СТРУКТУРНЫЕ АЛГОРИТМИЧЕСКИЕ СВОЙСТВА ВЫЧИСЛИМОСТИ

(Вычислительные системы)

1996 год

Выпуск 156

УДК 510.64

СУЩЕСТВОВАНИЕ РАСШИРЕНИЙ В НЕМОНОТОННЫХ СИСТЕМАХ

А.Л.Височан

Введение

Многие годы человек пользуется логикой как наукой, как инструментом для получения следствий из имеющихся знаний. Но не все рассуждения человека корректны с точки эрения классической логики. В отличие от логических задач, человеку часто приходиться принимать решения не имея для этого достаточной информации. Нередко мы пользуемся в принятии решений эмоциями или некоторой накопленной статистикой, а не доводами рассудка (который тоже не всегда безгрешен). Именно эта особенность отличает человека от "думающих машин". Человек всегда хотел создать "разумную" машину, что бы она действительно могла перерабатывать огромные объемы информации и принимать решения даже в тех случаях, когда исходная информация неполная и дать точный ответ "Ла" или "Нет" невозможно.

Минский [1] пришел к мысли, что существует тип вывода, более близкий к человеческим рассуждениям, но он не является монотонным, как классическая логика. Его работа стала началом активных исследований в этом направлении. Возникло много систем немонотонного вывода. В частности это:

- теория индивидуальных и общих знаний и убеждений, предложенная Дж.Хальреном и У.Мозесом [2];
- система поддержки истины Дж. Дойля [3];
- логика с умолчаниями Р. Райтера [4];
- автоопистемическая логика Р.Мура [6].

1. Формализация понятия немонотонной системы

Введем краткое определение немонотонной системы (см [5]).

Пусть U— множество всех утверждений, с которыми мы работьем (в общем случае U— множество объектов, относительно которых мы делаем выводы), а N— множество правил немонотонного вывода. Правило немонотонного вывода. Правило немонотонного вывода — вто тройка $< P, G, \varphi >$, где $P \subseteq U, G \subseteq U$ — конечные множества, а $\varphi \in U$. Тогда влементы P называется предпосымками, влементы G— ограничениями, а φ — выводом или следствием. Обычно правила вывода записываются в виде: $\frac{\alpha_1, \ldots, \alpha_m : \beta_1, \ldots, \beta_n}{\varphi}$, где $P = \{\alpha_1, \ldots, \alpha_m\}$ и $G = \{\beta_1, \ldots, \beta_n\}$. Пользуются этим правилом так: если мы вывели все предложения P и никаким способом не можем вывести ни одно предложение из G, то это означает, что утверждение φ выведено. При принятых выше обозначениях пара < U, N > называется немонотонной системой.

Пусть $R\subseteq U$. Подмножество $S\subseteq U$ называется дедуктивно-замкнутым с ограничениями R, когда для любого правила вывода $r\in N$, если все предпосылки принадлежат S (т. е. $P\subseteq S$) и все ограничения не принадлежат R (т. е. $G\cap R=\emptyset$), то вывод принадлежит S ($\varphi\in S$). Если S=R, то говорят, что множество S — дедуктивно-замкнуто.

Пусть S, $I \subseteq U$ и $\varphi \in U$. Последовательность $< \varphi_1, \ldots, \varphi_k >$ называется S-выводом φ из I, если $\varphi = \varphi_k$ и $\forall i \leq k((\varphi_i \in I) \vee (\exists r \in N: r = < P, G, \varphi_i >, P \subseteq \{\varphi_1, \ldots, \varphi_{i-1}\}, G \cap S = \emptyset)).$

Множество $C_S(I) \subseteq U$, состоящие из всех элементов U, для которых существует S-вывод из I называется дедуктивным замыканием множествой I с множеством ограничений S или S-замыканием. На самом деле оговорка "с множеством ограничений" очень важна, так как $C_S(I)$, в общем случає, не является дедуктивно-замкнутым (по определению $C_S(I)$ является дедуктивно-замкнутым с ограничениями S, но мы не можем сказать является ли оно дедуктивно-замкнутым).

