exists k \in l((l = 2^k \lor l = 3^k) \land y = 0) \lor$$

$$\forall \forall z \in y(z \in H(l) \land \forall z \in l(z \in H(l) \rightarrow z \in y)).$$

Отсюда получаем, что H есть Σ -функция. Определим Σ -функцию G(a,b) так:

$$G(a,b) = u \Leftrightarrow \operatorname{HF}_{\mathcal{M}_2} \models a \in \omega_o \wedge$$

$$\wedge \forall k \in a (a \neq 2^k \land a \neq 3^k) \wedge$$

Функция e_o получается из функции ν_2, e, G следующей Σ -рекурсией:

$$\begin{array}{l} e_o(2^k) = \nu_2(k), \\ e_o(3^k) = e(k-1), \\ e_o(l) = G(l, (z, e_o(z)) | z \in l), \\ \\ \text{гле } l = 5^{2^{\frac{3}{2}} \dots p_m^{\frac{3}{2}m}}, \ s_i \in \omega_o. \end{array}$$

Повтому e_o , а следовательно \bar{e} , являются Σ -функциями. Утверждение 1 леммы 2 доказано.

Утверждение 2 следует из леммы 1 и следующей эквивалентности: $\bar{e}(m) = n \Leftrightarrow \exists s(m=2^{\circ} \land e(s) = n).$

Утверждение 3 докажем индукцией по сложности формулы φ .

1. Пусть φ — атомная формула вида: $\varphi = Q_i(x_1, \dots, x_{m_i})$. Докажем рекурсивность отношения

$$HF_{\mathcal{M}_2} \models Q_i(\bar{e}(n_1), \dots, \bar{e}(n_{m_i}), \tag{1}$$

от n_1, \ldots, n_m относительно (\mathcal{M}_2, ν_2) . Пусть $g(n_j) = r_j$, $1 \le j \le m_i$. Тогда $\bar{e}(n_j) = e_o(r_j)$. Повтому можно считать, что (1) имеет вид:

$$HF_{\mathcal{M}_{2}} \models Q_{i}(e_{o}(n_{1}), \ldots, e_{o}(n_{m_{i}})). \tag{2}$$

Если хотя бы одно из чисел n_j не представимо в виде 2^{k_j} , то (2) ложно. Пусть $n_j = 2^{k_j}$. Тогда (2) равносильно отношению: $\mathcal{M}_2 \models Q_i(\nu_2 k_1, \ldots, \nu_2 k_m)$, т.е. равносильно истинности предиката $\bar{Q}_i(k_1, \ldots, k_m)$. Это означает, что отношение (1) рекурсивно относительно (\mathcal{M}_2, ν_2) .

2. Пусть φ имеет вид

$$\varphi = (\bar{e}(n) \in \bar{e}(m)). \tag{3}$$

Докажем рекурсивность отношения

$$HF_{\mathcal{M}_2} \models \bar{e}(n) \in \bar{e}(m). \tag{4}$$

Как и в случае (1) можно считать, что (4) имеет вид:

$$HF_{\mathcal{M}_2} \models e_o(n) \in e_o(m). \tag{5}$$

Если $m=2^k$, то отношение (5) ложно. Если $m=3^k$, то (5) истинно тогда и только тогда, когда для некоторого числа k верно $n=3^k$ \wedge e(k) \in e(m). Отсюда по лемме 1 имеем, что отношение (5) рекурсивно.

Пусть $m = 5^{2^{\frac{s_1}{m}} \dots \frac{s_{m'}}{p_{m'}}}, s_j \in \omega_o, s_1 > \dots > s_{m'}$. Тогда (5) равносильно отношению

$$\mathrm{HF}_{\mathcal{M}_2} \models e_o(n) = e_o(s_1) \vee \ldots \vee e_o(n) = e_o(s_{m'}).$$

Отсюда нам нужно показать рекурсивность отношения

$$HF_{\mathcal{M}_2} \models e_o(n) = e_o(m) \tag{6}$$

относительно (\mathcal{M}_2, ν_2) от чисел n, m.

