СТРУКТУРНЫЕ АЛГОРИТМИЧЕСКИЕ СВОЙСТВА ВЫЧИСЛИМОСТИ

(Вычислительные системы)

1996 год

Выпуск 156

УЛК 512.563

ТИПЫ ИЗОМОРФИЗМА СУПЕРАТОМНЫХ БУЛЕВЫХ АЛГЕБР С ОДНИМ ВЫДЕЛЕННЫМ ИЛЕАЛОМ

А.В.Трофимов

Введение

В монографии [3] показано, что произвольная счетная булева алгебра \mathcal{B} является суператомной тогда и только тогда, когда $\mathcal{B} \cong \mathcal{B}_L$ и $L = \omega^\alpha \cdot n$, для некоторого счетного ординала α (обозначается $\alpha = rank(\mathcal{B})$), где \mathcal{B}_L — алгебра интервалов линейного порядка [3].

В [1] было дано описание типов элементарной эквивалентности суператомных булевых алгебр с одним выделенным идеалом.

В настоящей работе изучаются булевы алгебры с одним выделенным идеалом, в дальнейшем мы будем называть их I-алгебрами и рассматривать в сигнатуре $\Sigma_I = \{ \cup, \cap, \neg, 0, 1, I \}$. Здесь изучаются только суператомные I-алгебры, поэтому слово "суператомные" будем опускать и под I-алгебрами будем понимать суператомные I-алгебры. Дается описание типов изоморфизма счетных I-алгебр для всех элементарных типов [1] (кроме типа $(\infty,0,\infty)$), имеющих конечный ранг Фреше. Кроме того, доказывается, что любая такая I-алгебра есть прямая сумма конечного числа неисчезающих и число неисчезающих I-алгебр, соответствующих данному элементарному типу, конечно.

Для произвольного счетного или конечного ординала α определим линейно упорядоченное множество L_I^{α} с выделенным идеалом следующим образом: если $\alpha=0$, то L_I^0 состоит из одного атома, который либо принадлежит идеалу, либо нет. Пусть $L_I^{\beta_i}$ уже построено для любого $\beta<\alpha$. Определим L_I^{α} так: $L_I^{\alpha} \rightleftharpoons (\{(l,i),\ i\in N,\ l\in L_I^{\beta_i}\}, \le,\ I)$, где $(l,i)\le (l',i')\iff (i< i')\lor (i=i'\ \&\ l\le l')$, причем $(\forall \beta<\alpha)(\exists i)(\beta\le rank(B_L^{\beta_i}))$.

Пусть $\Sigma=(\cup,\cap,\neg,0,1)$, тогда произвольная I-алгебра $\mathcal B$ такая, что $\mathcal B|_\Sigma\cong\mathcal B_{\omega^\alpha}$, сама изоморфна $\mathcal B_{L^\alpha_I}$ для некоторого L^α_I .

При написание данной статьи автором существенно использовались результаты из работы [1], где можно найти все необходимые определения. Приведем некоторые из них.

ОПРЕДЕЛЕНИЕ 1 (ω -смешивание [1]). Пусть дано семейство алгебр $\{(A_n, I^n)\}_{n \in \mathbb{N}}$, причем $A_i \cap A_j = 0$ для $i \neq j$.

Алгебра (\mathcal{B},I) называется ω -смешиванием влементов $\{\mathcal{A}_n\}_{n\in N}$ (т. е. алгебр $\{(\mathcal{A}_n,I^n)\}_{n\in N}$), если ее можно представить как алгебру промежутков на промежутке [0,1) так, что

- а) $A_n = [1/(n+1), 1/n)$ (строго говоря, $(A_n, I^n) \cong ([1/(n+1), 1/n), I)$, мы считаем, что A_n вкладывается в \mathcal{B} без переобозначений);
- б) $x \in I$ равносильно $x \leq A_1 \cup \ldots \cup A_k$ для некоторого k, причем $x \cap A_i \in I^i$ для $1 \leq i \leq k$.

В дальнейшем такую I-алгебру $\mathcal B$ будем обозначать так: $\mathcal B \coloneqq \omega\{\mathcal A_1,\dots,\mathcal A_N,\dots\}$.

Следуя [1], введем специальную последовательность формул $V_n(x)$, $n \in \mathbb{N}$ (N — множество натуальных чисел):

 $V_{\mathrm{I}}(x)$ означает, что x — атом, лежащий в идеале I,

 $V_2(x)$ означает, что x — атом, не лежащий в I,

 $V_3(x) = (x/I - a_{TOM}) \& (\forall y \le x)(\neg V_2(y)).$

Формула P(x) называется точечной, если в T (теории класса алгебр (A,I)) доказуемо утверждение

$$(\forall x)\Psi(x) = (\forall x)(P(x) \longrightarrow ((\forall y \le x)(P(y) \longleftarrow$$

$$\longrightarrow \neg P(x \setminus y)) \& (\forall y_1, y_2 \le x)(y_1 \cap y_2 = 0 \longrightarrow (\neg P(y_1) \vee \neg P(y_2)))).$$

Произведением формул P и Q называется формула

$$\begin{split} PQ(x) &= \theta(x) \& (\forall y \leq x) (\theta(y) \longleftrightarrow \neg \theta(x \setminus y)) \ \& \\ \& (\forall y_1, y_2 \leq x) (y_1 \cap y_2 = 0 \longrightarrow (\neg \theta(y_1) \vee \neg \theta(y_2)), \end{split}$$
 где $\theta(x) = \neg (\exists y \leq x) ((\forall z \leq y) (\neg P(z) \ \& \ (\forall z \leq x \setminus y) (\neg Q(Z)). \end{split}$

Положим [1]:

$$V_{n_o}(x) = V_{n_o-3} V_{n_o-2}(X) \& (\forall y \le x) (\neg V_{n_o-1}(x)).$$

Пусть дана алгебра (A, I). Для каждого элемента $x \in |A|$ определим некоторое число $n \in N \cup \{\infty\}$, которое называется уровнем x, следующим образом.

Если существует такой наименьший номер k, что для любого $k_1 > k$ под x нет V_{k_1} -элементов, то n = k. Если такого k не существует, т. е. для любого k под x есть V_k -элемент, то говорят, что уровень x равен ∞ , т. е. $n = \infty$.

Пусть уровень элемента x равен n. Для n, согласно [1], введем характеристику $r(x)=(r_1(x),r_2(x),r_3(x))$. Положим $r_3=n$; если n=0, то $r_1=r_2=0$; если $n=\infty$ то $r_1=\infty$, $r_2=0$; если $0< n<\infty$, то r_1 — количество непересекающихся V_n -элементов; если n=1, то $r_2=0$; если $1< n<\infty$, то r_2 — количество непересекающихся V_{n-1} -элементов, лежащих под x.

Знаком ≡ обозначим элементарную эквивалентность алгебраических систем. Знаком ≅ будем обозначать изоморфизм между двумя алгебраическими системами.

В этих обозначениях справедливо следующее

ПРЕДЛОЖЕНИЕ 1 [1]. $(A, I) \equiv (A', I')$ равносильно r(A) = r(A').

Пусть (A, I), (B, J) — две булены алгебры. Пусть $S \subseteq |A| \times |B|$ — подмножество, удовлетворяющее следующим аксиомам:

Ax1: $(0,0) \in S\&(1,1) \in S$;

Ax2: $(\langle x, y \rangle \in S\&x = 0) \Rightarrow y = 0;$ Ax3: $(\langle x, y \rangle \in S\&y = 0) \Rightarrow x = 0;$ Ax4: $(\langle x, y \rangle \in S\&a \le x) \Rightarrow (\exists b)[\langle a, b \rangle \in S\&\langle x \setminus a, y \setminus b \rangle \in S];$ Ax5: $(\langle x, y \rangle \in S\&b \le y) \Rightarrow (\exists a)[\langle a, b \rangle \in S\&\langle x \setminus a, y \setminus b \rangle \in S];$

Ах6: $(x,y) \in S \Rightarrow (x \in I \iff y \in J)$ (S будем называть критерием изоморфизма).

TEOPEMA 1 [1] (обобщение критерия Воота [3]). $(A, I) \cong (B, J)$ тогда и только тогда, когда существует множество S, удовлетворяющее аксиомам Ax1-Ax6.

1. Общее строение І-алгебр

Пусть \mathcal{B} — произвольная I-алгебра. Тогда, как следует из предыдущих рассуждений, существует линейно упорядоченное множество L_I^α с выделенным идеалом I такое, что $\mathcal{B}\cong\mathcal{B}_{L_I^\alpha}$. Пусть для \mathcal{B} выполняется следующее условие:

либо
$$r(\mathcal{B}) = (1,0,n)$$
 & $(\forall \mathcal{C} \leq \mathcal{B})$ $[r(\mathcal{C}) = r(\mathcal{B}) \iff rank(\mathcal{C}) = \alpha], \quad n \geq 4,$ либо $r(\mathcal{B}) = (\infty,0,n), \quad n \geq 3.$

Тогда при этом предположении верна следующая ЛЕММА 1. Пусть \mathcal{B} — произвольная I-алгебра, удовлетворяющая условию (*). Тогда существует I-алгебра $\mathcal{C} = \omega\{\mathcal{C}_1, \ldots, \mathcal{C}_N, \ldots\}$ такая, что $\mathcal{B} \cong \mathcal{C}$.

ПОКАЗАТЕЛЬСТВО. Пусть \mathcal{B} — произвольная I-алгебра, удовлетворяющая условиям леммы. Тогда существует такое множество L_I^{α} , что $\mathcal{B} \cong \mathcal{B}_{L_I^{\alpha}}$. По построению $L_I^{\alpha} = \langle \{\langle l,i \rangle\}, \leq, I \rangle$. Пусть $C_i \cong \mathcal{B}_{L_I^{\beta_i}}$, тогда положим $\mathcal{C} \rightleftharpoons \omega \{\mathcal{C}_1, \ldots, \mathcal{C}_N, \ldots\}$. Среди \mathcal{C}_i существует бесконечно много I-алгебр, для которых $1_{\mathcal{C}_i}$ не принадлежит идеалу I, следовательно, условие "б" определения 1 выполнено. Поэтому такое задание I-алгебры \mathcal{C} корректно. Пусть f_i осуществляет изоморфизм между I-алгеброй \mathcal{B}_{I_i} и I-алгеброй \mathcal{C}_i . Доопределим $f_i(0_{\mathcal{B}}) = 0_{\mathcal{C}}$, $f_i(1_{\mathcal{B}}) = 1_{\mathcal{C}}$.

