ОБОВЩЕННАЯ ВЫЧИСЛИМОСТЬ И ОПРЕДЕЛИМОСТЬ

(Вычислительные системы)

1998 год

Выпуск 161

УДК 510.5+519.68

ОБ ОПРЕДЕЛИМОСТИ МОДЕЛИ В НАСЛЕДСТВЕННО КОНЕЧНОМ ДОПУСТИМОМ МНОЖЕСТВЕ¹

А.Н.Хисамиев

Ю.Л.Ершовым в [1] введено понятие У-определимости модели в допустимом множестве и найден [2] критерий Σ -определимости несчетной модели ${\mathcal M}$ в допустимом множестве $\mathrm{HF}(L)$ для плотного линейного порядка без коннов. Эти и другие результаты по определимости, а также все необходимые сведения по допустимым множествам можно найти в монографии Ю.Л.Ершова [3]. В [4] автором введено понятие внутренне перечислимой модели ${\cal M}$ и получен критерий Σ -определимости счетной модели ${\cal N}$ в НГ(М). Данная работа продолжает [4]. В ней приведено одно необходимое условие У-определимости счетной модели N в допустимом множестве HF(A), и для одного класса моделей М получен критерий У-определимости модели $\mathcal N$ в $\mathrm{HF}(\mathcal M)$. В дальнейшем рассматриваются лишь счетные модели конечных сигнатур. Введем некоторые определения и обозначения. Пусть ω = $= \{0, 1, 2, \ldots\}$ — множество конечных ординалов, которое содержится в любом допустимом множестве; $\omega^* =$ $= \{0^*, 1^*, ...\}$ — множество всех натуральных чисел; $\mathcal{M} = \langle M, Q_1, ..., Q_r \rangle$, $\mathcal{N} = \langle N, P_1, ..., P_8 \rangle$ — модели. Отображение $\mu:\omega\to N$ множества ω на N называется

¹Работа выполнена при поддержке гранта РФФИ № 96--01-01525.

нумерацией модели \mathcal{N} , а пара (\mathcal{N}, μ) — нумерованной моделью. Для пары (\mathcal{N}, μ) положим:

$$=^{\mu} \rightleftharpoons \{ \langle n, m \rangle | \mathcal{N} \models \mu n = \mu m \},$$

$$P_i^{\mu} \rightleftharpoons \{ \langle m_1, \dots, m_{n_i} \rangle | \mathcal{N} \models P_i(\mu m_1, \dots, \mu m_{n_i}) \},$$

$$\mathcal{N}_{\mu} \rightleftharpoons \langle \omega, P_i^{\mu}, \dots, P_s^{\mu} \rangle.$$

Пусть (\mathcal{M}, ν) , (\mathcal{N}, μ) — нумерованные модели. Если предикаты $=^{\mu}$, P_{i}^{μ} , $1 \leq i \leq s$, рекурсивны относительно предикатов $=^{\nu}, \quad Q_{j}^{\nu}, \quad 1 \leq j \leq r$, то будем говорить, что пара (\mathcal{N}, μ) рекурсивна относительно пары (\mathcal{M}, ν) . Модель У называется рекурсивной относительно нумерованной модели (\mathcal{M}, ν) , если существует такая нумерация μ модели \mathcal{N} , что пара (\mathcal{N},μ) рекурсивна относительно пары (\mathcal{M}, ν) . Пусть S^* — подмножество множества ω^* и $id: \omega \to \omega^*$, $id(n) = n^*$. Вудем говорить, что модель $\mathcal N$ рекурсивна относительно множества S^* , если модель $\mathcal N$ рекурсивна относительно нумерованной модели $(<\omega^*, S^*>, id)$. Для нумерованной модели (\mathcal{M}, ν) через $\mathcal{M}_{\nu}^{\bullet}$ обозначим модель, основным множеством которой является множество ω^* , а отображение $id:\omega\to\omega^*$ есть изоморфизм моделей \mathcal{M}_{ν} и $\mathcal{M}_{\nu}^{\bullet}$. Пусть \mathcal{M}_{ν}' — модель, которая получена из модели М, добавлением в сигнатуру операции 'прибавлением 1.

В [4] введены следующие понятия Σ -нумерации и внутренне перечислимой модели. Если нумерация ν модели $\mathcal M$ является Σ -функцией в допустимом множестве $\mathrm{HF}(\mathcal M)$, то ν называется Σ -нумерацией модели $\mathcal M$. Если существует Σ -нумерация ν модели $\mathcal M$, то $\mathcal M$ называется внутренне перечислимой моделью. Легко проверить, что справедливо

ЗАМЕЧАНИЕ 1. Нумерация $id:\omega\to\omega^*$ есть Σ -нумерация модели $(\mathcal{M}'_{\nu})^*$.