Доказательство этого проведем индукцией по числу m. Пусть $m=2^k$ и $n=2^s$. Тогда $e_o(m)=e_o(n)\Leftrightarrow \nu_2 k=\nu_2 s$, т.е. отношение (5) рекурсивно относительно предиката $\eta\,\nu_2$.

Если $m=3^k$, то отношение (5) истинно тогда и только тогда, когда для некоторого числа s верно $n=3^s$ \wedge e(s)=e(k). Это отношение по лемме 1 рекурсивно.

Пусть $m = 5^{2^{s_1} \dots p^{s_{m'}}}$, $s_j \in \omega_o$, $s_1 > \dots > s_{m'}$, $j = 1, \dots, m'$. Если $n = 2^k$ или $n = 3^k$, то отношение (5) ложно. Пусть

$$n = 5^{2^{r_1} \dots p_k^{r_k}}, \quad r_1 > \dots > r_k, \quad r_i \in \omega_0, \quad i = 1, \dots, k.$$

Тогда отношение (6) равносильно конъюнкции формул:

$$1_j: e_o(s_j) = e_o(r_1) \vee ... \vee e_o(s_j) = e_o(r_k);$$

$$2_i: e_o(r_i) = e_o(s_1) \vee ... \vee e_o(r_i) = e_o(s_{m'}).$$

По индукционному предположению атомные формулы из 1_j и 2_i рекурсивны относительно (\mathcal{M}_2, ν_2) . Отсюда отношение (6), а следовательно и отношение (5), рекурсивны относительно (\mathcal{M}_2, ν_2) .

Таким образом, для атомных формул утверждение 3 доказано. Далее индукция проводится обычным способом. Лемма 2 доказана.

ЛЕММА 3. Счетная модель $\mathcal{M}_1 = \langle M_1, \sigma_1 \rangle$ Σ -on-pedenuma в $\mathrm{HF}_{\mathcal{M}_2}$ тогда и только тогда, когда существует разнозначная нумерация ν_1 модели \mathcal{M}_1 и Δ_1 -формулы $\bar{\psi}_1, \ldots, \bar{\psi}_s$, определяющие предикаты $\bar{P}_1, \ldots, \bar{P}_s$ модели $\mathcal{M}_1^{\nu_1}$.

ДОКАЗАТЕЛЬСТВО. Пусть модель \mathcal{M}_1 Σ -определена, модель \mathcal{M}'_1 и формулы φ , η , ψ_1,\ldots,ψ_s такие же как в определении 1. Через w_1 обозначим множество $\bar{\epsilon}^{-1}(M_1')$. Тогда $x\in w_1\iff \bar{\epsilon}(x)\in M_1'$. Так как $\bar{\epsilon}$ есть Σ -функция, а множество M_1' определено формулой $\varphi(x,a)$ в HF \mathcal{M}_2 , то множество w_1 также Σ -определено в HF \mathcal{M}_2 . На w_1 введем эквивалентность: $n\sim m\iff \mathrm{HF}_{\mathcal{M}_2}\models \eta(\bar{\epsilon}(n),\bar{\epsilon}(m),a)$. Отсюда следует, что эта эквивалентность Δ_1 -определена. Определим функцию $g_o: w_1\to w_1$, которая выбирает из каждого класса фактор-множества w_1/\sim наименьшего представителя, т.е.

$$g_o(n) = y \iff n \in w_1 \land y \in w_1 \land (n \sim y) \land \forall z \in y(n \not - z).$$

Отсюда получаем, что g_o есть Σ -функция. Пусть $w_2 = g_o(w_1)$ и функция $g: w \to w_2$ перечисляет множество w_2 без повторения в порядке возрастания его элементов. Функция g получена Σ -рекурсией из следующей функции:

$$G(n,x) = y \iff y \in w_1 \land \forall u \in TC(x) \ \forall w \in$$

$$\in x(u = 2^{nd}w \rightarrow y \not = u) \land \forall v \in y \ \exists u \in TC(x) \ \exists w \in$$

