ОБОБЩЕННАЯ ВЫЧИСЛИМОСТЬ И ОПРЕДЕЛИМОСТЬ

(Вычислительные системы)

1998 год

Выпуск 161

УДК 510.5

ГИПЕРАРИФМЕТИЧЕСКАЯ АВТОУСТОЙЧИВОСТЬ БУЛЕВЫХ АЛГЕБР¹

А.В.Ромина

1. Предварительные сведения

Поскольку речь почти всегда будет идти о булевых алгебрах, введем несколько определений и обозначений, относящихся к булевым алгебрам. Естественный порядок на булевой алгебре: $a \leq b \leftrightarrow a \cap b = a$. Через $F_a(A)$ обозначим a-й итерированный идеал Фреше.

В дальнейшем, если из контекста ясно, о какой алгебре идет речь, будем писать просто F_{α} .

ОПРЕДЕЛЕНИЕ 1. Рангом Фреше булевой алгебры A называется первый ординал $\rho(A) = \alpha$ такой, что $F_{\alpha} = F_{\alpha+1}$.

Известно, что ранг Фреше суператомной булевой алгебры является непредельным ординалом. Типом суператомной булевой алгебры называется пара $\tau(A) = (\alpha + m)$, где $\rho(A) = \alpha + 1$ и m — число атомов в A/F_{α} . Счетная суператомная булева алгебра определяется своим типом с точностью до изоморфизма.

На основе топологических методов Кетоненом была получена характеризация типов изоморфизмов булевых алгебр [7]. Затем Ю.Л.Ершов [3] алгебраическими методами получил редукцию проблемы изоморфизма для класса

¹Работа выполнена при поддержке гранта РФФИ № 96-01-01525.

дистрибутивных решеток с относительными дополнениями (алгебр Ершова). Приведем здесь его характеризацию для булевых алгебр.

Пусть $\rho(A) = \gamma$. Полагаем $E_{\alpha} = \{x \in A | \text{идеал}(x)/F_{\alpha} \cap F_{\gamma}/F_{\alpha}$ — главный $\}$. Определим аддитивную функцию $\sigma: A \to \gamma + 1$, полагая $\sigma(x) = \alpha$ первый ординал такой, что $x \in E_{\alpha}$.

ОПРЕДЕЛЕНИЕ 2. Типом булевой алгебры A называется тройка (ρ, γ, m) , где $\rho = \rho(A), \gamma = \sigma(1)$ и m равно числу атомов в A/F_{α} , если $\rho = \alpha + 1 > \gamma$, и нулю — в противном случае.

Рассмотрим $\mathcal{B}=\mathcal{A}/F_{\rho}$. Определим аддитивную функцию g из \mathcal{B} в $\gamma+1$, полагая $g(x/F_{\rho})=\sigma(x)$.

Ю.Л.Ершов доказал, что $A_0\cong A_1$ тогда и только тогда, когда их типы совпадают и существует автоморфизм безатомной булевой алгебры φ такой, что $\forall xg_0(x)=g_1(\varphi(x))$.

ОПРЕДЕЛЕНИЕ 3. Линейно упорядоченным базисом булевой алгебры A называется линейно упорядоченное подмножество A, порождающее A.

Известно, что каждая счетная булева алгебра имеет линейно упорядоченный базис и изоморфна его алгебре полуинтервалов. Более того, каждая В-конструктивизация В-конструктивной булевой алгебры оквивалентна В-конструктивизации алгебры полуинтервалов некоторого В-конструктивного линейно упорядоченного множества.

ОПРЕДЕЛЕНИЕ 4. Двоичным деревом называется нижняя полурешетка с минимальным элементом, в которой каждый элемент имеет ровно двух наследников или максимальный и каждый начальный сегмент является конечным линейно упорядоченным множеством. Дерево без максимальных элементов называется полным.

Вудем представлять двоичные деревья множествами конечных последовательностей из нулей и единиц $(\tau, \sigma, \rho, \ldots)$. При этом $\tau \leq \sigma$, если τ — начальный сегмент

 σ . Через $\tau * \sigma$ обозначим конкатенацию последовательностей τ и σ .

ОПРЕДЕЛЕНИЕ 5. Пусть T — двоичное дерево. Построим отображение из T в безатомную булеву алгебру: полагаем $\varphi(0)=1$. Выберем для каждой $\sigma\in T$ $\varphi(\sigma)$ так, чтобы если $\sigma*0\in T$, то $\varphi(\sigma*0)\cup\varphi(\sigma*1)=\varphi(\sigma)$, $\varphi(\sigma*0)\cap\varphi(\sigma*1)=0$. Будем рассматривать подалгебру безатомной алгебры, порожденную $\varphi(T)$.