Для дальнейшего нам необходима следующая

TEOPEMA A [4]. Пусть \mathcal{M}_1 , \mathcal{M}_2 — не более чем счетные модели и ν_2 — Σ -нумерация модели \mathcal{M}_2 . Тогда модель \mathcal{M}_1 Σ -определима в $\mathrm{HF}(\mathcal{M}_2)$ тогда и только тогда, когда существует такая нумерация ν_1 модели \mathcal{M}_1 , что пара (\mathcal{M}_1, ν_1) рекурсивна относительно (\mathcal{M}_2, ν_2) .

Следующее предложение даст необходимое условие Σ -определимости.

ПРЕДЛОЖЕНИЕ. Пусть модель N Σ -определима в допустимом множесстве $HF(\mathcal{M})$. Тозда для любой нумерации ν модель $\mathcal N$ рекурсивна относительно пары $(\mathcal M, \nu)$.

ДОКАЗАТЕЛЬСТВО. Пусть модель \mathcal{N} Σ -определима в $\mathrm{HF}(\mathcal{M})$ и ν — некоторая нумерация модели \mathcal{M} . Модель \mathcal{N} также Σ -определима в допустимом множестве $\mathrm{HF}((\mathcal{M}'_{\nu})^{\bullet})$. По замечанию 1 модель $(\mathcal{M}'_{\nu})^{\bullet}$ Σ -перечислима.

По теореме А получаем, что модель $\mathcal N$ рекурсивна относительно нумерованной модели $((\mathcal M'_{\nu})^*,\ id)$. Тогда она рекурсивна относительно пары $(\mathcal M,\nu)$.

TEOPEMA. Пусть S — подмножеество натуральных чисел и для модели M выполнены условия:

- 1) \mathcal{M} perypous has a mhocumeas ho who we come a $S^* = \{s^* | s \in S\};$
 - 2) множество S Σ -определимо в $HF(\mathcal{M})$.

Тозда модель N Σ -определима в допустимом множестве $HF(\mathcal{M})$ тозда и только тозда, козда она рекурсивна относительно множества S^* .

доказательство.

Необходимость. Пусть ν такая нумерация модели \mathcal{M} , что пара (\mathcal{M}, ν) рекурсивна относительно множества S^* и модель \mathcal{N} Σ -определима в HF(\mathcal{M}). По предложению модель \mathcal{N} рекурсивна относительно пары (\mathcal{M}, ν) , а следовательно, и относительно множества S^* .

<u>Достаточность</u> Пусть модель $\mathcal N$ рекурсивна относительно множества S^* . Тогда существует такая нумерация μ модели $\mathcal N$, что пара $(\mathcal N,\mu)$ рекурсивна относительно пары $(<\omega^*,\ S^*>,\ id)$.

Отсюда имеем, что предикаты $=^{\mu},\ P_1^{\mu},\dots,P_s^{\mu}$ рекурсивны относительно множества S. Тогда характеристи-

ческие функции этих предикатов получаются из базисных функций сложения, умножения, отношения " < " и множества S путем конечного числа применений операций суперпозиции и минимизации. По условию теоремы множество S Σ -определимо в $\mathrm{HF}(\mathcal{M})$. Отсюда стандартными рассуждениями получаем, что характеристические функции предикатов $=^{\mu}$, P_i^{μ} , $1 \leq i \leq s$, являются Σ -функциями. Следовательно, эти предикаты являются Δ -предикатами в $\mathrm{HF}(\mathcal{M})$ и модель \mathcal{N} Σ -определима в $\mathrm{HF}(\mathcal{M})$. Теорема доказана.

Приведем пример применения этой теоремы.

Пусть группа G есть счетная прямая сумма циклических групп простых порядков, т.е.

$$G=\bigoplus_{i=0}^{\infty}Z_{q_i},$$

где q_i — некоторое простое число. Характеристикой $\chi(G)$ группы G называется множество

$$\chi(G) = \{[q, m] | \exists i_1 \dots i_m (q_{i_1} = \dots = q_{i_m} = q)\},\$$

где [q,m] — номер пары $\langle q,m \rangle$. Легко видеть, что группа G рекурсивна относительно множества $\chi(G)$. Покажем, что множество $\chi(G)$ Σ -определимо в HF(G). Обозначим через a_{am} множество всех ненулевых функций f: $m \to q$, $m = \{0, 1, ..., m-1\}$, $q = \{0, 1, ..., q-1\}$, $\exists i \in m$ $(f(i) \neq 0)$. Пусть P — множество всех простых чисел. Покажем, что множество $F = \{a_{qm} | q \in P, m \in \omega\}$ Σ -определимо в $\mathrm{HF}(G)$. Для этого сперва докажем, что это множество Σ-определимо в НГ(0). В [6, с.48] определена нумерационная функция $e: \omega \to \mathrm{HF}(\emptyset)$ и доказано, что она является Σ -функцией. Легко понять, что множество Sе-номеров всех элементов множества F рекурсивно. По теореме [6, с. 47], множество S Δ_1 -определимо в $HF(\emptyset)$. Отсюда и множество F Σ -определимо в $\mathrm{HF}(\emptyset)$. Долустимое множество $\mathrm{HF}(\emptyset)$ Σ -определимо в $\mathrm{HF}(G)$. Тогда и множество F Σ -определимо в $\mathrm{HF}(G)$ некоторой формулой $\Psi(x)$. Введем функцию $f: \omega \times G \to G$ следующей Σ -рекурсией в $\mathrm{HF}(G)$: $f(0,x)=\Theta$, f(n+1,x)=f(n,x)+x, где Θ — нулевой элемент группы G. Тогда f является Σ -функцией. Пусть предикат Funct, выделяющий конечные функции, операции $p_1^*(f)$, $p_1^*(f)$ соответственно равные области определения и области значения функции f, определены так же, как в [2, c.78]. Нетрудно проверить, что множество $\chi(G)=\{< q,m>|[q,m]\in\chi(G)\}$ определяется следующей Σ -формулой:

$$\langle q, m \rangle \in \overline{\chi(G)} \iff \exists g((\operatorname{Funct}(g) \land p_l^*(g) = m \land h_l^*(g) \subseteq G \land \forall i \in m(f(q, g(i)) = \Theta \land g(i) \neq \Theta)) \land h_l^*(g) \subseteq G \land \forall i \in m(f(q, g(i)) = M \land p_l^*(\varphi) \subseteq g \land h_l^*(\varphi) \land \exists h(\operatorname{Funct}(h) \land p_l^*(h) = m \land h(0) = f(\varphi(0), g(0)) \land h_l^*(i) \neq 0 \to h(i) = h(i-1) + f(\varphi(i), g(i)) \land h_l^*(m-1) \neq \Theta)))).$$

Отсюда и из Σ -определимости нумерационной функции $[\ ,\]$ в HF(G) получаем, что множество $\chi(G)$ также Σ -определимо в HF(G). Следовательно, группа G и множество $\chi(G)$ удовлетворяют условию теоремы. Отсюда получаем

СЛЕДСТВИЕ. Пусть группа G разлагается в прямую сумму циклических групп простых порядков. Тогда модель $\mathcal M$ Σ -определима в допустимом множестве $\mathrm{HF}(G)$ тогда и только тогда, когда $\mathcal M$ рекурсивна относительно характеристики $\chi(G)$ группы G.

Покажем, что условие 2 теоремы существенно. Пусть Σ^0_n — классы арифметической иерархии. Класс Σ^0_1 совпадает с классом рекурсивно-перечислимых множеств. Пусть множество $S \subseteq \omega$ такое, что выполнены условия:

- 1) $S \in \Sigma_2^0 \setminus \Sigma_1^0$;
- 2) существует такая рекурсивная функция f(i,x), для которой справедливо:
 - а) для любого $i \in \omega$ функция $\lambda x f(i, x)$ не убывает;
 - 6) $\lim_{x \to \infty} f(i,x) = m_i, \quad m_o < m_1 < \cdots; \quad m_i \in S.$

Тогда согласно [5] p-группа $G(S)=\bigoplus_{m\in S}Z_{p^m}$, где Z_{p^m} — циклическая группа порядка p^m , конструктиви-

зируема. Тогда имеем (см. [1]), что модель \mathcal{M} Σ -определима в $\mathrm{HF}(G(S))$ тогда и только тогда, когда она конструктивизируема. Рассмотрим модель $\widetilde{\omega}=<\omega,0,\ ',S>$. Из условия 1 определения множества S следует, что S не рекурсивное множество. Отсюда модель $\widetilde{\omega}$ не конструктивизируема, а следовательно, она не Σ -определима в $\mathrm{HF}(G(S))$. Так как группа G(S) конструктивизируема, то она рекурсивна относительно множества S^* . Поэтому условие 1 теоремы для модели G(S) и множества S выполнено. Очевидно, что модель $\widetilde{\omega}$ рекурсивна относительно множества S^* . Таким образом, теорема для модели $\widetilde{\omega}$ не справедлива. Отсюда следует, что условие 2 теоремы существенно.

Литература

- 1. ЕРШОВ Ю.Л. Σ-определимость в допустимых множествах //Докл. АН СССР. 1985. Т. 285, № 4. С. 792-795.
- 2. ЕРШОВ Ю.Л. Определимость в наследственно конечных надстройках //Докл. РАН. 1995. Т. 340, № 1. С. 12-14.
- 3. ЕРШОВ Ю.Л. Определимость и вычислимость. Новосибирск: Научная книга, 1996. 286 с. (Сибирская школа алгебры и логики).
- 4. ХИСАМИЕВ А.Н. Σ-нумерация и Σ-определимость //Структурные алгоритмические свойства вычислимости. Новосибирск, 1996. Вып. 156: Вычислительные системы. С. 44-58.
- 5. ХИСАМИЕВ Н.Г. Критерий конструктивизируемости прямой суммы циклических р-групп //Изв. АН КъзССР. Сер. физ.-мат. — 1981. — № 1. — С. 51-55.
- 6. BARWISE J. Admissible Sets and Structures. Berlin: Springer-Verlag, 1975. 383 p.

Поступила в редакцию 2 июня 1997 года