Рассмотрим свойства дедуктивного замыкания:

- 1. $I \subseteq C_S(I)$;
- 2. $C_S(C_S(I)) = C_S(I)$;
- 3. $\forall I, J \subseteq U, \forall S \subseteq U(I \subseteq J) \Rightarrow (C_S(I) \subseteq C_S(J));$
- 4. $\forall I \subseteq U, \ \forall S_1, S_2 \subseteq U(S_1 \subseteq S_2) \Rightarrow (C_{S_2}(I) \subseteq C_{S_1}(I)).$

2. Расширения, их существование и поиск

Важное понятие в немонотонных системах — понятие расширения. Расширение множества $I\subseteq U$ — это такое подмножество $E\subseteq U$, что $E=C_B(I)$. Расширение является аналогом теории в классической логике, но в немонотонном случае все сложнее: встречаются системы, в которых расширения не существуют. Если же в системе существует расширение, то оно не обязательно единственно. Проблема поиска всех расширений является NP-полной. Поэтому важно знать, существуют расширения или нет. Эта проблема исследовалась для частных случаев (например,см.[7,8]).

Пусть $\mathcal{S}=\langle U,N \rangle$ — немонотонная система и $I\subseteq U$. Обозначим за $\mathcal{S}(I)$ систему вида $\langle U,N \cup \{\langle \emptyset,\emptyset,\alpha \rangle: \alpha \in I\} \rangle$. Тогда имеет место следующая

TEOPEMA 1 [5]. Пусть $E \subseteq U$. Множесство E яваяется расширением I в системе S тогда и только тогда, когда E — расширение \emptyset в системе S(I).

Таким образом, достаточно рассматривать свойства расширений пустого множества. Поэтому расширения пустого множества называют расширениями системы.

УТВЕРЖДЕНИЕ 1. Пусть $S, E \subseteq U$, тогда верны следующие утверждения:

- 1) ecau $S \setminus C_S(\emptyset) \neq \emptyset$ u $S \subset E$, mo E не яваяется расширением;
- 2) ecau $C_S(\emptyset) \setminus S \neq \emptyset$ u $S \supset E$, mo E не яваяется расширением.

ДОКАЗАТЕЛЬСТВО проведем от противного. Пусть $S \setminus C_S(\emptyset) \neq \emptyset$, и предположим, что существует $E \subseteq U$ такое, что $(S \subset E)$ и E является расширением. Но тогда $S \subset E = C_E(\emptyset) \subseteq C_S(\emptyset)$, откуда следует, что $S \setminus C_S(\emptyset) = \emptyset$. Пришли к противоречию с начальным условием. Следовательно, множества E с такими свойствами (и расширение, и содержит в себе S) не существует. Первое утверждение доказано.

Доказательство второго утверждения аналогично вышеприведенным рассуждениям. □

СЛЕДСТВИЕ 1. Пусть $S \subseteq U$, тогда возможен один из следующих четырех взаимноисключающих случаев:

- 1) $S = C_S(\emptyset)$, m.e. S soasemes pacuupenuem;
- 2) $S \subset C_S(\emptyset)$, mords S, $C_S(\emptyset)$ ydosaemsopsom n. 2 ymsepжедения 1 и аюбое расширение E такое, что $S \subset E$, codeржится в $C_S(\emptyset)$.;
- 3) $S\supset C_S(\emptyset)$, morda $S,\ C_S(\emptyset)$ ydoenemeopsom n.1 ymeepscdenus 1 u noboe pacuupenue E manoe, umo $S\supset E$, codepscum e cebe $C_S(\emptyset)$;
- 4) $S \setminus C_S(\emptyset) \neq \emptyset$ u $C_S(\emptyset) \setminus S \neq \emptyset$. Torda andre множество E maroe, что $(S \subset E) \vee (S \supset E)$ не яваяется расширением.

Схема алгоритма поиска всех расширений, основывающаяся на полученном результате выглядит следующим образом.

