СТРУКТУРНЫЕ И СЛОЖНОСТНЫЕ ПРОБЛЕМЫ ВЫЧИСЛИМОСТИ

(Вычислительные системы)

1999 год

Выпуск 165

УДК 510.532:519.766.23

ПРИНЦИП РЕДУКЦИИ ДЛЯ ИЕРАРХИЙ РЕГУЛЯРНЫХ БЕЗЗВЁЗДНЫХ ЯЗЫКОВ 1

А.Г. Щукин

Введение

В теории автоматов известен замечательный результат Бюхи [2] о том, что регулярные языки совпадают с языками, определяемыми предложениями монадической логики второго порядка подходящей сигнатуры. Эта теорема установила тесную связь теории автоматов с математической логикой и инициировала длинную серию работ по применению методов теории автоматов в логике и методов логики в теории автоматов.

Важным шагом в разработке данного направления стала глубокая теорема МакНотона и Пейперта [4] о том, что языки, определяемые предложениями первого порядка — это в точности регулярные "беззвёздные" языки (т.е. языки, задаваемые обобщёнными регулярными выражениями без символа *). Впоследствии выяснилось, что этот же класс языков задаётся формулами линейной временной логики, играющей основную роль в спецификации и верификации систем с конечным числом состояний.

Работы Бюхи, МакНотона, Пейперта и их многочисленных последователей показали большую сложность регулярных языков,

¹Работа выполнена при частичной финансовой поддержке Министерства образования Российской Федерации (грант по математике).

что привело к появлению различных классификаций (или исрархий) этих языков.

Теорема МакНотона Пейперта подсказывает естественную классификацию языков, индуцируемую традиционной для математической логики исрархией предложений по числу перемен кванторов в предварённой нормальной форме. В работах [9,5] показано, что такие иерархии (для предложений подходящих сигнатур), по существу совпадают с популярными в теории автоматов иерархиями Бжозовского и Штраубинга. Поэтому изучение этих иерархий представляет интерес как для логики (точнее, для теории конечных моделей, поскольку здесь рассматривается эквивалентность формул на множестве конечных моделей соответствующих теорий), так и для теории автоматов.

Как известно, уровни многих аналогов кванторных иерархий в дескриптивной теории множеств, теории вычислений и теории автоматов обладают так называемым свойством редукции (см., например, [6,7]).В этой статье мы доказываем, что уровни кванторных иерархий не обладают свойством редукции. Для доказательства этого результата применяется известный в теории конечных моделей [3] метод игр Эренфойхта-Фрессе.

Свойство редукции полезно при изучении некоторых утончений иерархий. Например, известно [6], что если бы каждый уровень кванторной иерархии обладал свойством редукции, то типизированная булева иерархия совпадала бы с тонкой иерархией (определения см. в [6]). Как показано в [10], это не так.

§ 1. Определения и вспомогательные результаты

В этом параграфс содержатся используемые в дальнейшем определения, некоторые вспомогательные результаты, необходимые сведения об играх Эренфойхта-Фрессе, а также нужные результаты из [12].

Пусть A конечный алфавит, A^+ — множество всех конечных слов ненулевой длины в алфавите A. Языком будем называть любое подмножество множества A^+ . Пусть ϵ — пустое слово и $A^\circ = A^+ \cup \{\epsilon\}$. Для слов v и w мы пишем $v \subseteq w$, если v является фактором слова w, т.е. $w = u_1vu_2$ для некоторых $u_1, u_2 \in A^\circ$.

ОПРЕДЕЛЕНИЕ 1.

- 1) Пусть $L, M, L', M' \subseteq A^+, L' \subseteq L, M' \subseteq M, L' \cup M' = L \cup M$ и $L' \cap M' = \emptyset$. Тогда будем говорить, что L' и M' pedуцирующие языки для L и M.
- 2) Говорят, что класс языков S обладает свойством редукции, если для любых $L, M \in S$ существуют редуцирующие языки $L', M' \in S$ для L, M.