Известно, что любой элемент x из \mathcal{B} представим в виде $x = \bigvee_{i=0}^n (a_i \setminus b_i)$, где $a_i, b_i \in L_I^{\beta_i} \cup \{0,1\}$. Используя это, докажем, что $\mathcal{B} \cong \mathcal{C}$. Для этого воспользуемся теоремой 1.

Положим $S \rightleftharpoons \{(x,y) \mid x = \bigvee_{i=0}^n (a_i \setminus b_i) \iff y = \bigvee_{i=0}^n f_i(a_i) \setminus f_i(b_i)$, где $a_i,b_i \in L_t^{\beta_i} \cup \{0,1\}$ }.

В силу теоремы 1 необходимо проверить, что S является критерием изоморфизма. Истинность аксиом Ax1, Ax2 не вызывает сомнений. Далее, в силу симметричности S достаточно проверить условия Ax4, Ax6.

Ах4. Пусть $(x,y) \in S$, $a \leq x$. Тогда существуют $\{c_i\}_{i=1}^n$, $\{d_i\}_{i=1}^n$ такие, что $x = \bigvee_{i=0}^n (a_i \setminus b_i)$ и $a = \bigvee_{i=0}^n (a_i \cap c_i) \setminus (d_i \cup b_i)$. Положим $b = \bigvee_{i=0}^n (f_i(a_i) \cap f_i(c_i)) \setminus (f_i(d_i) \cup f_i(b_i))$. Тогда $(x,y) \in S$. В то же время $x \setminus a = \bigvee_{i=0}^n (a_i \setminus c_i) \setminus (d_i \setminus b_i)$ и $y \setminus b = \bigvee_{i=0}^n (f_i(a_i) \setminus f_i(c_i)) \setminus (f_i(d_i) \setminus f_i(b_i))$. Следовательно,

<u>Ахб.</u> Пусть $x \in I$. Тогда для каждого і выполнено: $(a_i \setminus b_i) \in I$. Следовательно, $(f_i(a_i) \setminus f_i(b_i)) \in I$ и $y \in I$. Обратно, если $y \in I$, то для каждого і выполнено: $(f_i(a_i) \setminus f_i(b_i)) \in I$. Тогда $(a_i \setminus b_i) \in I$ и $x \in I$. Таким обазом, все условия теоремы 1 выполнены, следовательно, $\mathcal{B} \cong \mathcal{C}$. Лемма доказана.

 $(x \setminus a, y \setminus b) \in S$.

ЗАМЕЧАНИЕ 1. Пусть $\mathcal{B} \cong \omega\{\mathcal{A}_0, ..., \mathcal{A}_N, ...\}$. Тогда, если $\mathcal{A}_{2k} \oplus \mathcal{A}_{2k+1} \cong \mathcal{C}_k$, то $\mathcal{B} \cong \omega\{\mathcal{C}_0, ..., \mathcal{C}_k, ...\}$.

Доказательство замечания следует из определения изомофизма между двумя моделями.

СЛЕДСТВИЕ 1. Пусть \mathcal{B} — произвольная I-алгебра, удовлетворяющая условию (*). Тогда существуют такие I-алгебры $\mathcal{M}_i, i=1,2,\ldots$, что $\mathcal{B}\cong\omega\{\mathcal{M}_1,\ldots,\mathcal{M}_N,\ldots\}$, причем либо $\tau(\mathcal{M}_i)=(1,0,t)$, либо $\tau(\mathcal{M}_i)=(\infty,0,t)$, и если $t\geq 4$, то $\{\mathcal{M}_i\}$ удовлетворют условияю (*).

ДОКАЗАТЕЛЬСТВО. Пусть B — произвольная I-алгебра, удовлетворяющая условию (*). Тогда, в силу леммы 1 можно считать, что $\mathcal{B} \cong \omega\{\mathcal{C}_1,\ldots,\mathcal{C}_N,\ldots\}$. Допустим, что $r(C_i) = (p_i, q_i, t_i)$. Согласно лемме 3 из §2 [1] любой элемент х можно разложить в объединение непересекающихся простых элементов x_1 и x_2 , т. е. $x = x_1 \cup x_2$; $x_1 \cap x_2 = 0$ и $r_2(x_1) = r_2(x_2) = 0$. Следовательно, $C_i = \mathcal{N}_i^1 \cup \mathcal{N}_i^2$. Если $t_i = 1$, то $r(\mathcal{C}_i) = (p_i, 0, 1)$. В этом случае $\mathcal{N}_i^1 = \mathcal{C}_i$ и $\mathcal{N}_i^2 = 0$. Если $t_i \geq 2$, то $r(\mathcal{N}_i^1) = (p_i, 0, t_i)$ и $r(\mathcal{N}_i^2) = (q_i, 0, t_i - 1)$. При p_i или q_i равным ∞ соответственно \mathcal{N}_i^1 или \mathcal{N}_i^2 удовлетворяют нужному условию. В случае $p_i < \infty$, имеем $\mathcal{N}_i^1 \cong \mathcal{M}_i^1 \oplus \ldots \oplus \mathcal{M}_i^{p_i}$, причем $r(\mathcal{M}_i^k) = (1,0,t_i)$. Аналогичное разложение имеет место для N_i^2 , в случае $q_i < \infty$. В силу точечности формул V_n легко видеть, что \mathcal{M}_i^k есть прямая сумма конечного числа І-алгебр, удовлетворяющих условию следствия 1. Следовательно, для І-алгебры В, в силу замечания 1, существует требуемое ω -смешивание. Следствие доказано.

Пусть T — множество всех изоморфных типов I-алгебр \mathcal{A} , таких, что $r(\mathcal{A})=(i,0,k), (i=1 \lor i=\infty)$, и, если $k\geq 4$, то \mathcal{A} удовлетворяет условияю (*), причем, для любого $t\in T$ существует единственная с точностью до изоморфизма I-алгебра \mathcal{A} , соотвествующая типу t. Такую I-алгебру будем обозначать через \mathcal{A}_t .

ОПРЕДЕЛЕНИЕ 2. Будем обозначать $A \leq B$, если A нвляется прямым слагаемым B, т. е. $B \cong A \oplus C$ для некоторой I-алгебры C.

Пусть \mathcal{B} — произвольная I-алгебра, удовлетворяющам условию (*), тогда $\mathcal{B} \cong \omega_{\mathcal{B}}\{\mathcal{C}_1,\dots,\mathcal{C}_N,\dots\}$. Введем характеристику для $\omega_{\mathcal{B}} \cong \omega_{\mathcal{B}}\{\mathcal{C}_1,\dots,\mathcal{C}_N,\dots\}$ следующим образом: $\operatorname{cch}_t\omega_{\mathcal{B}} = \|\{\mathcal{A}_m|\mathcal{A}_m \cong \mathcal{A}_t, \ \mathcal{A}_m \leq \omega_{\mathcal{B}}\}\|$ ссh $\omega_{\mathcal{B}} = \{\operatorname{cch}_t\omega_{\mathcal{B}}\}$. В случае, если фиксировано $\omega_{\mathcal{B}}$ -смешивание \mathcal{B} , то также будем писать $\operatorname{cch}_{\mathcal{B}} = \operatorname{cch}_{\mathcal{B}}$. Эту характеристику будем называть квазихарактеристикой.

ЛЕММА 2. Пусть (A, I), (B, J) — произвольные алгебры, удовлетворяющие условит (*). Пусть $(A, I) \cong \omega_A$ и $(B, J) \cong \omega_B$ (где ω_A, ω_B — соответственно ω -смещивания I-алгебр A и B). Тогда, если ссh ω_A = ссh ω_B , то $(A, I) \cong (B, J)$.

ДОКАЗАТЕЛЬСТВО. Пусть $\omega_A \cong \omega\{\mathcal{M}_1, \mathcal{M}_2...\}$, $\omega_B \cong \omega\{\mathcal{N}_1, \mathcal{N}_2...\}$. Для доказательства леммы воспользуемся теоремой 1. Положим $S \rightleftharpoons \{(x,y)|(x,y)$ удовлетворяет одному из условий (**) или (***) :

если rank(x) = rank(y) = rank(A) = rank(B), то

$$cch(x) = cch(y); \quad (**)$$

если rank(x) = rank(y) < rank(A) = rank(B), то

$$\begin{array}{l} x = \mathcal{A}_1 \cup \ldots \cup \mathcal{A}_N, y = \mathcal{B}_1 \cup \ldots \cup \mathcal{B}_N, \\ \mathcal{A}_i \leq \mathcal{M}_i, \mathcal{B}_i \leq \mathcal{N}_i, (\mathcal{A}_i, I \cap |\mathcal{A}_i|) \cong (\mathcal{B}_i, J \cap |\mathcal{B}_i|). \end{array}$$

Проверим выполнение аксиом Ax1-Ax6. В силу симметричности S, ограничимся проверкой аксиом Ax1,Ax2,Ax4, Ax6.

<u>Ax1</u>. $(0,0) \in S$; $(1,1) \in S$;

<u>Ах2</u>. Пусть $(x, y) \in S$, x = 0, тогда, в силу (***), y = 0.

<u>Ах4</u>. Разобъем доказательство на три случая.