$$\in x(u = 2^{nd}w \lor v \sim u).$$

Отсюда следует, что $g - \Sigma$ -функция. Функция $\nu_o \rightleftharpoons \bar{e}g$ является нумерацией модели $\mathcal{M}'_1/\bar{\eta}$ и она Σ -функция в HF \mathcal{M}_2 . Обозначим через f изоморфизм модели $\mathcal{M}'_1/\bar{\eta}$ на \mathcal{M}_1 и положим $\nu_1 = f\nu_o$, $\bar{m} = (m_1, \ldots, m_n); \ \nu_o(\bar{m}) = (\nu_o m_1, \ldots, \nu_o m_n), \ \bar{\psi}_i(m) = \bar{\psi}_i(\nu_o \bar{m}).$ Так как $\psi_i - \Sigma$ -формула, а $\nu_o - \Sigma$ -функция, то $\bar{\psi}$ будет

 Σ -формулой. Покажем, что предикат $ar{P}_i$ на модели $\mathcal{M}_1^{\nu_1}$ определяется формулой $ar{\psi}_1$. Действительно,

$$\mathcal{M}_{1}^{\nu_{1}} \models \bar{P}_{i}(\bar{m}) \iff \mathcal{M}_{1} \models P_{i}(\nu_{1}\bar{m}) \iff \mathcal{M}_{1} \models$$

$$\models P_{i}(f\nu_{o}\bar{m}) \iff \mathcal{M}'_{1}/\bar{\eta} \models P_{i}(\nu_{o}\bar{m}) \iff$$

$$\iff \operatorname{HF}_{\mathcal{M}_{2}} \models \psi_{i}(\nu_{o}\bar{m}) \iff \operatorname{HF}_{\mathcal{M}_{2}} \models \bar{\psi}_{i}(\bar{m}).$$

Отсюда нумерация ν_1 модели \mathcal{M}_1 будет требуемой.

В другую сторону лемма очевидна. Лемма доказана. Перейдем к доказательству теоремы. Рассмотрим модель $\bar{\mathcal{M}}_1$, определенную в лемме 3. Покажем, что каждый предикат \bar{P}_i рекурсивен относительно нумерованной модели (\mathcal{M}_2, ν_2) . По определению предиката \bar{P}_i имеем:

$$\bar{\mathcal{M}}_1 \models \bar{P}_i(\bar{m}) \iff \mathrm{HF}_{\mathcal{M}_2} \models \bar{\psi}(\bar{m}, a),$$
 (7)

где $\bar{\psi} - \Delta_1$ -формула. Пусть Σ -формулы Θ_i и Θ_i' такие, что $\bar{\psi}_i$ эквивалентна в формуле Θ_i и формуле $\neg \Theta_i'$ на модели $\mathrm{HF}_{\mathcal{M}_2}$. По теореме о рефлексии [10, стр. 16] формула Θ_i эквивалентна на модели $\mathrm{HF}_{\mathcal{M}_2}$ некоторой формуле $\exists z \tilde{\Theta}_i(z)$, где $\tilde{\Theta}_i - \Delta_o$ -формула. Отсюда (7) равносильно эквивалентности:

$$\bar{\mathcal{M}}_1 \models \bar{P}(\bar{m}) \iff \mathrm{HF}_{\mathcal{M}_2} \models \exists y \tilde{\Theta}_i(\bar{m}, a, y).$$
 (8)

Пусть $a = \bar{e}(n)$. По лемме 2 по числам m_j эффективно находим числа r_j такие, что $\bar{e}(r_j) = m_j$. Тогда (8) равносильна эквивалентности:

$$\bar{\mathcal{M}}_1 \models \bar{P}(\bar{m}) \iff \mathrm{HF}_{\mathcal{M}_2} \models \exists s \tilde{\Theta}_i(\bar{e}(\bar{r}), \bar{e}(n), \bar{e}(\bar{s})).$$
 (9)

По лемме 2 отношение

$$\mathrm{HF}_{\mathcal{M}_2} \models \tilde{Q}_i(\bar{e}(r_1), \ldots, \bar{e}(r_n), \bar{e}(n), \bar{e}(s))$$