а) $Search(U_1, U_2)$ — алгоритм поиска расширений, содержащих можество U_1 и содержащихся в множестве U_2 (условие $U_1 \subset U_2$)

begin

if
$$|U_2| - |U_1| > 1$$
 then
for all $S \subseteq U$: $U_1 \subset S \subset U_2$ & $|S| = = \inf\left(\frac{|U_1| + |U_2|}{2}\right)$ & S – не помечено

пометить
$$S$$
 $C:=C_S(\emptyset)$
if $C=S$ then $E:=E\cup\{S\}$
if $C\subset S$ then $Search(C,S)$
if $S\subset C$ then $Search(S,C)$

end

б) SearchAll - алгоритм поиска всех расширений

begin

end

for all
$$S \subset U$$
y of path otherwy c S
next S
 $E := \emptyset$
 $Search(C_U(\emptyset), C_0(\emptyset))$
результат - E

УТВЕРЖДЕНИЕ 2. Результат работы SearchAll — множество E — является множеством всех расширений.

3. Использование немонотонных логик для составления расписаний

В этой части мы рассмотрим способы построения немонотонных систем для некоторых реальных случаев на примере системы получения расписания в учебном заведении с некоторыми упрощающими условиями.

Простейший случай. У нас имеются классы, предметы, аудитории и часы занятий. Кроме этого будем считать, что каждый класс должен изучить каждый предмет по одному часу. В любой аудитории можно преподавать любой предмет. Естественные ограничения —

в каждой аудитории может находиться не более одного класса, и один класс, в одно и тоже время, не может изучать два разных предмета или заниматься в двух разных аудиториях. Обозначим необходимые объекты: G — классы (groups), L — предметы (lessons), R — аудитории (rooms) и H — часы занятий или сетка расписания (hours). Все введенные множества — конечные. Пусть U некоторое множество четверок, $I \subseteq \{1,2,3,4\}$ и четверка $(a_1,a_2,a_3,a_4) \in U$, тогда введем обозначение $(a_1,a_2,a_3,a_4)_I$ для множества

$$\left\{ (b_1, b_2, b_3, b_4) \in U \mid \left(\bigwedge_{i \in I} (a_i = b_i) \right) \bigwedge \left(\bigvee_{i \notin I} (a_i \neq b_i) \right) \right\}.$$

ОПРЕДЕЛЕНИЕ 1. Простейшим расписанием назовем функцию $F: G \times L \to R \times H$ (очевидно, что $F = (F_R, F_H)$ — покомпонентная запись), удовлетворяющую следующим условиям:

 $dom F = G \times L$

 $\forall g \in G \ F_H(g): \ L \to H$ - разнозначно,

 $\exists e: G \times H \to R$ такое, что $\forall g \in G, l \in L$ $F_R(g, l) = e(g, F_H(g, l))$ и $\forall h \in H$ $e(h): G \to R$ — разнозначно (если определено).

СЛЕДСТВИЕ 2 (к определению 1). Функция ${f F}$ - разнозначиа.

ПОКАЗАТЕЛЬСТВО. Нужно доказать, что если $a \neq b$, то $F(a) \neq F(b)$ или, что то же самое, если F(a) = F(b), то a = b. Пусть существуют $g_1, g_2 \in G$, $l_1, l_2 \in L$ такие, что $F(g_1, l_1) = F(g_2, l_2) = (r, h)$, тогда $r = F_R(g_1, l_1) = e(g_1, F_H(g_1, l_1)) =$ (по определению F) $e(g_1, h)$. Рассматривая вместо (g_1, l_1) гару (g_2, l_2) , получим $e(g_2, h) = r$, но из разнозначности e(h) следует, что $g_1 = g_2$. Тогда получаем, что $F_H(g_1, l_1) = F_H(g_1, l_2)$ и из разнозначности $F_H(g)$ следует, что $l_1 = l_2$. Утверждение доказано.

Построим немонотонную систему следующего вида: $S = \langle U, N \rangle$, где $U = G \times L \times R \times H$, а немонотонные правила задаются следующим образом:

 $\forall g \in G, l \in L, r \in R, h \in H, u \in U$

1)
$$\forall l_1 \in L, r_1 \in R: r_1 \neq r \vee l_1 \neq l, \frac{(g, l, r, h), (g, l_1, r_1, h):}{u} \in N;$$

2)
$$\forall l_1 \in L, g_1 \in G: g_1 \neq g \lor l_1 \neq l, \frac{(g, l, r, h), (g_1, l_1, r, h):}{u} \in N;$$

$$3)\ \frac{:\overline{(g,l,r,h)}_{\{1,2\}}}{(g,l,r,h)}\in N;$$

4) ничего другого в N нет.