Мы будем использовать описание языков с помощью предложений формальной логики. Если слово рассматривать как конечную линейно упорядоченную структуру (в подходящей сигнатуре, включающей унарный предикат для каждого символа из алфавита A и бинарный предикат <), то предложения формальной логики первого порядка можно использовать для описания "беззвёздных" языков. (Чтобы охватить все регулярные языки, надо добавить предложения с монадическими переменными второго порядка.)

Кроме основного алфавита A мы рассмотрим расширенный [5,6] алфавит $A \times 2^{\nu}$, где ν — конечное множество переменных. Будем называть ν структурой слово $(a_1,U_1)\dots(a_r,U_r)$ (расширенного) алфавита $A \times 2^{\nu}$ такое, что множества U_1,U_2,\dots,U_r попарно не пересекаются и в объединении дают ν . Формулы со свободными переменными в ν будут выражать свойства ν -структур. Унарные предикаты Q_a , $a \in A$, будем интерпретировать так: $w \models Q_a x$ тогда и только тогда, когда w содержит букву вида (a,U), где $x \in U$. Предикат < будет иметь обычный смысл: $w \models x < y$ тогда и только тогда, когда $w = (a_1,U_1)\dots(a_i,U_i)\dots(a_j,U_j)\dots(a_r,U_r)$, где $x \in U_i$, $y \in U_j$, i < j. Пусть $w = (a_1,U_1)\dots(a_i,U_i)\dots(a_r,U_r)$. Тогда $w \models \exists x \phi$ тогда и только тогда, когда для некоторого i, $1 \le i \le r$, справедливо $(a_1,U_1)\dots(a_i,U_i\cup\{x\})\dots(a_r,U_r) \models \phi$. Булевы операции интерпретируются естественным образом. Букву (a,\emptyset) алфавита $A \times 2^{\nu}$ мы будем отождоствлять с буквой a алфавита A.

Если ϕ — предложение, то ϕ можно интерпретировать в слове $w \in A^+$, поскольку это слово можно рассматривать как ϕ -структуру. Каждое предложение описывает язык, состоящий из слов, которые удовлетворяют этому предложению. Каждому множеству формул соответствует класе языков, которые можно

описать предложениями из этого множества. Мы будем использовать одни и те же обозначения для множества формул и для соответствующих классов языков.

Пусть ϕ — некоторое предложение, тогда формулой $\phi^{< x <}(x,y)$ будем обозначать результат замены в формуле ϕ каждого ихождения $\exists z(\dots)$ на $\exists z(x < z < y \land \dots)$ и каждого вхождения $\forall z(\dots)$ на $\forall z(x < z < y \rightarrow \dots)$ (при этом может потребоваться стандартная в аналогичных случаях замена некоторых связанных переменных). Эта формула выражает то же свойство, что и ϕ , но только для подслова, ограниченного позициями x и y.

Пусть класс S_k состоит из языков, которые можно описать предложениями вида $\exists x_1^1 \dots \exists x_{n_1}^1 \forall x_1^2 \dots \forall x_{n_2}^2 \dots Q x_1^k \dots Q x_{n_k}^k \phi$, где $Q \in \{\exists, \forall\}, \ \phi$ — формула без кванторов. Иерархию языков $\{S_k\}_{k \in \mathbb{N}}$ будем называть кванторной. (Мы считаем множество патуральных чисел N равным $\{1, 2, \dots\}$.) Очевидно, что $S_k \cup \check{S}_k \subseteq S_{k+1}$, где $k \in \mathbb{N}$, $\check{S}_k = \{A^+ \setminus L \mid L \in S_k\}$ — двойственный класс для S_k .