- 1) Допустим, что $(x,y) \in S$, rank(x) = rank(y) < rank(A) = rank(B). Возьмем $0 < a \le x$, тогда в силу (***) имеем, $x = A^1 \cup \ldots \cup A^N$ и $y = B^1 \cup \ldots \cup B^N$. Так как $0 < a \le x$, то $a = \overline{A_1} \cup \ldots \cup \overline{A_N}$, где $\overline{A_i} \le A_i$. Согласно условию (***) имеем, что $(A_i, I \cap |A_i|) \cong (B_i, J \cap |B_i|)$. Пусть f_i осуществляет такой изоморфизм. Тогда положим $b = f_1(\overline{A_1}) \cup \ldots \cup f_N(\overline{A_N})$. В силу построения S можно заключить, что $(x,y) \in S$. Имеем, что $x \setminus a = A_1 \setminus \overline{A_1} \cup \ldots \cup A_N \setminus \overline{A_N}$ и $y \setminus b = B_1 \setminus f_1(\overline{A_1}) \cup \ldots \cup A_N \setminus f_N(\overline{A_N})$, следовательно, $(x \setminus a, y \setminus b) \in S$.
- 2) Пусть rank(x) = rank(y) = rank(A) = rank(B), $a \le x$ и rank(a) < rank(x). Будем считать, что $(x) = \omega\{A_1, A_2, \ldots\}$, $(y) = \omega\{B_1, B_2, \ldots\}$, причем $A_i \le \mathcal{M}_i$, $B_i \le \mathcal{N}_i$. Так как rank(a) < rank(x), то $a = \overline{A_1} \cup \ldots \cup \overline{A_N}$. Так как нас интересуют вопросы изоморфизма I-алгебр, то две изоморфные I-алгебры будем считать неразличимыми. Пусть $[\overline{A}]^k = \overline{A_1} \cup \ldots \cup \overline{A_N}$. Простоты ради будем считать $[A]^k = \overline{A_1} \cup \ldots \cup \overline{A_N}$.

(это не ограничивает общности), что $a = [\overline{A_1}]^{k_1} \cup \dots \cup [\overline{A_m}]^{k_m} \cup \dots \cup [\overline{A_s}]^{k_s}$, кроме того, будем предполагать,

что $\overline{A_i} \not\cong \overline{A_j}$ при $i \neq j$. Пусть для каждого i = 1, ..., mвыполнено, что $\overline{\mathcal{A}_i} \cong \mathcal{A}_i$, и для каждого $i=m+1,\ldots,s$ верно, что $\overline{A_i} \not\cong A_i$. Пусть $\overline{A_i}$ соответствует типу $\overline{t_i}$, A_i соответствует типу t_i . Для каждого $i=1,\ldots,m$ имеем, что $\operatorname{cch}_{t_i}(x \setminus a) = \operatorname{cch}_{t_i}(x) - k_i$. Для каждого $i = m+1, \ldots, s$, если $A_i \setminus \overline{A_i} \ncong A_i$, To $\operatorname{cch}_{t_i}(x \setminus a) = \operatorname{cch}_{t_i}(x) - k_i$ is $\operatorname{cch}_{p}(x \setminus a) = \operatorname{cch}_{p}(x \setminus a)$ $= \operatorname{cch}_p(x) + k_i$, где тип р соответствует *I*-алгебре $A_i \setminus \overline{A_i}$. Если $A_i \setminus \overline{A_i} \cong A_i$, то $\operatorname{cch}_{t_i}(x \setminus a) = \operatorname{cch}_{t_i}(x)$. Остальные квазихарактеристики не меняются. В силу вышесказанного существует b такое, что $b = f_1(\overline{A_1}) \cup \ldots \cup f_N(\overline{A_N})$, при этом очевидно, что $(a,b) \in S$, и, следовательно, b = $=[f_1(\overline{\mathcal{A}_1})]^{k_1}\cup\ldots\cup[f_m(\overline{\mathcal{A}_m})]^{k_m}\cup\ldots\cup[f_s(\overline{\mathcal{A}_s})]^{k_s}$. Для каждого $i=1,\ldots,m$ $\operatorname{cch}_{t_i}(y\setminus b)=\operatorname{cch}_{t_i}(y)-k_i=\operatorname{cch}_{t_i}(x\setminus a)$. Для каждого $i = m+1, \ldots, s$ если $A_i \setminus \overline{A_i} \not\cong A_i$, то $f_i(A_i \setminus \overline{A_i}) \not\cong f_i(A_i)$, и тогда $\operatorname{cch}_{t_i}(y \setminus b) = \operatorname{cch}_{t_i}(y) - k_i = \operatorname{cch}_{t_i}(x \setminus a)$ и $\operatorname{cch}_p(y \setminus b) =$ $= \operatorname{cch}_p(y) + k_i = \operatorname{cch}_p(x \setminus a)$, где тип p соответствует I-алгебре $\mathcal{A}^{k_i} \setminus \overline{\mathcal{A}_i}$. Если $\mathcal{A}_i \setminus \overline{\mathcal{A}_i} \cong \mathcal{A}_i$, то $f_i(\mathcal{A}_i \setminus \overline{\mathcal{A}_i}) \cong f_i(\mathcal{A}_i)$, и, следовательно, $\operatorname{cch}_{t_i}(x \setminus a) = \operatorname{cch}_{t_i}(y \setminus b) = \operatorname{cch}_{t_i}(y)$. В силу выше изложенного, $(x \setminus a, y \setminus b) \in S$.

3) Пусть rank(x) = rank(y) = rank(A) = rank(B). Возьмем а такое, что rank(a) = rank(x). Положим $a' = x \setminus a$, тогда в силу предыдущего существует b такое, что $(a',b') \in S\&(x \setminus a',y \setminus b') \in S$ или $(x \setminus a,y \setminus b) \in S\&(a,b) \in S$.

Ах6. Пусть $(x,y) \in S$. Если rank(x) = rank(y) = rank(A) = rank(B), то $x \notin I$ и $y \notin J$. Если rank(x) < rank(A), то в силу условия $(A_i, I \cap |A_i|) \cong (B_i, J \cap |B_i|)$, получаем, что $x \in I \iff y \in J$. Лемма доказана.

ЗАМЕЧАНИЕ 2. В обратную сторону лемма неверна, т. е. из того, что $A \cong B$, не следует, что $cch\omega_A = cch\omega_B$.

2. Типы изоморфизма суператомных I-алгебр, характеристики $(1,0,n), n \le 4$

В этом пункте будем предполагать, что произвольная I-алгебра \mathcal{B} удовлетворяет условию $\mathcal{B}|_{\Sigma} \cong \mathcal{B}_{\omega^{\alpha}}$.

Пусть $r(\mathcal{B}) = (k,0,1)$. Если k конечно, то любые две такие I-алгебры изоморфны. В этом случае полагаем $nsch(\mathcal{B}) = (k,0,1)$. Если $k = \infty$, то для того, чтобы $\mathcal{B}_1 \cong$

 $\cong \mathcal{B}_2$ необходимо и достаточно, чтобы $rank(\mathcal{B}_1) = rank(\mathcal{B}_2)$. Тогда положим $nsch(\mathcal{B}) = (\infty, 0, 1, rank(\mathcal{B}))$.

Пусть $r(\mathcal{B})=(k,0,2)$. Если $k<\infty$, то любые две такие I-алгебры изоморфны. В этом случае полагаем $nsch(\mathcal{B})=(k,0,2)$. Пусть $r(\mathcal{B})=(\infty,0,2)$. Такие I-алгебры характерны тем, что любой атом z I-алгебры \mathcal{B} не принадлежит идеалу I. Следовательно, для того чтобы $\mathcal{B}_1\cong\mathcal{B}_2$, необходимо и достаточно, чтобы $rank(\mathcal{B}_1)=rank(\mathcal{B}_2)$. Тогда положим $nsch(\mathcal{B})=(\infty,0,1,rank(\mathcal{B}))$.

Пусть $r(\mathcal{B}) = (1,0,3)$. В силу точечности формулы V_3 можно записать, что $\mathcal{B} \cong \mathcal{B}_1 \oplus \mathcal{B}_2$, где \mathcal{B}_1 удовлетворяет следующему условию:

$$(\forall \mathcal{C} \leq \mathcal{B}_1)(r(\mathcal{C}) = r(\mathcal{B}_1) = (1, 0, 3) \iff \\ \iff rank(\mathcal{C}) = rank(\mathcal{B}_1), \tag{1}$$

а I-алгебра \mathcal{B}_2 такова, что $r(\mathcal{B}_2)=(m,0,2)$. Если $rank(\mathcal{B}_2)<< rank(\mathcal{B}_1)$, то существует разложение $\mathcal{B}=\mathcal{B}_1\oplus\mathcal{B}_2$, где $\mathcal{B}_2=0$. Если $rank(\mathcal{B}_2)> rank(\mathcal{B}_1)$, то разложение $\mathcal{B}=\mathcal{B}_1\oplus\mathcal{B}_2$ однозначно с точностью до изоморфизма. Поэтому достаточно описать I-алгебру \mathcal{B}_1 . Очевидно, что любые две такие I-алгебры изоморфны тогда и только тогда, когда эти алгебры имеют один и тот же ранг Фреше.

B этом случае полагаем $nsch(\mathcal{B}_1) = (1,0,3,rank(\mathcal{B}_1)).$

Перейдем к описанию типов I-алгебры \mathcal{B} , для которой $r(\mathcal{B})=(1,0,4)$. Предположим, что для \mathcal{B} выполнено следующие условие:

$$(\forall \mathcal{C} \leq \mathcal{B})(r(\mathcal{C}) = r(\mathcal{B}) = (1, 0, 4) \iff rank(\mathcal{C}) = rank(\mathcal{B})). \tag{2}$$

При этом ограничимся случаем, когда ранг Фреше I-алгебры \mathcal{B} конечен. В силу следствия 1, можно считать, что \mathcal{B} является ω -смешиванием I-алгебр $\{\mathcal{M}_i\}$, причем $r(\mathcal{M}_i) = (i,0,t)$, где $i \in \{1,\infty\}$, $t \in \{1,2\}$. Квазихарактеристику $\omega_{\mathcal{B}} \cong \omega\{\mathcal{M}_1,\mathcal{M}_2...\}$ будем записывать следующим образом: $\operatorname{cch}_{\omega_{\mathcal{B}}} = (i_{n-1},\ldots,i_0;j_{n-1},\ldots,j_0)$, где $i_m = \operatorname{cch}_{\omega_{\mathcal{B}}} \omega$

t описывает I-алгебру $\mathcal{C} \cong \mathcal{C}_{\omega^m}$ и $(1_{\mathcal{C}} \in I);$ (Δ)

а $j_m = cch_t \omega_B$, где

$$t$$
 описывает I -алгебру $\mathcal{C} \cong \mathcal{C}_{\omega^m}$ $u \ (\forall z - \text{ атома } \leq \mathcal{C}) (z \notin I).$ $\left\{ (\Delta \ \Delta) \right\}$

В этих обозначениях справедливо следующее ПРЕДЛОЖЕНИЕ 2. Пусть \mathcal{B}, \mathcal{C} — произвольные I-алгебры, удовлетворяющие условию (2). Допустим, что $\mathcal{B} \cong \omega_{\mathcal{B}}\{\mathcal{B}_1, \mathcal{B}_2, \ldots\}$ и $\mathcal{C} \cong \omega_{\mathcal{N}}\{\mathcal{N}_1, \mathcal{N}_2 \ldots\}$. Тогда если

$$cch\omega_{\mathcal{B}} = (i_m, \ldots, \infty, i_{n-2}, i_{n-3}, \ldots, i_0; j_m, \ldots, j_0),$$

 $cch\omega_{\mathcal{C}} = (i_m, \ldots, i_n, \infty, 0, 0, \ldots, 0; j_m, \ldots, j_0),$

mo $\mathcal{B} \cong \mathcal{C}$.