Каждая В-конструктивная булева алгебра представляется в виде булевой алгебры, порожденной В-конструктивным двоичным деревом.

Все необходимые сведения о булевых алгебрах можно найти в [1].

Теперь введем необходимые понятия, относящиеся к Δ_1^1 -конструктивности.

ОПРЕДЕЛЕНИЕ 6. Модель $\mathcal{M} = (M; P_i^{n_i})$ называется Δ_1^1 -конструктивизируемой, если существуют нумерация $\nu: \omega \to M$ такая, что $\{(x,y)|\nu(x)=\nu(y)\} \in \Delta_1^1$ и $\{\overline{x}|\ P_i(\nu(\overline{x}))\} \in \Delta_1^1$. При этом пара (\mathcal{M},ν) называется Δ_1^1 -конструктивизацией \mathcal{M} .

ОПРЕДЕЛЕНИЕ 7. Две Δ_1^1 -конструктивизации (\mathcal{M}, ν_o) и (\mathcal{M}, ν_1) называются Δ_1^1 -эквивалентными, если существуют гиперарифметическая функция $f: \omega \to \omega$ и автоморфизм φ модели \mathcal{M} такие, что $\forall x (\varphi(\nu_o(x)) = \nu_1(f(x)))$. Δ_1^1 -конструктивизируемая модель называется Δ_1^1 -автоустойчивой, если любые две ее Δ_1^1 -конструктивизации Δ_1^1 -эквивалентны.

2. Δ_1^1 -конструктивизируемые булевы алгебры

Здесь, в основном, рассматриваются вопросы Δ_1^1 -автоустойчивости Δ_1^1 -конструктивизируемых буленых алгебр. Поэтому начнем с критерия.

ТЕОРЕМА 1 (критерий Воота для эквивалентности Δ_1^1 -конструктивизаций булевых алгебр). Пусть (A_0, ν_0) и (A_1, ν_1) — Δ_1^1 -конструктивные булевы алгебры. Пусть существует Δ_1^1 -множесство $S \subseteq A_0 \times A_1$, т.е. $\{(n, m) | (\nu(n), \nu(m)) \in \mathcal{E}\} \in \Delta_1^1$ такое, что

- 1) $(1,1) \in S$,
- 2) $(a,b) \in S \rightarrow (a=0 \leftrightarrow b=0)$,
- 3) $(a,b) \in S \to \forall x < a \exists y < b((x,y) \in S & (a-x,b-y) \in S)$
- 4) $(a,b) \in S \rightarrow \forall y \leq b \exists x \leq a((x,y) \in S \& (a \setminus x, b \setminus y) \in S)$.

Tords эти Δ_1^1 -конструктивизации эквивалентны.

ДОКАЗАТЕЛЬСТВО. Если (A_0, ν_0) и (A_1, ν_1) — Δ_1^1 -конструктивны, то они конструктивны с некоторыми оракулами H_{α_0} и H_{α_1} соответственно. Если S — Δ_1^1 -множество, то оно рекурсивно относительно некоторого оракула H_{α_2} . Пусть $\gamma = \max\{\alpha_0, \alpha_1, \alpha_2\}$. Тогда (A_0, ν_0) , (A_1, ν_1) конструктивны относительно H_γ и S рекурсивно относительно H_γ . По релятивизованному критерию Воота [2], для конструктивизаций булевых алгебр эти конструктивизации эквивалентны относительно H_γ (в степени Δ_γ), следовательно, Δ_1^1 -эквивалентны. Очевидно, что из эквивалентности конструктивизаций следует существование такого множества.

СЛЕДСТВИЕ 1. Пусть α — конструктивный ординал; \mathcal{B} — α -атомная Δ_1^1 -конструктивизируемая булева алгебра и \mathcal{B}/F_{α} — Δ_1^1 -автоустойчива. Тогда \mathcal{B} — Δ_1^1 -автоустойчива.

УТВЕРЖДЕНИЕ 1. Пусть $\mathcal{B} - \Delta_1^1$ -конструктивная булева алгебра и α — конструктивный ординал. Тогда $\forall \gamma \leq \leq \alpha \{n | \nu(n) \in F_{\gamma}\} \in \Delta_1^1$.

ДОКАЗАТЕЛЬСТВО. Действительно, нетрудно показать, что это Π_1^1 -множество (по теореме Ганди [6]). С другой стороны, можно построить конструктивную булеву алгебру $\mathcal{B}_{\omega^{\gamma}}$ и $\nu(n) \in F_{\gamma}$ равносильно существованию изоморфизма между $(\nu(n))$ и (b) для некоторого $\mathcal{B}_{\omega^{\gamma}}$, а значит, это Σ_1^1 -множество.