Определим индукцией по k множество формул специального вида класса $S_{k,r}, k \geq 0, r \in N$. При $r \in N$ множество формул специального вида класса $S_{0,r}$ состоит из формул без кванторов, которые находятся в дизъюнктивной нормальной форме без повторений элементарных конъюнкций и без повторений конъюнктивных членов в элементарных конъюнкциях. При $k,r\in N$ формула специального вида класса $S_{k,r}$ — это дизъюнкция попарно различных формул вида $\exists z_1^k \exists z_2^k \dots \exists z_p^k \neg \phi$, где $p \leq r, \phi$ формула специального вида класса $S_{k-1,r}$. Класс $S_{k,r}$ состоит из формул, которые эквивалентны формулам специального вида класса $S_{k,r}$. (Экнивалентность понимается как равносильность на ν -структурах. Для формул ϕ и ψ мы будем писать $\phi \equiv \psi$, если ϕ и ψ эквивалентны.) Для каждого $k \in N$ классы языков $S_{k,r}$, $r \in N$, соответствующие множествам формул $S_{k,r}$, исчерпывают класс S_k . По построению, связанные переменные формул специального вида множества $S_{k,r}$ находятся среди $z_1^i, z_2^i, \dots z_r^i, i \leq k$. Легко проверить, что число формул специального вида из $S_{k,r}$ с фиксированным набором свободных переменных конечно.

Пусть $k \ge 0$ и $r \ge 1$. Рассмотрим рефлексивные и транзитивные отношения $\le_{k,r}$ на множестве структур [12].

ОПРЕДЕЛЕНИЕ 2. Пусть ν — множество переменных, u и v — ν —структуры. Екши из $u \models \phi$ следует $v \models \phi$ для любой формулы $\phi \in S_{k,r}$ со свободными переменными из ν , то будем писать $u \leq_{k,r} v$.

Отметим некоторые свойства этих отношений и характеризацию играми Эренфойхта-Фрессе. Опишем нариант игры Эренфойхта-Фрессе $C_{k,r}(u,v)$ с k раундами. В начале игры имеются две $\{y_1, \ldots, y_m\}$ -структуры и и v. В игре участвуют два игрока. Цель первого игрока — показать, что эти две структуры различны, цель второго — показать, что они неразличимы. У каждого игрока есть kr фишек, помеченных переменными $z_1^j,\ldots,z_r^j,\,j=1,\ldots,k$. В первом раунде первый игрок ставит свои фишки $z_1^k, \ldots, z_p^k, p \le r$, на буквы структуры и. В результате $\{y_1, \ldots, y_m\}$ -структура и превратится в $\{y_1, \ldots, y_m, z_1^k, \ldots, z_n^k\}$ структуру и. Второй игрок в ответ на ход первого игрока ставит свои фишки z_1^k, \dots, z_p^k в другую структуру v. Получается еще одна $\{y_1, \ldots, y_m, z_1^k, \ldots, z_n^k\}$ -структура v'. В следующем раунде игроки действуют по тем же правилам, но первый игрок ставит свои фишки уже во вторую структуру v', а второй делает ответный ход в первую и. И так далее. В конце игры получим две структуры ио и ио. Считается, что второй игрок выиграл, если для каждой атомарной формулы α, υ₀ \models α тогда и только тогда, когда $v_0 \models \alpha$. Другими словами, второй игрок выигрывает, когда $u_0 \leq_{0,r} u_0$ и $u_0 \leq_{0,r} u_0$ для всех $r \in N$. В любой конкретной игре у одного из игроков есть выигрышная стратегия.

Характеризацию отношений $\leq_{k,r}$ в терминах игр Эренфойхта-Фрессе даёт следующая

ПЕММА 1. Пусть $u, v - \nu$ -структуры, $k \ge 0, r \ge 1$. Тогда $u \le_{k,r} v$ если и только если у второго игрока есть выигрышная стратегия в игре $C_{k,r}(u,v)$.