ДОКАЗАТЕЛЬСТВО будем вести по шагам.

<u>Шаг 1.</u> Сначала докажем, что для произвольной І-алгебры \mathcal{M} такой, что $\operatorname{cch}\omega_{\mathcal{M}} = (i_m, \ldots, i_n, \infty, 0, i_{n-3}, \ldots, i_0; j_m, \ldots, j_0)$ выполнено равенство $\mathcal{B} \cong \mathcal{M}$. Рассмотрим два случая.

- А) Пусть $i_{n-2} < \infty$. Обозначим через $\mathcal{M}_{n-2}^1, \ldots, \mathcal{M}_{n-2}^{i_{n-2}}$ все I-алгебры из ω_B -смешивания \mathcal{B} (I-алгебра \mathcal{A} принадлежит данному ω_A -смешиванию, если $\mathcal{A} \leq \omega_A$), соответствующие типу t_1 , где t_1 удовлетворяет условию (Δ) при m=n-2. Пусть \mathcal{M}_{n-1}^1 произвольная I-алгебра из ω_B -смешивания \mathcal{B} , соответствующая типу t_2 , где t_2 удовлетворяет условию (Δ) при m=n-1. Очевидно, что $\mathcal{B} \cong \omega_B\{\mathcal{M}_{n-1}^1, \mathcal{M}_{n-2}^1, \ldots, \mathcal{M}_{n-2}^{i_{n-2}}, \mathcal{C}_1, \mathcal{C}_2\ldots\}$, где \mathcal{C}_1 , \mathcal{C}_2,\ldots I-алгебры из ω_B -смешивания \mathcal{B} , не соответствующие ни типу t_1 ни типу t_2 . Тогда, так как $\mathcal{M}_{n-1}^1\cong \mathcal{M}_{n-1}^1\oplus \mathcal{M}_{n-2}^1\oplus \cdots \oplus \mathcal{M}_{n-2}^{i_{n-2}}$, то, в силу замечания 1, заключаем, что $\mathcal{B} \cong \omega_M\{\mathcal{M}_{n-1}^1, \mathcal{C}_1, \mathcal{C}_2\ldots\}$, следовательно, $\mathrm{cch}\mathcal{B} = (i_m,\ldots,i_n,\infty,0,i_{n-3},\ldots,i_0;j_m,\ldots j_0)$, и значит $\mathcal{M} \cong \mathcal{B}$.
- В) Пусть теперь $i_{n-2} = \infty$. Пусть $\{\mathcal{M}_{n-2}^i\}_{i=1}^{n}$ счетное семейство I-алгебр из ω_B -смешивания \mathcal{B} , соответствующих типу t_1 , где тип t_1 удовлетворяет условию (Δ) при m=n-2. Пусть $\{\mathcal{M}_{n-1}^i\}_{i=1}^{\omega}$ счетное семейство I-алгебр из ω_B -смешивания \mathcal{B} , соответствующих типу t_2 , где t_2 удовлетворяет условию (Δ) при m=n-1. В силу леммы 2

можно считать, что $\mathcal{B} \cong \omega_{\mathcal{B}}\{\mathcal{M}_{n-1}^1, \mathcal{M}_{n-2}^1, \mathcal{C}_1, \ldots\}$. Очевидно, что $\mathcal{M}_{n-2}^i \oplus \mathcal{M}_{n-1}^i \cong \mathcal{M}_{n-1}^i$, тогда $\mathcal{B} \cong \omega_{\mathcal{M}}\{\mathcal{M}_{n-1}^1, \mathcal{C}_1 \ldots\}$, поэтому $\operatorname{cchw}_{\mathcal{M}} = (i_m, \ldots, i_n \infty, 0, i_{n-3}, \ldots j_0)$, и в силу леммы 2, получаем, что $\mathcal{B} \cong \mathcal{M}$.

<u>Шаг 2.</u> Применяя шаг 1 конечное число раз получим, что $\mathcal{B} \cong \mathcal{C}$. Предложение доказано.

ПРЕДЛОЖЕНИЕ З. Пусть В и С — произвольные І-алгебры, удовлетворяющие условию (2), В $\cong \omega_B\{B_1, B_2, \ldots\}$, С $\cong \omega_C\{C_1, C_2, \ldots\}$. Допустим, что

$$cchw_B = (i_k, \ldots, i_{n-1}, i_{n-2}, i_{n-3}, \ldots j_0),$$

$$cch\omega_{\mathcal{C}} = (i_k, \ldots, i_{n-1}, 0, i_{n-3}, \ldots, j_0),$$

mosda, ecau $i_{n-1}, i_{n-2} < \infty, i_{n-1} \neq 0$, mo $B \cong C$.

ДОКАЗАТЕЛЬСТВО. Пусть \mathcal{M}_{n-1} — произвольная I-алгебра из ω_B -смешивания \mathcal{B} , соответствующая типу t_1 , где тип t_1 удовлетворяет условию (Δ) при m=n-1. Пусть $\{\mathcal{M}_{n-2}^i\}_{i=1}^{i_{n-2}}$ — семейство всех I-алгебр из ω_B -смешивания, соответствующих типу t_2 , где t_2 удовлетворяет условию (Δ). Тогда можно считать, в силу леммы 2, что $\mathcal{B} \cong \omega_M \{\mathcal{M}_{n-1}, \mathcal{M}_{n-2}^1, \dots, \mathcal{M}_{n-2}^{i_{n-2}}, \mathcal{N}_1, \mathcal{N}_2, \dots\}$, где $\mathcal{N}_1, \mathcal{N}_2, \dots$ — I-алгебры из ω_B -смешивания \mathcal{B} , которые не соответствуют ни типу t_1 , ни t_2 . Очевидно, что $\mathcal{M}_{n-1} \cong \mathcal{M}_{n-1} \oplus \mathcal{M}_{n-2}^1 \oplus \dots$... $\oplus \mathcal{M}_{n-2}^{i_{n-2}}$, следовательно, сс $h\omega_M = \operatorname{cch}\omega_C$. Тогда, апеллируя к лемме 2, заключаем, что $\mathcal{B} \cong \mathcal{C}$. Предложение доказано.

СЛЕДСТВИЕ 2. Пусть В и С — произвольные І-алгебры, удовлетворяющие условию (2), В $\cong \omega_B\{B_1, B_2, \ldots\}$ и С $\cong \omega_C\{C_1, C_2 \ldots\}$. Тогда если

$$cch\omega_B = (\{i_*\}_{*=0}^k, \{j_*\}_{*=0}^k),$$

$$cch\omega_{\mathcal{C}}=(i_k,\ldots,i_{n-1},0,\ldots,0;j_m,\ldots,j_0)$$

и при этом выполнено условие, что $i_{n-1}, \ldots, i_m < \infty$, $i_{m-1} = \infty$, $i_{n-1} \neq 0$, то $B \cong C$.

ДОКАЗАТЕЛЬСТВО. По предложению 3, $\mathcal{B} \cong \mathcal{C}'$, где $cch\mathcal{C}' = (i_k, \ldots, i_{n-1}, 0, \ldots, 0, \infty, i_{m-2}, \ldots, i_0, \ldots, j_0)$. Из предложения 2, где в качестве \mathcal{C} берем \mathcal{C}' , нетрудно заключить, что $\mathcal{B} \cong \mathcal{C}$. Следствие доказано.

ПРЕДЛОЖЕНИЕ 4. Пусть В и С — произвольные І-алгебры, удовлетворяющие условию (2). Допустим, что В $\cong \omega_{\mathcal{B}}\{\mathcal{B}_1,\mathcal{B}_2,\ldots\}$, С $\cong \omega_{\mathcal{C}}\{\mathcal{C}_1,\mathcal{C}_2,\ldots\}$. Тогда если

$$cch\omega_B = (\{i_*\}_{*=0}^k; \{j_m\}_{m=0}^k),$$

$$cch\omega_{\mathcal{C}} = (i_k, \ldots, i_0; j_m, \ldots, j_{n-1}, 0, 0, \ldots, j_{m-1}, 0, \ldots, 0)$$

и при этом выполнено условие, что $j_{n-1},\ldots,j_m<\infty,\ j_{m-1}=\infty,\ j_{n-1}\neq 0,$ то $\mathcal{B}\cong\mathcal{C}.$

ДОКАЗАТЕЛЬСТВО аналогично доказательству предложений 2 и 4 и следствию 2.

ОПРЕДЕЛЕНИЕ 3. Квазихарактеристику $S=(i_m,\ldots,i_0;j_m,\ldots,j_0)$ будем называть канонической, если выполненны следующие аксиомы:

- 01. если $i_m = \infty$, то $(\forall k < m)(i_k = 0)$;
- 02. если $i_m \neq \infty \& i_m \neq 0$, то $(\exists s)(i_s = \infty) \& (\forall k \neq s, m)(i_k = 0);$
 - 03. если $i_m = 0$, то

$$(\exists s,s')(s < s')(i'_{\bullet} = \infty, i_{\bullet} < \infty) \& (\forall k \neq s,s')(i_k = 0);$$

- 04. если $j_m = \infty$, то $(\forall k < m)(j_k = 0)$;
- 05. если $j_m \neq \infty \& j_m \neq 0$, то $(\exists s)(j_s = \infty) \& (\forall k \neq s, m)(j_k = 0);$
 - 06. если $j_m = 0$, то

$$(\exists s, s')(s < s')(j'_s = \infty, j_s < \infty) \& (\forall k \neq s, s')(j_k = 0);$$

07. если $i_m = 0$, то $j_m \neq 0$, и наоборот, если $j_m = 0$, то $i_m \neq 0$.