от переменных r_1, \ldots, r_{R_1}, s рекурсивно относительно пары (\mathcal{M}_2, ν_2) . Тогда отношение из правой части (9), а следовательно предикат \bar{P}_i , рекурсивно перечислим относительно пары (\mathcal{M}_2, ν_2) . Аналогично получим, что предикат $\neg \bar{P}_i$ также рекурсивно перечислим относительно пары (\mathcal{M}_2, ν_2) . По теореме Поста [6], имеем, что предикат \bar{P}_i

рекурсивен относительно пары (\mathcal{M}_2, ν_2) . Нумерационная эквивалетность η_{ν_1} совпадает с обычным равенством на натуральных числах. Отсюда пара (\mathcal{M}_1, ν_1) рекурсивна относительно пары (\mathcal{M}_2, ν_2) . Теорема доказана.

ОПРЕДЕЛЕНИЕ 3. Если в определении 1 формулы $\eta, \varphi_1, \dots, \varphi_r$ будут Σ -формулами, то будем говорить, что модель \mathcal{M}_1 квази- Σ -определима в допустимом множестве \mathcal{A} .

Аналогично теореме 1 доказывается

TEOPEMA 2. Пусть $\mathcal{M}_1, \mathcal{M}_2$ — не болсе, чем счетные модели соответственно сигнатур σ_1, σ_2 и ν_2 — Σ -нумерация модели \mathcal{M}_2 . Тогдз модель \mathcal{M}_1 кваги- Σ -определима в $\mathrm{HF}_{\mathcal{M}_2}$ тогда и только тогда, когда существует такая нумерация ν_1 модели \mathcal{M}_1 , что пара (\mathcal{M}_1, ν_1) рекурсивно перечислима относительно пары (\mathcal{M}_2, ν_2) .

Из теоремы 1 получаем

СЛЕДСТВИЕ 1. Пусть $\mathcal{M}_1, \mathcal{M}_2$ — не более, чем счетные модели и \mathcal{M}_2 — внутренне перечислима. Тогда модель \mathcal{M}_1 Σ -определима в $\mathrm{HF}_{\mathcal{M}_2}$ тогда и только тогда, когда она Δ_1 -определима.

§ 2. Грнумерации конечно порожденных алгебр

Представляет интерес исследование следующих вопросов:

- 1. Какие модели допускают Унумерацию?
- 2. Какие нумерации данной модели будут Σ -нумерациями?

Покажем, что для конечно порожденных алгебр ${\cal A}$ эти вопросы решаются просто.

Пусть алгебра $A = (A, \sigma)$, сигнатуры $\sigma = (f_1^{m_n}, \dots, f_n^{m_n}, a_1, \dots, a_r)$ порождается элементами a_1, \dots, a_r . Как известно [6] любой элемент алгебры A есть значение некоторого терма сигнатуры σ . Поэтому если мы определим нумерацию ν множества T всех термов сигнатуры σ , то ν будет и нумерацией алгебры A. Следуя A.И.Мальцеву [7] определим одновременно множество $\omega_o \subseteq \omega$ и нумерацию $\nu_o : \omega_o \to T$ множества T следующим образом.

- 1. Числа $3^{i}, i = 1, ..., n$, принадлежат ω_{o} и $\nu_{o}(3^{i}) = a_{i}$.
- 2. Пусть известно, что числа s_1, \ldots, s_{m_j} принадлежат ω_o и $\nu(s_i) = b_i, 1 \le i \le m_j$. Если f_j является m_j -местной операцией, тогда число $e = 2^j \cdot p_1^{s_1} \ldots p_{m_j}^{s_{m_j}}$ включаем в множество ω_o и полагаем $\nu_o(e) = f_j(b_1, \ldots, b_{m_j})$.

Нумерация ν_o и множество ω_o определены. Пусть рекурсивная функция f перечисляет множество ω_o в порядке возрастания его элементов. Тогда нумерация $\nu = \nu_o f$ алгебры \mathcal{A} называется стандартной [7].