Вернемся к доказательству следствия. Пусть (\mathcal{B}, ν_0) , (\mathcal{B}, ν_1) — две различные Δ_1^1 -конструктивизации \mathcal{B} . Рассмотрим индуцированные конструктивизации, оквивалентные по условию: $(\mathcal{B}/F_\alpha, \overline{\nu}_0)$ и $(\mathcal{B}/F_\alpha, \overline{\nu}_1)$, $\overline{\nu}_i(n) = \nu_i(n)/F_\alpha$. Тогда существует Δ_1^1 -множество S_0 , удовлетворяющее условиям 1-4 критерия Воота [2]. Рассмотрим $S = \{(x,y)|(x=0 \leftrightarrow y=0) \& (x \in F_\alpha \leftrightarrow (y \in F_\alpha \& \tau(x)=\tau(y))) \& (c(x) \in F_\alpha \leftrightarrow (c(y) \in F_\alpha \& \tau(c(x))=\tau(c(y)))) \& \& (x/F_\alpha, y/F_\alpha) \in S_0\}$. Очевидно, что $S \to \Delta_1^1$ -множество,

также удовлетворяющее всем условиям критерия Воота.

СЛЕДСТВИЕ 2. Следующие утверждения эксивалентны:

- 1) существует Δ_1^1 -конструктивизируемая неавтоустойчивая булева алгебра;
- 2) существует Δ_1^1 -конструктивизируемая неавтоустойчивая безатомная булева алгебра с выделенным идеалом (B, I);
- 3) существует Δ_1^1 -конструктивизируемая неавтоустойчивая булева алгебра A ранга Φ реше $\rho(A)=1$.

ДОКАЗАТЕЛЬСТВО.

- $3 \rightarrow 1$. Очевидно.
- $1 \to 2$. Пусть существует Δ_1^1 -конструктивизируемая, нецвтоустойчивая булева алгебра. Тогда она эквивалентна алгебре, порожденной Δ_1^1 -конструктивным линейным порядком. Пусть \mathcal{L}_0 и $\mathcal{L}_1 - \Delta_1^1$ -конструктивные линейные порядки, соответствующие ее неоквивалентным конструктивизациям. Рассмотрим $\mathcal{L}_i' = \langle L_i \cup \{(l+q)|\exists l'\}$ ([l,l') — atom $\mathcal{B}_{\mathcal{L}_i}$), $q \in (0,1)$; $\leq_i \cup \{(x,y) | ((x \in L_i \& y = l + q \& u)) | (x \in L_i \& y = l + q \& u) |$ & $x \leq_i l$) $\forall (x = l + q \& y \in L_i \& l <_i y) \forall (x = l_0 + q_0 \& l)$ & $y = l_1 + q_1$ & $(l_0 <_i l_1 \lor (l_0 = l_1 \& q_0 \le q_1)))))).$ Несложно показать, что это Δ_1^1 -конструктивный линейный порядок. Рассмотрим алгебру $\mathcal{B}_{\mathcal{L}'_{+}}$ с выделенным идеалом I_i , порожденным полуинтервалами вида $(l+q_0,l+q_1)$, где $q_0 \le q_1$. Ясно, что она Δ_1^1 -конструктивна. С помощью критерия Воота для изоморфизма булевых алгебр [1] доказывается, что $(B_{\mathcal{L}_0}, I_0) \cong (B_{\mathcal{L}_1}, I_1)$. Если эти конструктивизации эквивалентны, то эквивалентны и соответствующие конструктивизации фактор-алгебр. А они невквивалентны по условию.
- $2 \to 3$. Пусть существует неавтоустойчивая безатомная булева алгебра с выделенным идеалом. Возьмем две ее невквивалентные конструктивизации и построим по ним соответствующие Δ_1^1 -конструктивные порождающие деревья T_0, T_1 .

По индукции построим отображения: $f_i: T_i \to T$, где T — полное дерево, а $i \in \{0,1\}$:

- 1) $f_i(0) = 0$,
- 2) если $\sigma \notin I_i$, то $f_i(\sigma * j) = f_i(\sigma) * j * 0$,
- 3) если $\sigma \in I_i$, то $f_i(\sigma * j) = f_i(\sigma) * j$. Полагаем $T_i^* = \{\tau | \exists \sigma \in T_i(\tau = f_i(\sigma) \lor (\sigma \notin I_i \& \tau \in \{f_i(\sigma) * 0, f_i(\sigma) * 01, f_i(\sigma) * 11\}))\}$. Ясно, что получены Δ_1^1 -деревья. Породим полученными деревьями булевы алгебры. Они будут иметь ранг Фреше равный 1 и одинаковые характеристики Ершова-Кетонена. Поэтому они изоморфны. Если их конструктивизации эквивалентны, то эквивалентны и соответствующие конструктивизации фактор-алгебр с выделенным идеалом (так как безатомные элементы образуют Δ_1^1 -множество).