ОПРЕДЕЛЕНИЕ 5. ω -смешивание будем называть каноническим, если квазихарактеристика, соответствующая данному ω -смешиванию, является канонической.

ПРЕДЛОЖЕНИЕ 5. Іповые две I-алгебры, удовлетворяющие условию (2) и имеющие разные канонические квазихарактеристики, неизоморфны. ДОКАЗАТЕЛЬСТВО. Пусть \mathcal{A} и \mathcal{B} имеют следующие канонические квазихарактеристики: $\operatorname{cch} \mathcal{A} = (\{i_s\}_{s=0}^k, \{j_s\}_{s=0}^k)$, $\operatorname{cch} \mathcal{B} = (\{i_s'\}_{s=0}^k, \{j_s'\}_{s=0}^k)$. Допустим, что $i_m = k \neq 0$, $i_s = \infty$, $i'_{m_1} = k_1 \neq 0$, $i'_{s_1} = \infty$. Остальные i_t, i'_t считаем равными нулю, на j_t можно наложить любые ограничения в соответствии с определением 3.

Пусть $m > m_1$. Допустим, что $A \cong B$. Пусть \mathcal{M}_1, \ldots \dots, \mathcal{M}_k — все I-алгебры из канонического ω -смешивания A, соответствующие типу t, где t удовлетворяет условию (Δ) при m=m. Пусть f — изоморфизм между A и B. Тогда $f(\mathcal{M}_1 \cup \ldots \cup \mathcal{M}_k) - I$ -алгебра, имеющая характеристику суператомных (m,k), и единица ϖ той I-алгебры принадлежит идеалу I. С другой стороны, такой подалгебры в B нет. Полученное противоречие доказывает, что $m=m_1$. Точно также можно доказать, что $k=k_1$.

Докажем, что $i_{s_1}=i'_{s_1}$. Пусть \mathcal{A} и \mathcal{B} имеют следующие канонические квазихарактеристики: $cch\mathcal{A}=(i_{n-1},\ldots,i_0;j_{n-1},\ldots,j_0')$, $cch\mathcal{B}=(i'_{n-1},\ldots,i'_0;j'_{n-1},\ldots,j'_0)$.

Вудем считать, что $i_s = \infty$, $i'_{S_1} = \infty$ Остальные i_t , i'_t можно счиать равными нулю. Так как если существует такое m > s, что $i_m \neq 0$, то наша I-алгебра A есть прямая сумма I-алгебр A_1 и A_2 , где A_1 соответствует типу t и t удовлетворяет условию (Δ), а I-алгебра A_2 такова, что $cchA_2 = (0, \ldots, \infty, 0, \ldots, 0, j_{n-1}, \ldots)$. Поэтому достаточно рассмотреть доказательство для A_2 .

Допустим, что $s>s_1$. Тогда существует I-алгебра $\mathcal M$ из канонического ω -смешивания $\mathcal B$, соотвествующая типу t, который удовлетворяет условию (Δ) при m=s. Но такой подалгебры в $\mathcal B$ нет, следовательно, $\mathcal A\not\cong \mathcal B$. Полученное противоречие доказывает наше предложение.

ЛЕММА 3. Любая I-алгебра, удовлетворяющая условию (2), имеет каноническую квазихарактеристику, по этой квазихарактеристике I-алгебра определяется одногначно с точностью до игоморфизма.

ДОКАЗАТЕЛЬСТВО. Пусть \mathcal{B} — произвольная I-алгебра, удовлетворяющая условию (2). Тогда $\mathcal{B} \cong \omega_{\mathcal{B}}\{\mathcal{B}_1, \mathcal{B}_2, \ldots\}$. В силу следствия 2 можно считать, что $\mathit{cchw}_{\mathcal{B}} = (i_k, 0, \ldots, i_{k-1}, 0, 0, \ldots, \infty, 0, \ldots, 0, j_m, \ldots, j_0)$, причем либо

 $i_k=0, i_{n-1}<\infty$, либо $i_{n-1}=0$. По предложению 4 получаем: $cch\omega_B=(i_k,0,\ldots,i_{n-1},0,\ldots,0,\infty,0,\ldots,0,j_m,0,\ldots,0,\infty,0,\ldots,0)$. Следовательно, $\mathcal B$ имеет каноническую квазихарактеристику. В силу предложения 5, I-алгебра $\mathcal B$ определяется однозначно с точностью до изоморфизма. Лемма доказана.

ЗАМЕЧАНИЕ 3. Если в условиях леммы 2 под $cch\omega_A$, $cch\omega_B$ понимать канонические квазихарактеристики, то лемма 2 верна в обратную сторону, т. е., если $A\cong \mathcal{B}$, то $cch\omega_A=cch\omega_B$.

ОПРЕДЕЛЕНИЕ 5. Произвольная I-алгебра \mathcal{B} называется неисчезающей, если для любого разложения $\mathcal{A} \cong \mathcal{B} \oplus \mathcal{C}$ выполнено либо $\mathcal{A} \cong \mathcal{B}$, либо $\mathcal{A} \cong \mathcal{C}$.

I-алгебры, удовлетворяющие условию (2) и имеющие одну из следующих канонических квазихарактеристик, являются неисчезающими: $(\infty,0,\ldots,0;\infty,0,\ldots,0)$, $(0,\ldots,0,\infty,0,\ldots,0,i_0;\infty,0,\ldots,0)$, где $i_0=0$. I-алгебры, имеющие другие канонические квазихарактеристики, не являются неисчезающими. Нетрудно заметить, что неисчезающих I-алгебр, удовлетворяющих условию (2), в точности 2n.

ЛЕММА 4. Любая I-алгебра, удовлетворяющая условию (2), есть прямая сумма конечного числа неисчегающих I-алгебр. Число неисчегающих I-алгебр, удовлетворяющих условию (2), конечно.

ДОКАЗАТЕЛЬСТВО. Пусть \mathcal{A} — произвольная I-алгебра, удовлетворяющая условию (2). Пусть $\operatorname{cch} \mathcal{A} = (0,\ldots,i_n,0,\ldots,\infty,0,\ldots,j_m,0,\ldots,0,\infty,0,\ldots,0)$. Тогда $\mathcal{A} \cong \mathcal{B} \oplus \mathcal{C} \oplus \mathcal{M}$, причем $\operatorname{cch} \mathcal{B} = (0,\ldots,\infty,0,\ldots,0,\infty,0,\ldots,0)$. Очевидно, что \mathcal{B} — неисчезающая. Про \mathcal{C} можно сказать, что $\mathcal{C} \cong \mathcal{C}_1 \oplus \ldots \oplus \mathcal{C}_{i_n}$, причем все \mathcal{C}_i соответствуют одному и тому же типу t, который в свою очередь удовлетворяет условию (Δ). Очевидно, что все \mathcal{C}_i являются неисчезающими. Следовательно, \mathcal{C} есть прямая сумма конечного числа неисчезающих. Точно также можно показать, что \mathcal{M} есть прямая сумма конечного числа неисчезающих. В силу вышесказанного можно утверждать, что \mathcal{A} — есть прямая сумма конечного числа неисчезающих I-алгебр,

и число неисчевающих *I*-алгебр, удовлетворяющих условию (2), конечно. Лемма доказана.

3. Типы изоморфизма суператомных I-алгебр, характеристики $(i,0,n); n \ge 4, i \in \{1,\infty\}$

В данном пункте будем рассматривать произвольные І-алгебры такие, что $rank(B) = \alpha < \infty$ и $B \mid_E \cong B_{\omega^{\alpha}}$. Пусть В удовлетворяет следующиму условию:

$$(\forall \mathcal{C} \leq \mathcal{B})(r(\mathcal{C}) = r(\mathcal{B}) = (1, 0, n) \iff \\ \iff rank(\mathcal{C}) = \alpha < \infty) \ \forall \ r(\mathcal{B}) = (\infty, 0, n), n < \infty. \quad (3)$$

TEOPEMA 2.

- а) Дая аюбого конечного $n \ge 4$ и дая аюбого конечного ординала α существует конечное число неисчезающих I-алгебр, удовлетворяющих условию (3);
- б) любая І-алгебра есть прямая сумма конечного числа неисчезающих.

ДОКАЗАТЕЛЬСТВО. Доказательство будем вести по индукции следующим образом: если теорема доказана для I-алгебры, имеющей характеристику (1,0,n), то докажем нашу теорему для I-алгебры, имеющей характеристику $(\infty,0,n)$. Если теорема доказана для I-алгебры, имеющей характеристику $(\infty,0,n)$, то докажем нашу теорему для I-алгебры, имеющей характеристику (1,0,n+1).

Вазис индукции. Пусть n=4 и \mathcal{B} — произвольная I-алгебра, удовлетворяющая условию (3), тогда $r(\mathcal{B})=$ = (1,0,4), следовательно, наша теорема непосредственно вытекает из леммы 4.

Если \mathcal{B} — произвольная I-алгебра, удовлетворяющая условию (3), и $r(\mathcal{B}) = (1,0,n)$, то $\mathcal{B} \cong \omega\{\mathcal{A}_1,\mathcal{A}_2...\}$, где \mathcal{A}_i удовлетворяют условию (3) при $\alpha \leq n-2$, $\alpha = rank(\mathcal{B})$. По индукционному предположению, для любого i I-алгебра \mathcal{A}_i есть прямая сумма конечного числа неисчезающих. Поэтому можно считать, что $\mathcal{B} \cong \omega\{\mathcal{B}_1,\mathcal{B}_2,...\}$, где \mathcal{B}_i — неисчезающие I-алгебры.Пусть $\mathcal{S} \rightleftharpoons \{t$ типов $|(\exists i)(\mathcal{B}_i) \in \mathcal{B}_i \in \mathcal{B}_i$

если типу $t \in S$ соответствует лишь конечное число I-алгебр из данного ω -смешивания, то $\mathcal{B} \cong \omega\{\mathcal{B}_{i_1}, \mathcal{B}_{i_2}, \ldots\} \oplus \mathcal{B} \mathcal{M}_{j_1} \oplus \ldots \oplus \mathcal{M}_{j_k}$, где $\mathcal{M}_{j_1}, \ldots, \mathcal{M}_{j_k}$ — все I-алгебры из ω -смешивания \mathcal{B} , соответствующие типу t. Проделывая данную процедуру для каждого типа $t \in S$, для которого существует конечное число I-алгебр из ω -смешивания \mathcal{B} , соответствующих данному типу t (число таких типов конечно), получим, что \mathcal{B} есть прямая сумма конечного числа неисчезающих. Если для каждого $k \leq n-2$ существует не более S_k неизоморфных неисчезающих I-алгебр, удовлетворяющих условию (3) при n=k, то существует не более $2^{S_o}+\cdots+S_{n-2}<\infty$ I-алгебр \mathcal{B} таких, что $r(\mathcal{B})=(1,0,n)$ и \mathcal{B} удовлетворяет условию (3).