Согласно этой лемме, чтобы доказать соотношение $u \leq_{k,r} v$ достаточно описать выигрышную стратегию для второго игрока в игре $C_{k,r}(u,v)$. Это обычно нетрудно сделать, если число раундов k в игре равно одному или двум. В этой статье мы воспользуемся леммой 1 только в случае k=1, а c помощью следующих лемм 2 и 3 проведём индукцию по k.

Мы будем обозначать конкатенацию двух слов (ν -структур) u и v через uv или $u \cdot v$. Если w — слово алфавита A, мы будем использовать обозначение $w^n = w^{n-1} \cdot w$, где $n \ge 2$, $w^1 = w$.

JIEMMA 2. Пусть ν — множество переменных, $k \geq 0$, $r \geq 1$ и u_1 , u_2 , u_1 , u_2 , u_1u_2 , u_1u_2 — ν -структуры. Тогда если $u_1 \leq_{k,r} u_1$ и $u_2 \leq_{k,r} u_2$, то $u_1u_2 \leq_{k,r} u_1u_2$.

Введём обозначения: c(0,r)=1 при всех $r\in N$, c(k,r)=r+(r+1)c(k-1,r)+1 при $k,r\in N$. Для фиксированных k и r из N возьмём M=r+2(r+1)c(k-1,r)+1 и K=M+c(k-1,r). Введём опсрации F и G на множестве A^+ так: $F(u)=u^M$, $G(u,v)=v^Kuv^K$.

JEMMA 3. As another $u,v\in A^+$ us $u\leq_{k-1,r}v$ carryem $F(v)\leq_{k,r}G(u,v)$, ede $k,r\in N$.

Кроме сигнатуры $\Sigma_0 = \{<\} \cup \{Q_a | a \in A\}$, мы будем рассматривать следующие сигнатуры: $\Sigma' = \Sigma_0 \cup \{S, \min, \max\}$, $\Sigma_1 = \Sigma_0 \cup \{s, \min, \max\}$, $\Sigma_2 = \Sigma_0 \cup \{p, \min, \max\}$, $\Sigma_3 = \Sigma_0 \cup \{s, p, \min, \max\}$ и $\Sigma_4 = \Sigma' \cup \Sigma_3$. Символы этих сигнатур интерпретируются так: \min , \max — первая и последняя поэиции в структуре; s(x) — поэиция, непосредственно следующая за x при условии, что x не является последней поэицией, и последняя поэиция в противном случае; p(x) — поэиция, непосредственно предмествующая x при условии, что x не является первой поэицией, и первая поэиция в противном случае; S(x,y) — "y непосредственно следует за x".

Легко видеть, что для любой формулы одной из этих сигнатур можно найти эквивалентную ей формулу в сигнатуре Σ_0 . Если Σ — некоторая сигнатура, то через $S_k(\Sigma)$ и $S_{k,r}(\Sigma)$ мы будем обозначать классы, которые определяются так же, как классы S_k и $S_{k,r}$, если вместо сигнатуры Σ_0 взять сигнатуру Σ . Классы $S_k(\Sigma')$ и $S_{k,r}(\Sigma')$ будем обозначать через S_k' и $S_{k,r}'$.

Нетрудно проверить, что кванторные иерархии для сигнатур Σ' , Σ_1 , Σ_2 , Σ_3 и Σ_4 совпадают. Это вытеквет из хорошо известной в логике [11] процедуры обогащения сигнатуры определимыми предикатными и функциональными символами; надо только учесть, что S,s,p определяются друг через друга формулами очень простого вида. Совпадение кванторных иерархий

объясняет, почему из введенных сигнатур мы будем рассматривать только Σ_0 и Σ' .

Следующее предложение показывает, что наличие в этих сигнатурах констант min и max оказывает влияние только на первый уровень кванторной иерархии.

ПРЕДЛОЖЕНИЕ. Пусть $\{<\}\subseteq \Sigma$. Тогда $S_n(\Sigma)=S_n(\Sigma\cup\{\min,\max\})$ при $n\geq 2$.