ЗАМЕЧАНИЕ. В работе Эша [5] указан пример рекурсивной булевой алгебры, имеющей по крайней мере две конструктивизации не Δ_{α} -эквивалентные для любого $\alpha < \omega_1^{\mathrm{CK}}$, а значит и не Δ_1^1 -эквивалентные. Указаннан им алгебра есть $\mathcal{B}_{\omega_1^{\mathrm{CK}}\times(\eta+1)}$. Аналогичными рассуждениями можно показать, что класс всех Δ_1^1 -конструктивизаций этой алгебры не лежит в Δ_1^1 .

УТВЕРЖДЕНИЕ 2. Класс всех Δ_1^1 -конструктивизаций алгебры $\mathcal{B}_{\omega \text{CK}_X(n+1)}$ не лежит в Δ_1^1 .

ДОКАЗАТЕЛЬСТВО. Пусть \mathcal{R} — класс всех Δ_1^1 -конструктивизаций алгебры $\mathcal{B}_{\omega^{\mathsf{CK}} \mathbf{x}(\eta+1)}$. Предположим, что он вычислим. Рассмотрим множество формул $\varphi_{\alpha} = (\mathcal{B} - \alpha$ -атомная булева алгебра) и $\psi = ((\mathcal{A}, \nu_{\mathcal{A}})$ не эквивалентна ни одной Δ_1^1 -конструктивизации из \mathcal{R}); $\Gamma = \bigcup_{\{\varphi_{\alpha}\}} \cup \{\psi\}$. Рассмотрим $f: \mathrm{Ord} \to \Gamma$, полагая $0 < \alpha < \omega_1^{\mathsf{CK}}$

 $f(0) = \psi; \quad f(\alpha) = \varphi_{\alpha}.$ Очевидно, $f - \Sigma$ -функция, а $\Gamma - \Sigma$ -множество на HIP_{ω} . Пусть $\Gamma_0 \subseteq \Gamma - HYP_{\omega}$ -конечно. Тогда (по принципу Σ -ограниченности) существует $\beta < \omega_1^{\text{CK}}$ такое, что $\Gamma_0 \subseteq \{f(\alpha) | \alpha < \beta\}$. Поэтому $\varphi_{\beta} \& \psi \vdash \Gamma_0$ и, следовательно, $\mathcal{B}_{\omega\beta} \models \Gamma_0$. По теореме компактности Варвайса [6] существует ω_1^{CK} -атомная Δ_1^{I} -конструктивная булева алгебра $(\mathcal{A}, \nu_{\mathcal{A}})$ не Δ_1^{I} -эквивалентная ни одной алгебре из \mathcal{R} .

Легко заметить, что $\rho(\mathcal{A}) \leq \omega_1^{\text{CK}}$ (например, сославшись на теорему Ганди [6]). Поэтому $\mathcal{A} \cong \mathcal{B}_{\omega}^{\text{CK}}_{\times (\eta+1)}$.

СЛЕДСТВИЕ 3. Существует Δ_1^I -конструктивизируемая неавтоустойчивая булева алгебра ранга Фреше, равного единице.

Автор выражает благодарность своему научному руководителю С.С.Гончарову за постановку задачи и помощь в работе.

Литература

- 1. ГОНЧАРОВ С.С. Счетные булевы алгебры и разрешимость. — Новосибирск: 1996. — 316 с.
- 2. ЕРШОВ Ю.Л. Проблемы разрешимости и конструктивные модели. М.: 1980. 415 с.
- 3. ЕРШОВ Ю.Л. Дистрибутивные решетки с относительными дополнениями //Алгебра и логика. 1979. Т.18. № 6. С. 680-722.
- 4. РОДЖЕРС X. Теория рекурсивных функций и эффективная вычислимость. M.: 1972. 624 с.
- 5. ASH C.J. Categoricity in hiperarithmetical degrees //Ann. Pure Appl. Logic. 1987. Vol. 34, M 1. P. 1-14.
- 6. BARWISE J. Admissible Sets and Structures. Berlin: Springer-Verlag, 1975. 383 p.
- 7. KETONEN J. The structure of countable Boolean algebras //Ann. Math. 1978. Vol. 108, № 1. P. 41-89.

Поступила в редакцию 21 июля 1997 года