Пусть далее $r(\mathcal{B}) = (\infty, 0, n)$. Докажем, что такая I-алгебра есть прямая сумма конечного числа неисчезающих и число неисчезающих I-алгебр, соответствующих данному элементарному типу, конечно. Вудем доказывать индукцией по $\alpha \geq 3$, где $\alpha = rank(\mathcal{B})$.

Пусть $\alpha=3$, тогда $\mathcal{B}\cong\omega\{A_1,A_2,\ldots\}$, причем для каждого i имеем, что $r(\mathcal{A}_i)=(i,0,k)$ ($i\in\{1,\infty\},k\leq n-2$) и данная I-алгебра удовлетворяет условию (3). В том и в другом случае по индукции (по n) можно считать, что все \mathcal{A}_i неисчезающие. Пусть $S \rightleftharpoons \{t \text{ типов } |(\exists i) \ (\mathcal{A}_i \text{ соответствует типу } t)\}$. Можно считать, что $||S|| < \infty$. Тогда точно также, как и в случае $r(\mathcal{B})=(1,0,n)$ можно доказать, что \mathcal{B} есть прямая сумма конечного числа неисчезающих и число неисчезающих I-алгебр, соответствующих данному элементарному типу, конечно. Для $\alpha=3$ доказано.

Пусть для любого ординала $\beta < \alpha$ теорема доказана. Пусть $B \cong \omega\{A_1, A_2, \ldots\}$. Очевидно, что $rank(A_i) < rank(B)$. В то же время либо $r_3(A_i) < n$, либо $r_3(A_i) = n$, $r_1(A_i) = 1$, либо $r(A_i) = r(B)$. В первом или во втором случаях, точно также, как и раньше, можно считать, что все A_i неисчезающие. Пусть выполняется третий случай альтернативы. Тогда по индукции (по α) получаем, что A_i есть пямая сумма конечного числа неисчезающих. Нетрудно заметить, что $\|S\| < \infty$, а именно: если обозначить через

 S_k , $k < \alpha$, количество неизоморфных I-алгебр \mathcal{A} , удовлетворяющих условию (3), и таких, что $r_3(\mathcal{A}) < r_3(\mathcal{B})$, $k = rank(\mathcal{A})$, то $||S|| < 2^{S_o + S_1 + \ldots + S_{\alpha-1}}$. Если типу $t \in S$ соответствует конечное число I-алгебр $\mathcal{M}_{j_1}, \ldots, \mathcal{M}_{j_k}$ из данного ω -смешивания, то $\mathcal{B} \cong \omega\{\mathcal{A}_{i_1}, \mathcal{A}_{i_2} \ldots\} \oplus \mathcal{M}_{j_1} \oplus \ldots \oplus \mathcal{M}_{j_k}$.

Проделывая данную процедуру для каждого типа $t \in S$, для которого существует конечное число I-алгебр из ω -смешивания \mathcal{B} , соответствующих данному типу t (число таких типов конечно), получим для \mathcal{B} нужное представление. Теорема доказана.

СЛЕДСТВИЕ 3. Любая неисчезающая І-алгебра, удовлетворяющая условию (3), либо представима в виде $\mathcal{B} \cong (A_1 \oplus \ldots \oplus A_N)^\omega$, либо $r(\mathcal{B} = (1,0,k), \ k=1,2,$ причем все І-алгебры A_i неисчезающие.

ЛОКАЗАТЕЛЬСТВО. Пусть $r(\mathcal{B}) = (\infty, 0, k)$, тогда если $(k=1 \lor k=2)$, то $\mathcal{B} \cong (\mathcal{A} \oplus \ldots \oplus \mathcal{A})^{\omega}$, где $r(\mathcal{A}) = (i, 0, k)$, $(i=1 \lor i=\infty)$ и $rank(\mathcal{A}) < rank(\mathcal{B})$. В этом случае будем считать, что $1_{\mathcal{B}} \in I$. Если k=3, то также будем записывать $\mathcal{B} \cong (\mathcal{A} \oplus \ldots \oplus \mathcal{A})^{\omega}$, где $r(\mathcal{A}) = (i, 0, 1)$, $(i=1 \lor i=\infty)$, $rank(\mathcal{A}) < rank(\mathcal{B})$. В этом случае будем записывать $1_{\mathcal{B}} \notin I$. Если $k \geq 4$, то нужный результат следует из теоремы 2. Следствие доказано.

СЛЕДСТВИЕ 4. Дая аюбых конечных m, n, d ая аюбого элементарного типа (α, β, m) существует счетное число неизоморфных I-алгебр B таких, что $r(B) = (\alpha, \beta, m)$ u rank(B) = n.

ДОКАЗАТЕЛЬСТВО. Пусть \mathcal{B} — произвольная I-алгебра и $r(\mathcal{B})=(\alpha,\beta,m)$. Тогда если m=1,2, то доказательство очевидно. Пусть m>3. Тогда $\mathcal{B}\cong \mathcal{A}_1\oplus \mathcal{A}_2$, где $r(\mathcal{A}_1)=(\alpha,0,m)$ и $r(\mathcal{A}_2)=(\beta,0,m-1)$. Можно считать, что $\alpha(\beta)=1$ либо $\alpha(\beta)=\infty$. Отсюда видно, что наше следствие достаточно доказать для таких I-алгебр \mathcal{B} , что $r(\mathcal{B})=(\alpha,0,m)$, где $(\alpha=1$ либо $\alpha=\infty)$. Если $\alpha=\infty$, то доказательство следует из теоремы 2. Пусть $\alpha=1$. Лостаточно показать, что \mathcal{A} есть прямая сумма конечного числа I-алгебр, удовлетворяющих условию (3). Для доказательства воспользуемся методом индукции.

Вазис индукции. Пусть m=4, тогда из п.1 следует, что $\mathcal{B} \cong \mathcal{A} \oplus \mathcal{C} \oplus \mathcal{M}$, где $\operatorname{cch} \mathcal{A} = (0,\ldots,\infty,0,\ldots,0,\infty,0,\ldots,0)$. Про \mathcal{C} и \mathcal{M} можно сказать, что $r(\mathcal{C}) = (i,0,1)$ и $r(\mathcal{B}) = (j,0,1)$. Легко увидеть, что $\mathcal{A}, \mathcal{C}, \mathcal{M}$ удовлетворяют условию (3).

Пусть $r(\mathcal{B}) = (\alpha, 0, m)$. В силу точечности формулы V_m существует разложение $\mathcal{B} \cong \mathcal{A} \oplus \mathcal{C}$, где либо \mathcal{A} , либо \mathcal{C} является V_m -элементом. Следовательно, существует такое разложение $\mathcal{B} \cong \mathcal{A} \oplus \mathcal{C}$, что \mathcal{A} удовлетворяет условию (3). В силу точечности формулы V_m получаем, что $r_3(\mathcal{C}) < r_3(\mathcal{B})$. Поэтому, в силу индукционного предположения, \mathcal{C} есть также прямая сумма конечного числа I-алгебр, удовлетворяющих условию (3). Следовательно, \mathcal{B} есть прямая сумма конечного числа I-алгебр, удовлетворяющих условию (3). Следствие доказано.

Пусть \mathcal{B} — произвольная неисчезающая I-алгебра и пусть $\mathcal{B} \cong (\mathcal{A}_1 \oplus \ldots \oplus \mathcal{A}_N)^\omega$, где все \mathcal{A}_i неисчезающие. Определим по индукции следующее множество $T_{\mathcal{B}}$ (множество совместимых с \mathcal{B} типов):

если $r(\mathcal{B}) = (i, 0, 1), i < \infty$, то $T_{\mathcal{B}} \rightleftharpoons \emptyset$;

если $r(\mathcal{B}) = (\infty, 0, 1)$, то при $rank(\mathcal{B}) = n$ положим $T_{\mathcal{B}} \rightleftharpoons \{t_0, \ldots, t_{n-1}\}$, где t_k удовлетворяет условию (Δ) для m = k;

если $r(\mathcal{B}) = (i, 0, 2), i < \infty$, то $T_{\mathcal{B}} \rightleftharpoons \emptyset$;

если $r(\mathcal{B})=(\infty,0,2)$, то при $rank(\mathcal{B})=n$ положим $T_{\mathcal{B}}\rightleftarrows\{t_0,\ldots,t_{n-1}\}$, где t_k удовлетворяет условию (Δ Δ) для m=k;

если $r(\mathcal{B}) = (1,0,3)$, то при $rank(\mathcal{B}) = n$ положим $T_{\mathcal{B}} = \{t_0,\ldots,t_{n-1}\}$, где t_k удовлетворяет условию (Δ Δ) для m=k.

Пусть $\mathcal{B}\cong (\mathcal{A}_1\oplus\ldots\oplus\mathcal{A}_N)^\omega$, и либо $r(\mathcal{B})=(\infty,0,n), n\geq 3$, либо $r(\mathcal{B})=(1,0,n), n\geq 4$. Допустим, что \mathcal{B} удовлетворяет условию (3). Тогда положим $T_{\mathcal{B}}=\cup T_{\mathcal{A}_i}\cup\bigcup_{i=1}^N t_{\mathcal{A}_i}$, где $t_{\mathcal{A}_i}$ — тип, соответствующий I-алгебре \mathcal{A}_i . Иногда $T_{\mathcal{A}}$ будем обозначать через T_s , где s— тип, соответствующий I-алгебре \mathcal{A} .

ЗАМЕЧАНИЕ 4. Множество T_B определенно только для неисчевающих I-алгебр.