ДОКАЗАТЕЛЬСТВО. Пусть $\phi \in S_n(\Sigma \cup \{\min, \max\})$, $n \ge 2$ и переменные x и y не входят в ϕ . Построим формулу ψ заменой всех вхождений \min и \max в формуле ϕ на переменные x и y, соответственно. Тогда

$$\exists x \exists y (\forall z (\neg z < x \land \neg y < z) \land \psi) \equiv \phi.$$

Таким образом, $\phi \in S_n(\Sigma)$.

Рассмотрим отношения $\leq_{k,r}'$, которые определяются так же, как отношения $\leq_{k,r}$, но уже для классов $S'_{k,r}$. Для сигнатуры Σ' можно определить игры $C'_{k,r}(u,v)$ Эренфойхта-Фрессе так же, как это было сделано выше. Тогда для этих отношений и изменённого варианта игр Эренфойхта-Фрессе леммы 1-3 будут также справедливы.

Основным результатом этой статьи является

TEOPEMA. Дая любово алфавита, содержащего не менее двух симоолов, классы языков S_k , S_k' , \check{S}_k и \check{S}_k' , $k \in N$, не обладают свойством редукции.

Как известно, кванторные иерархии $\{S_k\}_{k\in N}$ и $\{S_k'\}_{k\in N}$ нетривиальны [1]: $S_k \neq \check{S}_k$, $S_k' \neq \check{S}_k'$, $k \in N$. Заметим, что это так же следует из нашей теоремы.

Для доказательства теоремы нам понадобится

ЛЕММА 4. Пусть $k \in N$, L, $M \in S_k$ и для каждого $r \in N$ существуют слова u_r , v_r , w_r , u_r такие, что $u_r \leq_{k,r}^r w_r$, $v_r \leq_{k,r}^r w_r$, $x_r \leq_{k,r}^r u_r$, $x_r \leq_{k,r}^r v_r$, $u_r \in L \setminus M$ и $v_r \in M \setminus L$. Тогда классы языков S_k , S_k' , \tilde{S}_k и \tilde{S}_k' не обладают свойством редукции.

ДОКАЗАТЕЛЬСТВО. Предположим, что существуют редущирующие языки L' и M' из S'_k для L и M. Тогда $u_r \in L'$ и $u_r \in M'$. В силу отношений $u_r \leq_{k,r}' w_r$, $u_r \in_{k,r}' w_r$, для достаточно больших r, $w_r \in L' \cap M'$, противоречие. Таким образом,

для языков $L, M \in S_k$ нет редуцирующих множеств из S_k' , следовательно, классы S_k и S_k' не обладают свойством редукции. Аналогично можно показать, что для языков $A^+ \backslash L, A^+ \backslash M \in \check{S}_k$ нет редуцирующих множеств из \check{S}_k' , следовательно, классы \check{S}_k и \check{S}_k' не обладают свойством редукции.

§ 2. Доказательство теоремы

Пусть $A = \{a, b, \ldots\}$ и $a \neq b$. Рассмотрим предложения

$$\phi_1 = \exists x_1 \exists x_2 \exists x_3 \ x_1 < x_2 < x_3 \land Q_b x_1 \land Q_a x_2 \land Q_b x_3,$$

$$\psi_1 = \exists x_1 \exists x_2 \exists x_3 \ x_1 < x_2 < x_3 \land Q_b x_1 \land Q_b x_2 \land Q_b x_3.$$

Эти предложения задают языки L_1 и M_1 из класса S_1 . Возьмём $u_r = a^rbaba^r \in L_1\backslash M_1$, $v_r = a^rbba^r \in M_1\backslash L_1$, $w_r = u_rv_r$ и $x_r = a^{k+1}$.