Аналогично доказательству Σ -определимости функции e_o в доказательстве утверждения 3 леммы 2 доказывается

ПРЕДЛОЖЕНИЕ 1. Стандартная нумерация ν конечно порожденной алгебры ${\cal A}$ является ее Σ -нумерацией.

Отсюда и из теоремы 1 получаем

СЛЕДСТВИЕ 2. Пусть \mathcal{M} — не более чем счетная модель и \mathcal{A} — конечно порожденная алгебра, а ν — ее стандартная нумерация. Тогда модель \mathcal{M} Σ -определима в $\mathrm{HF}_{\mathcal{A}}$ тогда и только тогда, когда существует такая нумерация μ модели \mathcal{M} , что пара (\mathcal{M}, μ) рекурсивна относительно пары (\mathcal{A}, ν) .

§ 3. Условия для существования Σ-нумерации

Сперва докажем одно необходимое условие для того, чтобы модель $\mathcal M$ допускала Σ -нумерацию. Напомним, что модель $\mathcal M$ называется жесткой, если она не имеет нетождественных автоморфизмов.

ПРЕДЛОЖЕНИЕ 2. Если модель \mathcal{M} допускает Σ -нумерачию, то существует такое обогащение \mathcal{M}' модели \mathcal{M} конечным числом констант, что модель \mathcal{M}' является жесткой моделью.

ДОКАЗАТЕЛЬСТВО. Пусть модель \mathcal{M} имеет Σ -нумерацию ν . Тогда существует формула $\varphi(x, y, a_0, ..., a_{n-1})$, $a_i \in \mathrm{HF}_{\mathcal{M}}$, i < n, такая, что выполнена эквивалентность:

$$\nu n = a \implies \text{HF}_{\mathcal{M}} \models \varphi(n, a, a_0, \dots, a_{n-1}) \tag{10}$$

для любого элемента $a \in \mathcal{M}$. Пусть в построении элементов a_0, \ldots, a_{n-1} участвуют праэлементы p_1, \ldots, p_n , т.е.

вр $\bar{a} = \{p_1, \ldots, p_s\}$ [10]. Рассмотрим обогащение $\mathcal{M}' = (\mathcal{M}, p_1, \ldots, p_s)$ модели \mathcal{M} . Покажем, что модель \mathcal{M}' является жесткой. Допустим противное, т.е. существует автоморфизм f модели \mathcal{M}' такой, что для некоторого влемента $a \in \mathcal{M}$ верно: $fa \neq a$. Автоморфизм f модели \mathcal{M}' продолжим до автоморфизма f модели f ноложив:

$$\hat{f}(x) = \begin{cases} f(x), & \text{если } x \in M, \\ \{f(y) | y \in x\}, & \text{если } x \notin M. \end{cases}$$

Тогда имеем $\hat{f}a_i=a_i,\ i< n,\ \hat{f}a\neq a.$ Пусть $\nu n=a.$ Отсюда и из (10) имеем, что:

$$\mathbf{HF}_{\mathcal{M}} \models \varphi(n, a, a_0, \dots, a_{n-1}). \tag{11}$$

Отсюда

$$HF_{\mathcal{M}} \models \varphi(n, \hat{f}a, a_0, \dots, a_{n-1})$$
 (12)

так как $\hat{f}n = n$. Отсюда следует, что $\nu n = \hat{f}a$ и $\nu n = a, \hat{f}a \neq a$. Противоречие. Предложение доказано.

Из этого предложения следует, что, например, счетная модель $\mathcal M$ с пустой сигнатурой не допускает Σ -нумерации.