ПРЕДЛОЖЕНИЕ 6. Пусть A — неисчезающая I-алгебра, удовлетворяющая условию (3). Пусть либо $r(A) = (\infty, 0, n)$, либо r(A) = (1, 0, n). В этих случаях $t \in T_A$ тогда и только тогда, когда $A \oplus B_t \cong A$ (B_t — соответствует типу t).

ДОКАЗАТЕЛЬСТВО. Пусть А удовлетвояет условиям педложения 6.

 (\Rightarrow) Докежем, что если $t \in T_A$, то $A \oplus \mathcal{B}_t \cong A$.

Будем доказывать индукцией по n, где n — ранг Фреше I-алгебры A. Пусть для начала либо $r(A)=(\infty,0,m),$ $m\geq 3$, либо $r(A)=(1,0,m), m\geq 4$.

Вазис индукции. Пусть n=1. Тогда $\mathcal{A}\cong (\mathcal{A}_1\oplus \dots \oplus \mathcal{A}_N)^{\omega}$. Из определения множества $T_{\mathcal{A}}$ следует, что либо а) \mathcal{B}_t совпадает с одной из I-алгебр \mathcal{A}_i и в этом случае доказательство очевидно, либо б) существует такое i, что $t\in T_{\mathcal{A}_i}$, но \mathcal{A}_i — атом либо лежащий в идеале, либо нет, следовательно, $T_{\mathcal{A}_i}=\emptyset$, и случай "б" невозможен.

Пусть для всех ординалов, меньших n, предложение доказано. Пусть $A^1\cong (A_1\oplus\ldots\oplus A_N)^\omega\oplus \mathcal{B}_t$. Мы котим доказать, что $A^1\cong A$. Так как $A^1\cong (A_1\oplus\ldots\oplus A_N)^\omega\oplus \mathcal{B}_t$ то $A^1\cong (A_1\oplus\ldots\oplus A_N\oplus \mathcal{B}_t)\oplus (A_1\oplus\ldots\oplus A_N)^\omega$. Если \mathcal{B}_t совпадает с одной из I-алгебр A_i , то на A^1 можно смотреть как на ω -смециивание, т. е. $A^1\cong \omega\{\mathcal{B}_t,(A_1,\ldots,A_N)^\omega\}$, и, в силу леммы 2, можно заключить, что $A^1\cong A$. Пусть теперь \mathcal{B}_t не совпадает ни с одной из I-алгебр A_i . Тогда существует такое i, что i=1. Легко видеть, что $rank(A_i)< rank(A)$, следовательно, в силу индукционного предположения, для таких I-алгебр теорема верна, значит $A_1\oplus \mathcal{B}_t\cong A_1$. В силу вышесказанного, $A^1\cong (A_1\oplus\ldots\oplus A_N)^\omega\cong A$.

Если r(A) = (i, 0, 1), (i, 0, 2), (i, 0, 3), то доказательство не требует особых пояснений.

(⇐) Теперь докажем, что если $A \oplus B_t \cong A$, то $t \in T_A$.

Если r(A) = (i, 0, 1), (i, 0, 2), (i, 0, 3), то доказательство непосредственно следует из определения T_A .

Пусть A — неисчезающая I-алгебра, удовлетворяющая условию (3), и либо $r(A) = (\infty, 0, m), m \ge 3$, либо $r(A) = (1, 0, m), m \ge 4$. Нужное нам утверждение будем доказывать индукцией по n, где n — ранг Фреше I-алгебры A.

Вазис индукции $n=1, A \oplus B_t \cong A$. Тогда t описывает I-алгебру, состоящую из одного атома, который либо принадлежит идеалу, либо нет. Следовательно, $t \in T_A$.

Пусть $A \oplus B_t \cong A$. Тогда $B_t \leq A$. Пусть f — произвольный изоморфизм между I-алгебой $A \oplus B_t$ и I-алгеброй A. Покажем, что существует такое конечное M, что \mathcal{B}_t < $< A_1 \oplus ... \oplus A_M$, где $A_i - I$ -алгебры из ω -смешивания A_i причем $A_{N+i} = A_i$. Допустим, что такого M не существует. Тогда $f(\mathcal{B}_t) = 1_{\mathcal{A}} \setminus \bigcup_{i=1}^s \mathcal{M}_i, \ s < \infty, \ \mathcal{M}_i \leq \mathcal{A}_i,$ причем $rank(\mathcal{M}_i) < rank(A)$. B takom chyvae $rank(f(B_i)) = n = 1$ = rank(A), следовательно, с одной стороны, $\mathcal{B}_t|_{\Sigma} \oplus A|_{\Sigma} \cong$ \cong 2 $A|_{\Sigma}$, и, с другой стороны, $B_t|_{\Sigma} \oplus A|_{\Sigma} \cong A|_{\Sigma}$ Противоречие. Итак, существует такое число $M < \infty$, что $\mathcal{B}_t \leq \mathcal{A}_1 \oplus \ldots \oplus \mathcal{A}_M$. Тогда $\mathcal{B}_t \cong \mathcal{B}_t^1 \oplus \ldots \oplus \mathcal{B}_t^M$, где $\mathcal{B}_t^i \leq \mathcal{A}_i$. Ввиду неисчезаемости I-алгебры \mathcal{B}_t , можно считать, что $\mathcal{B}_i^1 \cong \mathcal{B}_i$ и все $\mathcal{B}_i^2 = 0, i > 1$. Если $\mathcal{B}_t \cong \mathcal{A}_1$, то $t \in T_{\mathcal{A}}$. Пусть $\mathcal{B}_t \ncong \mathcal{A}_1$, тогда $\mathcal{B}_t \leq \mathcal{A}_1$, следовательно, $\mathcal{A}_1 \cong \mathcal{B}_t \oplus \mathcal{M}$ для некоторой I-алгебры \mathcal{M} . Так как I-алгебра \mathcal{A}_1 неисчезающая и $\mathcal{B}_t \ncong \mathcal{A}_1$, то $\mathcal{A}_1 \cong \mathcal{M}$. Поэтому $\mathcal{A}_1 \cong \mathcal{B}_t \oplus \mathcal{A}_1$. Про \mathcal{A}_1 нам известно, что $rank(A_1) < rank(A)$. Далее применяем индукционный шаг и получаем, что $t \in T_A$. Предложение доказано.

ПРЕДЛОЖЕНИЕ 7. Пусть A — неисчезающая I-алгебра, удовлетооряющая условию (3). Предположим, что $A \cong (A_1 \oplus \ldots \oplus A_N)^{\omega}$, тогда если $t \in T_A$, то $A \cong (A_1 \oplus A_1 \oplus \ldots \oplus A_N)^{\omega}$.

ДОКАЗАТЕЛЬСТВО. Если A_t совпадает с одной из I-алгебр A_i , то, в силу леммы 2, заключаем, что $A \cong (A_t \oplus A_1 \oplus \ldots \oplus A_N)^\omega$. Пусть для любого i верно, что $A_t \not\cong A_i$, тогда, по определению T_A , существует такое i, что $t \in T_{A_i}$. Вез ограничения общности можно считать, что i = 1. Следовательно, в силу предложения 6,

 $A_1 \oplus A_t \cong A_1$. Тогда $A \cong (A_1 \oplus \ldots \oplus A_N)^{\omega} \cong (A_t \oplus A_1 \oplus \ldots \oplus A_N)^{\omega}$. В силу вышесказанного, можно заключить, что $A \cong (A_t \oplus A_1 \oplus \ldots \oplus A_N)^{\omega}$. Предложение доказано.

ЛЕММА 5. Если A и B — произвольные I-алгебры, удовлетворяющие условию (*), то $A \cong B$ тогда и только тогда, когда $T_A = T_B$.

ЛОКАЗАТЕЛЬСТВО.

- (\Rightarrow) Докажем, что если $\mathcal{A}\cong\mathcal{B}$, то $T_{\mathcal{A}}=T_{\mathcal{B}}$. Допустим, что $T_{\mathcal{A}}\neq T_{\mathcal{B}}$. Это означает, что либо существует тип $t\in T_{\mathcal{A}}\setminus T_{\mathcal{B}}$, либо существует тип $t\in T_{\mathcal{B}}\setminus T_{\mathcal{A}}$. Пусть для определенности $t\in T_{\mathcal{A}}\setminus T_{\mathcal{B}}$. Тогда так как $t\in T_{\mathcal{A}}$, то по предложению 6 имеем, что $\mathcal{A}\cong\mathcal{A}\oplus\mathcal{B}_t$. С другой стороны, $\mathcal{A}\cong\mathcal{B}$, следовательно, $\mathcal{B}\cong\mathcal{B}\oplus\mathcal{B}_t$, т. е. $t\in T_{\mathcal{B}}$. Противоречие.
- (\Leftarrow) Докажем, что если $T_{\mathcal{A}} = T_{\mathcal{B}}$, то $\mathcal{A} \cong \mathcal{B}$. Пусть $\mathcal{A} \cong (\mathcal{A}_1 \oplus \ldots \oplus \mathcal{A}_N)^{\omega}$, $\mathcal{B} \cong (\mathcal{B}_1 \oplus \ldots \oplus \mathcal{B}_N)^{\omega}$. Обозначим $T \rightleftharpoons T_{\mathcal{A}} = T_{\mathcal{B}}$. Положим:

 $\mathcal{B} \leftrightharpoons \{$ типов $t \mid t \in T, \mathcal{A}_t$ изоморфна одной из $\mathcal{A}_i,$ \mathcal{A}_t не изоморфна ни одной из $\mathcal{B}_i\};$

 $A \rightleftharpoons \{$ типов $t \mid t \in T, A_t$ изоморфна одной из B_i , A_t не изоморфна ни одной из $A_i\}$.

Применяя нужное число раз предложение 7, получим, что

$$\mathcal{A} \cong (\mathcal{A}_1 \oplus \ldots \oplus \mathcal{A}_N \oplus \{\mathcal{A}_t\}_{t \in \mathcal{A}})^{\omega}$$

$$\mathcal{B} \cong (\mathcal{B}_1 \oplus \ldots \oplus \mathcal{B}_N \oplus \{\mathcal{A}_t\}_{t \in \mathcal{B}})^{\omega}$$

Следовательно, $A \cong B$. Лемма доказана.