Пусть $E \subset U$, тогда имеет место следующее

УТВЕРЖДЕНИЕ 3. E является расширением системы S тогда и только тогда, когда E является графиком некоторого простого расписания.

Для доказательства этого факта нам понадобятся следующие леммы о свойствах расширений системы S.

ЛЕММА 1. Мно жество $C_U(\emptyset)$ пусти.

ДОКАЗАТЕЛЬСТВО проведем от противного. Допустим, что существует $\varphi \in U$ такое, что $\varphi \in C_U(\emptyset)$. Следовательно, существует U-вывод φ из $\emptyset \longrightarrow \langle \varphi_1, \ldots, \varphi_n \rangle$ и каждое φ_i получено из предыдущих φ_j , j < i, по правилу $n_i \in N$. Рассмотрим i = 1, тогда φ_1 получено из пустого множества по правилу n_1 , значит правило n_1 подходит под п.3 построения N, но все ограничения этого правила содержатся в U. Таким образом, получили противоречие с определением U-вывода, т.е. $C_U(\emptyset)$ — пусто.

СЛЕДСТВИЕ 3. Множество U (носитель системы S) никовда не является расширением.

JEMMA 2. Hycmi E — pactuapenue S, morda sepno ymberoxedenue: $\forall g \in G, \ \forall l \in L \ \exists ! r \in R, \ \exists ! h \in H : (g, l, r, h) \in E$.

ДОКАЗАТЕЛЬСТВО. Существование. Возьмем произвольные $g \in G, \ l \in L, \ r \in R, \ h \in H,$ допустим, что для любых $r_1 \in R, \ h_1 \in H$ таких, что $r \neq r_1$ или $h \neq h_1$

 $(g,l,r_1,h_1) \notin E$, но тогда правило $\dfrac{:\overline{(g,l,r,h)}_{\{1,2\}}}{(g,l,r,h)}$ принадлежит N, и существует E-вывод из $\emptyset - <(g,l,r,h)>$, следовательно, (g,l,r,h) принадлежит E.

Единственность. Пусть существует $a=(g,l,r_1,h_1),\ b==(g,l,r_2,h_2)\in E.$ Нетрудно заметить, что если $a\neq b,$

то $b \in \ddot{a}_{\{1,2\}}$, т.е. a не может быть получено по правилу типа 3. Но тогда существуют $u_1,u_2 \in E$ и правило вида $\frac{u_1,u_2}{a} \in N$. Из структуры правил типа 1 и 2 получаем, что E = U, а это невозможно по следствию 3. Следовательно, a = b. Таким образом, лемма доказана.

СЛЕДСТВИЕ 4. Если $|G \times L| > |R \times H|$, то расширений в системе S не существует.

ЛЕММА 3. Пусть E — расширение S, и существуют $a = (g, l_1, r_1, h), b = (g, l_2, r_2, h) \in E$, тогда a = b.

ДОКАЗАТЕЛЬСТВО. Допустим, что $a \neq b$. Но a и b принадлежат $C_B(\emptyset)$, значит существуют E-выводы для a и b (обозначим их как $< a_1, \ldots, a_n > u < b_1, \ldots, b_m >$ соответственно). Поскольку $a \neq b$, то для любого $u \in U$ правило $\frac{a,b}{u}$ принадлежит N (по типу 1), следовательно, $< a_1, \ldots, a_n, b_1, \ldots, b_m, u >$ является E-выводом u, а значит u принадлежит E. Получили противоречие с начальным условием (E = U и по следствию 3 E - u не расширение). Таким образом, единственный возможный вариант: a = b. Лемма доказана.

ЛЕММА 4. Пусть E — расширение S, и существуют $a=(g_1,l_1,r,h),\ b=(g_2,l_2,r,h)\in E$, тогда a=b.

ДОКАЗАТЕЛЬСТВО. Рассуждения, проводимые для доказательства этой леммы, аналогичны рассуждениям, проводимым в предыдущей лемме (за тем исключением, что правило $\frac{a,b:}{u}$ принадлежит N по типу 2). Лемма доказана.

Перейдем к доказательству утверждения 3.