Используя характеризацию отношений $\leq_{k,r}^{t}$ играми Эренфойхта-Фрессе (лемма 1), нетрудно проверить, что

$$u_r \leq_{1,r} w_r, \quad v_r \leq_{1,r} w_r, \quad x_r \leq_{1,r} u_r, \quad x_r \leq_{1,r} v_r.$$
 (1)

Покажем, например, что $u_r \leq_{1,r} w_r$. Рассмотрим игру $C'_{1,r}(u_r, w_r)$. В начале этой игры имеются две \emptyset -структуры:

$$u_r = \underbrace{aa \dots a}_r bab \underbrace{aa \dots a}_r bab \underbrace{aa \dots a}_r bbb \underbrace{aa \dots a}_r.$$

Пусть первый игрок постанил p фишек $(p \le r)$ в первую структуру. Покажем, что второй игрок может так ответить на ход первого игрока, что полученные структуры будут неразличимы (т.е. любая атомарная формула сигнатуры Σ' будет истинна в одной структуре тогда и только тогда, когда она истинна в другой). Возьмём максимальное число l, $0 \le l \le r$, такое, что на каждой из последних l букв первой структуры стоит хотя бы одна фишка. Тогда $u_r = u'$ $aa \dots a$, $u' \in A^+$, и на последней букве фактора u'

фишек нет. Множество ν переменных, которыми помечены p фишек, использованные первым игроком, разобьём на две группы: первая группа это переменные, которыми помечены фишки, поставленные в фактор \mathbf{u}' , вторая — все остальные.

Для некоторого слова $w' \in A^+$, $w_r = u'w' \underbrace{aa \dots a}_l$. Если из второй структуры $w_r = u'w' \underbrace{aa \dots a}_l$ удалить фактор w', то получится структура u_r . Второй игрок должен полностью скопировать ход первого игрока, мысленно удалив фактор w' из второго слова.

В результате получаем две неразличимых ν -структуры. Действительно. Рассмотрим атомарную формулу S(x,y), где $x,y\in \nu$, причём x— переменная из первой группы, y— из второй. Так как во второй структуре между фишками, помеченными переменными первой группы, и фишками, помеченными переменными второй группы имеются символы фактора w', то S(x,y) ложна во второй структуре. Формула S(x,y) будет ложной и в первой структуре, поскольку на последнюю букву фактора u' первой структуры фишск не было поставлено. Для других атомарных формул проверки очевидны.

По лемме 4, классы $S_1,\ S_1',\ \check{S}_1$ и \check{S}_1' не обладают свойством редукции.

Для k > 1 возьмём

$$\begin{split} u_r^k &= G_1(u_r^{k-1}, w_r^{k-1})F_1(w_r^{k-1}), \ v_r^k = F_1(w_r^{k-1})G_1(v_r^{k-1}, w_r^{k-1}), \\ w_r^k &= G_1(u_r^{k-1}, w_r^{k-1})G_1(v_r^{k-1}, w_r^{k-1}), \ x_r^k = F_1(w_r^{k-1})F_1(w_r^{k-1}), \\ \text{free} \ u_r^1 &= bu_rb, \ v_r^1 = bv_rb, \ w_r^1 = bw_rb, \ F_1(u) = F(bub) \ \text{if} \ G_1(u,v) = G(bub,bvb), \ r \in N. \end{split}$$

Покажем индукцией по k, что

$$u_r^k \le_{k}', w_r^k, v_r^k \le_{k}', w_r^k, x_r^k \le_{k}', u_r^k, x_r^k \le_{k}', v_r^k,$$
 (2)

для всех $k,r \in N$. Для k=1 это следует из соотношений (1) с помощью леммы 2. Заметим, что по той же лемме для $u,v \in A^+$, $k,r \in N$, если $u \leq_{k,r}' v$, то $bub \leq_{k,r}' bvb$, следовательно, лемма 3 остаётся справедливой, если заменить F и G на F_1 и G_1 .