ОПРЕДЕЛЕНИЕ 6. Множество типов T назовем тривиальным, если либо все $t_i \in T$ удовлетворяют условию (Δ) , либо все $t_i \in T$ удовлетворяют условию $(\Delta\Delta)$.

ОПРЕДЕЛЕНИЕ 7. Всякую I-алгебру $\mathcal A$ такую, что $T_{\mathcal A}$ — тривиальное множество, будем называть тривиальной I-алгеброй.

ЗАМЕЧАНИЕ 5. Если \mathcal{A} — тривиальная I-алгебра, то по такой I-алгебре множество $T_{\mathcal{A}}$ восстанавливается однозначно.

ЗАМЕЧАНИЕ 6. Если A, B — тривиальные I-алгебры, тогда из того, что $T_A = T_B$, не следует, что $A \cong B$.

Действительно, если *I*-алгебры \mathcal{A} и \mathcal{B} таковы, что $r(\mathcal{A})=(1,0,3), r(\mathcal{B})=(\infty,0,1)$ и $rank(\mathcal{A})=rank(\mathcal{B}),$ то $T_{\mathcal{A}}=T_{\mathcal{B}}$ и одновременно $\mathcal{A}\not\cong\mathcal{B}.$

ПРЕДЛОЖЕНИЕ 8. Для любого нетривиального множества типов $T = \{t_1, \ldots, t_N\}$, зде t_i — типы, соответствующие неисчезающим I-алгебрам, существует единственная с точностью до изоморфизма I-алгебра B текая, что $cl(T) \rightleftharpoons \cup T_{t_k} \cup \cup \cup t_k = T_B$.

ДОКАЗАТЕЛЬСТВО. В качестве \mathcal{B} возьмем $\mathcal{B} \cong (\mathcal{A}_{t_1} \oplus \ldots \oplus \mathcal{A}_{t_N})^\omega$. Тогда $\cup T_{t_k} \cup \cup t_k = T_{\mathcal{B}}$. Следовательно, \mathcal{B} — искомая I-алгебра. Однозначность следует из леммы \mathfrak{b} (так как I-алгебра \mathcal{B} определяется однозначно нетривиальным множеством $T_{\mathcal{B}}$). Предложение доказано.

ОПРЕДЕЛЕНИЕ 8. Конечное нетривиальное множество типов T назовем допустимым, если существует неисчезающая I-алгебра \mathcal{A} , удовлетворяющая условию (3), причем такая, что $T = T_{\mathcal{A}}$.

ОПРЕДЕЛЕНИЕ 9. Пусть $T = \{t_1, \dots, t_N\}$ — допустимое множество, и пусть \mathcal{A} такова, что $T = T_{\mathcal{A}}$. Тогда $\mathcal{A} \cong \omega_{\mathcal{A}}\{\mathcal{A}_{t_1}, \dots, \mathcal{A}_{t_N}, \dots\}$, где $\mathcal{A}_{t_{N+i}} = \mathcal{A}_{t_i}$. Такое ω -смешивание будем называть допустимым, а соответствующую квазихарактеристику будем называть допустимой и обозначать через $nsch(\mathcal{A}) \rightleftharpoons cch\omega_{\mathcal{A}}$.

ТЕОРЕМА 3. Пусть A и B — произвольные неисчезающие I-алгебры, удовлетворяющие условию (3). Тогда для того что-бы $A \cong B$, необходимо и достаточно, чтобы nsch(A) = nsch(B). ПОКАЗАТЕЛЬСТВО.

Достаточность следует из леммы 2.

Необходимость. Пусть $\mathcal{A} \cong \mathcal{B}$. Обозначим через $T \rightleftharpoons T_{\mathcal{A}} = T_{\mathcal{B}}$. Если T — нетривиальное множество, то допустимое ω -смешивание по данной I-алгебре определяется однозначно, следовательно, $nsch(\mathcal{A}) = nsch(\mathcal{B})$. Если T — тривиальное множество, то из определения nsch для тривиальных I-алгебр следует, что $nsch(\mathcal{A}) = nsch(\mathcal{B})$. Теорема доказана.

ОПРЕДЕЛЕНИЕ 10. $t \le t' \iff t \in T'_t$.

ОПРЕДЕЛЕНИЕ 11. Тип t будем называть максимальным в I- алгебре A, если $(\forall t' \in T_A)(t' \geq t) \Longrightarrow (t' = t)$.

ЗАМЕЧАНИЕ 7. Пусть $\mathcal A$ произвольная неисчезающая I-алгебра, удовлетворяющая условию (3). Тогда если $nsch_t(\mathcal A)=\infty$, то для любого $t'\leq t$ выполнено, что $nsch_{t'}(\mathcal A)=\infty$.

ЗАМЕЧАНИЕ 8. Пусть \mathcal{B} — произвольная неисчезающая I-алгебра. Легко построить изоморфную ей I-алгебру, которан имеет допустимое ω -смешивание.

Лействительно, если $T_B = \{t_1, \ldots, t_N\}$, то положим $A \cong (A_{t_1} \oplus \ldots \oplus A_{t_N})^\omega$. В этом случае $A \cong \omega_A \{A_{t_1}, \ldots, \ldots, A_{t_N}, \ldots\}$, где $A_{t_{N+i}} = A_{t_i}$. По определению 9 можно заключить, что данное ω -смешивание является допустимым. В силу теоремы 3 заключаем, что $A \cong B$.

ЭПРЕДЕЛЕНИЕ 12. Типом *I*-алгебры *A* будем называть множество максимальных в данной *I*-алгебре типов.

Заключение

Пусть дана произвольная I-алгебра \mathcal{B} , удовлетворяющая условию:

$$\mathcal{B}|_{\Sigma} \cong \mathcal{B}_{\omega^{\alpha}n}$$
, где $n, \alpha < \infty$, предпологается, что $r_3(\mathcal{B}) < \infty$. $\bigg\} (\Delta \Delta \Delta)$

Опишем все типы изоморфизма таких І-алгебр.

В п.3 было доказано, что любая I-алгебра, удовлетворяющая условию (*), есть прямая сумма конечного числа неисчезающих I-алгебр. С другой стороны, очевидно, что если $\mathcal B$ не удовлетворяет условию (*), то $\mathcal B$ есть также прямая сумма конечного числа неисчезающих. (Это было показано при доказательстве следствия из теоремы 2.) Мы знаем, что $\mathcal B \cong \mathcal B_1 \oplus \ldots \oplus \mathcal B_n$, где $\mathcal B|_{\Sigma} \cong \mathcal B_{\omega^{\alpha}}$. Следовательно, $\mathcal B$ есть также прямая сумма конечного числа неисчезающих. Очевидно, что такое разложение для $\mathcal B$ неоднозначно. Однако можно утверждать, что существует единственное разложение произвольной

I-алгебры \mathcal{B} , удовлетворяющей условию ($\Delta\Delta\Delta$), в конечную сумму неисчезающих, которые в свою очередь несравнимы в смысле " \leq " между собой.

Действительно, допустим, что мы имеем два разных разложения: $\mathcal{A} \cong \mathcal{A}^1 \oplus \ldots \oplus \mathcal{A}^N \cong \mathcal{B}^1 \oplus \ldots \oplus \mathcal{B}^S, S > N$.

Пусть f — соответствующий изоморфизм, тогда $f(\mathcal{A}^1) = \mathcal{B}^1_1 \oplus \ldots \oplus \mathcal{B}^S_1$, где $\mathcal{B}^k_i \leq \mathcal{B}^k$. В силу неисчезаемости I-алгебры \mathcal{A}^1 можно считать, что $f(\mathcal{A}^1) = \mathcal{B}^1_1 \leq \mathcal{B}^1$. Покажем, что $f(\mathcal{A}^1) = \mathcal{B}^1$. Пусть это не так. Тогда $f(\mathcal{A}^1) \neq \mathcal{B}^1$, следовательно, $f^{-1}(\mathcal{B}^1) \neq \mathcal{A}^1$. Тогда в силу неисчезаемости \mathcal{B}^1 можно считать, что $f^{-1}(\mathcal{B}^1) = \mathcal{A}^2$. В этом случае $\mathcal{A}^1 \leq \mathcal{A}^2$. Противоречие. Итак, $f(\mathcal{A}^1) = \mathcal{B}^1$. Продолжая аналогичным образом, мы получим, что

$$\mathcal{A} \cong \mathcal{A}^1 \oplus \ldots \oplus \mathcal{A}^N \cong \mathcal{A}^1 \oplus \ldots \oplus \mathcal{A}^N \oplus \mathcal{B}^{N+1} \oplus \ldots \oplus \mathcal{B}^S, \quad S > N.$$

Отсюда легко видеть, что $\mathcal{B}^{N+1}=0,\ldots,\mathcal{B}^S=0.$

Определим допустимую квазихарактеристику для произвольной I-алгебры A, удовлетворяющей условию $(\Delta\Delta\Delta)$. Пусть $A\cong A^1\oplus\ldots\oplus A^N$, где все A^i несравнимы между собой, тогда положим $nsch(A)=(nsch(A^1),\ldots,nsch(A^N))$, тогда для произвольных I-алгебр верна следующая

TEOPEMA 4. Дая произвольной I-алгебры, удовлетворяющей условию ($\Delta\Delta\Delta$), выполнено $A\cong \mathcal{B}\iff nsch(A)=nsch(\mathcal{B})$.

ДОКАЗАТЕЛЬСТВО теоремы следует из теоремы 3 и однозначного разложения произвольной I-алгебры \mathcal{B} , удовлетворяющей условию ($\Delta\Delta\Delta$), в конечную сумму неисчезьющих I-алгебр, несравнимых между собой.

Литература

- 1. ПАЛЬЧУНОВ Д.Е. О неразрешимости теории булевых алгебр с выделенным идеалом // Алгебра и логика. 1986. T.25, N 3.- C.326-346.
- 2. ПАЛЬЧУНОВ Д.Е. Теории булевых алгебр с выделенными идеалами, не имеющие простой модели// Труды Института Математики СО РАН. Т.25.— 1993.— С.104—131.

- 3. ГОНЧАРОВ С.С. Счетные булевы алгебры.- Новосибирск: Наука, 1988.
- 4. ЕРШОВ Ю.Л., ПАЛЮТИН Е.А. Математическая логика.- М.: Наука, 1979.

Поступила в редакцию 6 августа 1996 года