 (\Rightarrow) Доказательство проведем построением F. Пусть E является расширением системы S. По лемме 2 можем определить F как F(g,l)=(r,h), так что $(g,l,r,h)\in E$. Проверим свойства F. По лемме 2 $\mathrm{dom}F=G\times L$. Рассмотрим F_H , пусть существуют $g\in G,\ l_1,l_2\in L,\ h\in H$ такие, что $F_H(g,l_1)=h=F_H(g,l_2)$. Для i=1,2 обозначим $F_R(g,l_i)$ как r_i . Тогда (g,l_1,r_1,h) и (g,l_2,r_2,h) принадлежат E и, по лемме $3,\ l_1=l_2$ и $r_1=r_2$. То есть $F_H(g)$ - разнозначна. Теперь

построим е следующим образом:

$$e(g,h) = \left\{ \begin{array}{l} r, \ \text{если} \exists l \in L \colon \ (g,l,r,h) \in E, \\ \text{неопределено} \ -- \ \text{в противном случае}. \end{array} \right.$$

Про лемме 3 для каждой пары (g,h) такие r и l — единственные (если существуют), поэтому определение функции корректно. Теперь проверим свойства.

Покажем разнозначность $g(h): G \to R$. Она эквивалентна следующему утверждению: $\forall h \in H, \ g_1, g_2 \in G: g_1, g_2 \in \text{dome}(h), (e(h)(g_1) = e(h)(g_2)) \Rightarrow (g_1 = g_2)$. Пусть g_1, g_2, h, r такие, что $r = e(h)(g_1) = e(h)(g_2)$, тогда существуют (по построению e) l_1, l_2 такие, что $(g_1, l_1, r, h), (g_2, l_2, r, h) \in E$, но, по лемме 4, $(g_1, l_1) = (g_2, l_2)$. Разнозначность доказана. Пусть (g, l, r, h) принадлежат E, тогда (по построению F) F(g, l) = (r, h), но e(g, h) = r (по построению e), следовательно, $F_R(g, l) = r = e(g, h) = e(g, F_R(g, l))$. Таким образом, доказано, что F является простейшим расписанием.

 (\Leftarrow) Пусть F — простейшее расписание. Докажем, что график функции F, множество $E \rightleftharpoons \{(g,l,F_R(g,l),\ F_H(g,l))|\ g\in G,\ l\in L\}$, является расширением системы S. Пусть (g,l,r,h) принадлежит E, так как F — функция, то $\forall r_1\in R,\ h_1\in H;\ (r_1,h_1)\neq (r,h)(g,l,r_1,h_1)\notin E$. Тогда <(g,l,r,h)> — E-вывод $(g,l,r,h)\in C_E(\emptyset)$ и,следовательно, $E\subseteq C_E(\emptyset)$. Теперь докажем, что любой E-вывод содержится в множестве E. Доказательство проведем индукцией по длине вывода.

Докажем базу индукции. Для n=0 мы имеем дело с пустым множеством, очевидно $\emptyset\subseteq E$.

 $n \to n+1$. Допустим для всех $k \le n$ верно, что все элементы любого вывода длины k содержатся в E. Возьмем произвольный вывод длины n+1, сбозначим его $\langle a_1,\ldots,a_{n+1} \rangle$, не тогда $\langle a_1,\ldots,a_n \rangle$ — вывод длины n и по индукционному предположению $\{a_1,\ldots,a_n\} \subseteq E$. Так как a_{n+1} получено из $\{a_1,\ldots,\}$ по некоторому правилу вывода, рассмотрим возможные варианты. Допустим существуют $i,j: \frac{a_i,a_j}{a_{n+1}} \in N$ и $a_i=(g,l_1,r_1,h), a_j=(g,l_2,r_2,h),$

а $(l_1,r_1)\neq (l_2,r_2)$. Если $l_1=l_2$, то $r_1\neq r_2$, а этого не может быть, так как F — функция. То есть $l_1\neq l_2$, но по определению E получаем, что $F(g,l_1)=(r_1,h)$ & $F(g,l_2)=(r_2,h)$, а это противоречит разнозначности $F_H(g)$. Следовательно, a_{n+1} не может быть получено по правилам типа 1. Аналогичными рассуждениями (но из разнозначности e(h)) доказывается, что a_{n+1} не может быть получено по правилу типа 3, но тогда (по определению E-вывода) $\overline{a_{n+1}}_{\{1,2\}} \cap E = \emptyset$. Пусть $a_{n+1}=(g,l,r,h)$, очевидно, что $a_{n+1}\notin \overline{a_{n+1}}_{\{1,2\}}$, но $b=(g,l,F_R(g,l),F_H(g,l))$ тоже не принадлежит $\overline{a_{n+1}}_{\{1,2\}}$, следовательно $a_{n+1}=b$ (по определениям $\overline{(g,l,r,h)}_{\{1,2\}}$ и E). Таким образом, $a_{n+1}\in E$. Тогда $E=C_E(\emptyset)$ и, следовательно, E является расширением. \square