Пусть \mathcal{M} — модель сигнатуры $\sigma = (Q_1, \ldots, Q_k)$, $\sigma^* = (\sigma, U, \in, \bar{a})$, где $\bar{a} = (a_0, \ldots, a_{n-1})$, $\hat{\Phi} = \{\varphi | \varphi - \Phi$ формула сигнатуры $\sigma^* \}$, $G : \omega \rightarrow \hat{\Phi}$ — геделева нумерация всех формул сигнатуры σ^* , переменные которых содержатся среди v_0, v_1, \ldots

Допустим, что для модели \mathcal{M} выполнено условие: существует такая конечная последовательность элементов $\bar{a}=(a_1,\ldots,a_n)$, $a_i\in \mathrm{HF}_{\mathcal{M}}$, что для каждого элемента $p\in \mathcal{M}$ существует Σ -формула $\varphi_p(v_o)$ сигнатуры σ^* с одной свободной переменной v_o , которая выделяет p в $\mathrm{HF}_{\mathcal{M}}$, т.е. $\mathrm{HF}_{\mathcal{M}}\models \exists!v_o\varphi_p(v_o)\land \varphi_p(p)$ и множество $\Phi=\{\varphi_p|\ p\in \mathcal{M}\ \}$ рекурсивно перечислимо. Тогда модель \mathcal{M} назовем Φ -моделью.

ПРЕДЛОЖЕНИЕ 3. Счетная модель внутрение перечислима тогда и только тогда, когда она является Ф-моделью.

ДОКАЗАТЕЛЬСТВО. <u>Необходимость</u>. Пусть модель \mathcal{M} внутренне перечислима и ν — ее Σ -нумерация. Пусть $\psi(\nu_o, \nu_1, \bar{a}), \ a_i \in \mathrm{HF}_{\mathcal{M}}, \ \mathrm{такая}, \ \Sigma$ -формула, что выполнено условие: $\nu(m) = p \Longleftrightarrow \mathrm{HF}_{\mathcal{M}} \models \psi(p, m, \bar{a})$. Тогда множество $\Phi = \{\psi_m^*(\nu_o, \bar{a}) | m \in \omega\}$, где

$$\psi_m^*(v_o,\bar{a}) \rightleftharpoons \exists v_1(v_1 = \underbrace{1 + \ldots + 1}_{m-pa3} \land \psi(v_o,v_1,\bar{a})$$

будет требуемым.

<u>Достаточность.</u> Пусть \mathcal{M} является Φ -моделью и множество $\Phi = \{\varphi_p(v_o,\bar{a})|p\in\mathcal{M}\}$ такое, что элемент $p\in\mathcal{M}$ выделяется в $\mathrm{HF}_{\mathcal{M}}$ Σ -формулой $\varphi_p(v_o,\bar{a})$. Так как множество $G^{-1}\Phi$ — рекурсивно перечислимо, то существует Δ_1 -функция $g: \omega \to G^{-1}\Phi$, перечисляющая множество $G^{-1}\Phi$. Определим нумерацию ν модели \mathcal{M} , положив:

$$\nu n = p \iff \mathrm{HF}_{\mathcal{M}} \models G(g(n))[p,\bar{a}]. \tag{13}$$

Доказательство того, что ν является Σ -нумерацией следует из (13) по следующей лемме.

JEMMA. Существует такая Σ-формула U(x,y) сигнатуры σ^* , что справедлива эквивалентность: $\operatorname{HF}_{\mathcal{M}} \models U(n,b) \Longleftrightarrow \Longrightarrow [n \in \omega \wedge \exists m \ ((coobodnue nepementue формулы <math>G(n)$ coderwaters cpedu $v_0,\ldots,v_m) \wedge (\exists k(b=\{(i,b_i)|\ i< k\} \wedge m \leq k) \wedge \operatorname{HF}_{\mathcal{M}} \models G(n)[\gamma_b] \wedge \forall_i < k \ (\gamma_b(v_i)=b_i)))].$

Построение требуемой формулы U такое же, как построение формулы в [10 стр. 81-83]. Предложение доказано.

§ 4. Некоторые применения

С.С.Гончаровым были поставленые вопросы:

- 1. Если суператомная булева алгебра $\mathcal L$ Σ -определима в допустимом множестве $\mathcal A$, то будет ли ее ординальный тип Σ -определим в $\mathcal A$?
- 2. Если абелева p-группа G Σ -определима в допустимом множестве \mathcal{A} , то будет ли Σ -определим ее ульмов тип в \mathcal{A} .

Следующие результаты дают положительный ответ для случая, когда ${\cal A}$ есть допустимое множество вида ${\rm HF}_{{\cal M}_2}$.