Пусть теперь k>1 и соотношения (2) справедливы для меньших значений k. По индуктивному предположению $v_r^{k-1} \leq_{k-1,r} w_r^{k-1}$, следовательно, в силу леммы 3, $F_1(w_r^{k-1}) \leq_{k,r}' \leq_{k,r}' G_1(v_r^{k-1}, w_r^{k-1})$. По лемме 2, $G_1(u_r^{k-1}, w_r^{k-1})F_1(w_r^{k-1}) \leq_{k,r}' \leq_{k,r}' G_1(u_r^{k-1}, w_r^{k-1})G_1(v_r^{k-1}, w_r^{k-1})$, т.е. $u_r^k \leq_{k,r}' w_r^k$. Остальные соотношения из (2) доказываются аналогично.

Языки L_k , M_k , k > 1, определим так:

$$w \in L_k \iff \underbrace{bb \dots b}_{2k} u \underbrace{bb \dots b}_{2k} \sqsubseteq w$$
, где $u \notin M_{k-1}$,

$$w \in M_k \iff \underbrace{bb \dots b}_{2k} u \underbrace{bb \dots b}_{2k} \sqsubseteq w$$
, где $u \not\in L_{k-1}$.

Покажем, что $L_k, M_k \in S_k, k > 1, r \in N$. Возьмём

$$\phi_{k} = \exists x_{1}^{k} \dots \exists x_{2p}^{k} \left(\bigwedge_{i=1}^{2p} Q_{b} x_{i}^{k} \wedge \bigwedge_{i=1}^{2p-1} x_{i}^{k} < x_{i+1}^{k} \wedge \neg \psi_{k-1}^{< x} < (x_{p}^{k}, x_{p+1}^{k}) \wedge \right)$$

$$\land \forall y^k \bigg(\bigwedge_{i=1}^{p-1} neg(x_i^k < y^k < x_{i+1}^k) \land \bigwedge_{i=p+1}^{2p-1} \neg (x_i^k < y^k < x_{i+1}^k) \bigg) \bigg),$$

$$\psi_k = \exists x_1^k \dots \exists x_{2p}^k \left(\bigwedge_{i=1}^{2p} Q_b x_i^k \wedge \bigwedge_{i=1}^{2p-1} x_i^k < x_{i+1}^k \wedge \neg \phi_{k-1}^{< x < (x_p^k, x_{p+1}^k)} \wedge \neg \phi_{k-1}^{< x_p^k} \wedge \neg \phi_{k-1}^{< x_p^$$

$$\wedge \forall y^k \bigg(\bigwedge_{i=1}^{p-1} \neg (x_i^k < y^k < x_{i+1}^k) \wedge \bigwedge_{i=p+1}^{2p-1} \neg (x_i^k < y^k < x_{i+1}^k) \bigg) \bigg),$$

где $k>1,\ p=2k$. Формулы ϕ_k и ψ_k , принадлежащие классу S_k по построению, описывают языки L_k и M_k . Таким образом, $L_k, M_k \in S_k,\ k>1,\ r\in N$.

Покажем, что $u_r^k \in L_k \backslash M_k$ и $w_r^k \in L_k$, $k \geq 2$, индукцией по k. При k = 2, $u_r^2 = G(b^2u_rb^2, b^2w_rb^2)F(b^2w_rb^2)$, следовательно, $b^4u_rb^4 \sqsubseteq u_r^2$. Так как $u_r \in L_1 \backslash M_1$, то $u_r^2 \in L_2$. Аналогично, $w_r^2 \in L_2$. Если $b^4ub^4 \sqsubseteq u_r^2$, то $u = z_1b^4z_2b^4\dots z_m$, где $m \in N$ и $z_i \in \{u_r, w_r\}$. Но тогда $u \in L_1$ и, следовательно, $u_r^2 \notin M_2$.