УТВЕРЖДЕНИЕ 4. В системе S существуют расширения тогда и только тогда, когда $|G \times L| \leq |R \times H| \& |L| \leq |H|$. ДОКАЗАТЕЛЬСТВО.

- (\Rightarrow) Пусть в системе S существует расширение, следовательно, по утверждению 3, существует функция F, являющаяся простейшим расписанием. Тогда из разнозначности F следует, что $|\mathbf{dom}F| = |\mathbf{im}F| \leq |R \times H|$, а по определению $\mathbf{dom}F = G \times L$. Из разнозначности $F_H(g)$ следует, что $|L| \leq |H|$.
- (\Leftarrow) Пусть $|G \times L| \leq |R \times H|$ & $|L| \leq |H|$. Построим F простейшее расписание. Так как G, L, R, H конечные множества, то их элементы можно пронумеровать: $G = \{g_1, \ldots, g_m\}, \ L = \{l_1, \ldots, l_n\}, \ R = \{r_1, \ldots, r_o\}, \ H = \{h_1, \ldots, h_p\}.$ Если $m \leq o$, то можно определить F как $F(g_i, l_j) = (r_i, h_j)$. Из определения 1 видно, что F простейшее расписание. Проверим его определение. Пусть m > o, тогда определим функции $a: G \times L \to N$ и $b: R \times H \to N$ как $a(g_i, l_j) = (j-1)m+i$, а $b(r_i, h_j) = (j-1)o+i$. Здесь a взаимно-однозначное соответствие между $G \times L$ и $\{1, \ldots, op\}; \ b$ взаимно-однозначное соответстви между $R \times H$ и $\{1, \ldots, mn\}$. Так как $mn \leq op$, то можно определить F так: F(g, l) = (r, h): a(g, l) = b(r, h). Из определения b следует: если |b(r, h) b(c, d)| > o, то $d \not= h$.

Из этого получаем разнозначность F_H , так как m>o. Возьмем произвольное h. Положим $G_h \rightleftharpoons \{g:\exists l\in L: F_H(g,l)=h\}$. Поскольку m>o, то мощность G_h равна m, поэтому можем определить функцию e(g,h) так, что $F_R(g,l)=e(g,F_H(g,l))$. Из биективности a и b следует разнозначность e(h). Сдедовательно, F — простейшее расписание. Утверждение доказано.

Л итература

- 1. MINSKY M. A framework for representing knowledge//The psychology of Computer Vision.—McGrow Hill, 1975.—P.211-272.
- 2. HALPERN J.Y., MOSES Y.O. Knowledge and common knowledge in a distributed environment// 3rd ACM Conference on the Principles of Distributed Computing, 1984.— P.50-61.
- 3. DOYLE J. A truth maintenance system// Artif.Intell.-1979.- Vol.12.-P.231-272.
- 4. REITER R. A logic for default reasoning// Artif.Intell.-1980.- Vol.13.-P.81-132.
- 5. MAREK W., NERODE A., REMMEL J. A theory of nonmonotonic rule system. Pt. I // Tech.Rep.- 1990.- N 31.
- 6. MOORE R.C. Semantical considerations on nonmonotonic logic// Artif.Intell.-1985.-Vol.25.-P.75-94.
- 7. MAREK W., NERODE A., REMMEL J. A theory of nonmonotonic rule system. Pt.II // Tech.Rep.-1990.-N 32.
- 8. ВИСОЧАН А.Л. Немонотонные логики// Теория вычислений и языки спецификаций. Новосибирск,1995.-Вып.152: Вычислительные системы.- С.152-165.

Поступила в редакцию 13 августа 1996 года