ΤΕΟΡΕΜΑ 2. Пусть \mathcal{L} — счетная суператомная булева алгебра и $o(\mathcal{L})$ — ее ординальный тип, \mathcal{M}_2 — внутренне перечислимая модель. Если булева алгебра \mathcal{L} Σ -определима в HF \mathcal{M}_2 , то ее ординальный тип $o(\mathcal{L})$ также Σ -определим в HF \mathcal{M}_2 .

ДОКАЗАТЕЛЬСТВО. Из доказательства теоремы 2 [2] следует, что для любой нумерации ν_1 булевой алгебры $\mathcal L$ существует нумерация ν_1^* ее ординального типа $o(\mathcal L)$ такая, что пара $(o(\mathcal L), \nu_1^*)$ рекурсивна относительно $\mathcal L_1, \nu_1$). Пусть булева алгебра $\mathcal L$ Σ -определима в HF $\mathcal M_2$. По теореме 1 существует такая нумерация ν_1 алгебры $\mathcal L$, что пара $(\mathcal L, \nu_1)$ рекурсивна относительно пары $(\mathcal M_2, \nu_2)$ для некоторой Σ -нумерации ν_2 модели $(\mathcal M_2)$. Тогда пара $(o(\mathcal L), \nu_1^*)$ рекурсивна относительно пары $(\mathcal M_2, \nu_2)$. По теореме 1 ординальный тип $o(\mathcal L)$ Σ -определим в HF $\mathcal M_2$.

TEOPEMA 3. Пусть A — счетная редуцированная абелева p-группа, $\tau(A)$ — ее ульмов тип и \mathcal{M}_2 — внутренне перечислимая модель. Если группа A Σ -определима в $\mathrm{HF}_{\mathcal{M}_2}$, то ее ульмов тип $\tau(A)$ также Σ -определим в $\mathrm{HF}_{\mathcal{M}_2}$.

Из доказательства теоремы 3 [3] следует, что для любой нумерации ν_1 группы A существует нумерация ν_1^* ее ульмова типа такая, что пара $(\tau(A), \nu_1^*)$ рекурсивна относительно пары (A, ν_1) . Дальнейшее доказательство аналогично доказательству теоремы 2.

В эаключение автор выражает благодарность С.С.Гончарову за постановку задачи и А.С.Морозову за замечания, которые существенно улучшили первоначальный вариант работы.

Литература

1. ГОНЧАРОВ С.С. Счетные булевы алгебры. — Новосибирск: Наука, Сиб.отделение, 1988. — 175 с.

- 2. ГОНЧАРОВ С.С. Конструктивизируемость суператомных булевых алгебр //Алгебра и логика. 1973. T.12, N.1. C.31-40
- 3. ДОБРИЦА В.П., НУРТАЗИН А.Т., ХИСАМИЕВ Н.Г. О конструктивных периодических абелеых группах //Сиб.мат.журн. 1978. Т. 19, N б. С. 1260-1265.
- 4. ЕРШОВ Ю.Л. Σ-определимость в допустимых множествах//Докл. АН СССР. 1985. Т.285, N 4. С. 792-795.
- 5. ЕРШОВ Ю.Л. Проблемы разрешимости и конструктивные модели. М.: Наука, 1980. 415 с.
- 6. МАЛЬЦЕВ А.И. Алгоритмы и рекурсивные функции 2-ое изд. М.: Наука, 1986. 367 с.
- 7. МАЛЬЦЕВ А.И. Конструктивные алгебры //Успехи мат.наук. 1961. Т. 16, N 3. С. 3-60.
- 8. РОДЖЕРС X. Теория рекурсивных функций и эффективная вычислимость: Пер. с англ. М.: Мир, 1972.
- 9. ФУКС Л. Весконечные абелевы группы: Пер. с англ. Т 1. М.: Мир, 1974. 335 с.
- 10. BARWISE J. Admissible Sets and Structures. Berlin.: Springer- Verlag, 1975. 383 c.

Поступила в редакцию 24 июня 1996 года