Пусть теперь k>2. По построению, $b^{k+1}u_r^{k-1}b^{k+1}=b^{2k}\tilde{u}_rb^{2k}\sqsubseteq u_r^k$, где $b^{k-1}\tilde{u}_rb^{k-1}=u_r^{k-1}$. По индуктивному пред-

положению $u_r^{k-1} \in L_{k-1} \backslash M_{k-1}$, следовательно, $\tilde{u}_r \in L_{k-1} \backslash M_{k-1}$ и $u_r^k \in L_k$. Аналогично, $w_r^k \in L_k$. Если $b^{2k}ub^{2k} \sqsubseteq u_r^k$, то $u = z_1b^{2k}z_2b^{2k}\dots z_m$, где $m \in N$, $z_i \in \{\tilde{u}_r, \bar{w}_r\}$, $b^{k-1}\bar{u}_rb^{k-1} = u_r^{k-1}$ и $b^{k-1}\bar{w}_rb^{k-1} = w_r^{k-1}$. По индуктивному предположению $u_r^{k-1}, w_r^{k-1} \in L_{k-1}$, следовательно, $\tilde{u}_r, \tilde{w}_r \in L_{k-1}$ и $u \in L_{k-1}$. Отсюда, $u_r^k \notin M_k$.

Аналогично можно показать, что $v_r^k \in M_k \backslash L_k$ и $w_r^k \in M_k$, $k \geq 2$. По лемме 4, классы S_k , S_k' , \check{S}_k и \check{S}_k' , $k \geq 2$, не обладают свойством редукции.

ЗАМЕЧАНИЕ. Аналог теоремы 1 можно доказать для случая ω -языков, состоящих из бесконечных слов. Для этого можно модифицировать наше доказательство теоремы 2. При этом слова u_r , v_r , w_r , v_r , v_r^k , v_r^k , w_r^k и x_r^k , k>1, из нашего доказательства можно заменить на ω -слова $u_r a^\omega$, $v_r a^\omega$, $w_r a^\omega$, $v_r a^\omega$, $v_r^k a^\omega$, $v_r^k a^\omega$, $w_r^k a^\omega$ и $x_r^k a^\omega$, а формулы ϕ_k , и ψ_k для определения ω языков L_k и M_k взять те же, что и в доказательстве теоремы.

В заключение автор хотел бы поблагодарить В.Л. Селиванова за предоставление литературы и помощь в работе.

Литература

- 1. BRZOZOWSKI J.A., KNAST R. The dot-depth hierarchy of star-free languages is infinite //J. Comput. System Sci. 1978. Vol. 16. P. 37-55.
- 2. BÜCIII J.R. Weak second-order arithmetic and finite automata //Z. Math. Logik und Grundl. Math. 1960. Vol. 6. P. 66-92.
- 3. EBINGHAUS H.D., FLUM J. Finite Model Theory. Springer. New York, 1995.
- 4. MCNAUGHTON R., PAPERT S. Counter-free automata. MIT Press, Cambridge, Massachusets, 1971.
- 5. PERRIN D., PIN J.E. First-order logic and star-free sets //J. Comput. System. Sci. 1986. Vol. 32. P. 393-406.
- 6. SELIVANOV V.L. Fine hierarchies and Boolean terms // J. Symbolic Logic. 1995. Vol. 60. P. 289-317.

- 7. SELIVANOV V.L. Fine hierarchy of regular ω -languages //Theoretical Computer Science 1998. Vol. 191. P. 37-59.
- 8. STRAUBING H. Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser, 1994.
- 9. THOMAS W. Classifying regular events in symbolic logic //J. Comput. System Sci. 1982. Vol. 25. P. 360-376.
- 10. СЕЛИВАНОВ В.Л., ЩУКИН А.Г. Об иерархиях регулярных бозовоздных языков. Новосибирск, 2000. 29 с. (Препринт/СО РАН, ИСИ; 69).
- 11. ШЕНФИЛД ДЖ. Математическая логика. Наука, М., 1975.
- 12. ЩУКИН А.Г. Разностные иерархии регулярных языков //Обобщенная вычислимость и определимость. Новосибирск, 1998. Вып. 161: Вычислительные системы.— С. 141-155.

Поступила в редакцию 26 января 2000 года