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Let {X (k)
i , i ≥ 1}, k = 1,m, be a finite set of independent copies

of a sequence of i.i.d. r.v-s in an arbitrary measurable space (X,A)
and distribution P. For any natural n1, . . . , nm, consider m
independent empirical point processes based on respective samples
X

(k)
1 , ...,X

(k)
nk , k = 1,m:

V
(k)
nk (A) :=

nk∑
i=1

IA(X
(k)
i ), k = 1,m, A ∈ A.

Define also m independent accompanying Poisson point processes

Π
(k)
nk (A) := Vπk (nk )(A), k = 1,m, A ∈ A,

where πk(t), k = 1,m, are independent standard Poisson processes
on the positive half-line, which do not depend on all sequences
{X (k)

i ; i ≥ 1}, k = 1,m.



We consider the point processes Vnk
(·) and Πnk

(·) as stochastic
processes with trajectories from the measurable space (BA, C) of all
bounded functions indexed by the elements of the set A, with the
σ-algebra C of all cylindrical subsets of the space BA. The
distributions of stochastic processes Vnk

(·) and Πnk
(·) on C are

defined in a standard way.
Now, introduce the vector-valued empirical and accompanying
Poisson point processes

V n̄(A) := (V
(1)
n1 (A), ...,V

(m)
nm (A)) ≡ V n̄,

Πn̄(A) := (Π
(1)
n1 (A), ...,Π

(m)
nm (A)) ≡ Πn̄,

where n̄ = (n1, n2, ..., nm). The vector-valued point processes V n̄

and Πn̄ are considered as random elements with values in the
measurable space ((BA)m, Cm).



ADDITIVE STATISTICS
Let measurable sets ∆1,∆2, ... form a finite or countable partition
of the sample space under the condition pi := P(∆i ) > 0 for all i .
Without loss of generality, we can assume that the sequence {pi} is
monotonically nonincreasing. Denote by ν

(k)
nk1, ν

(k)
nk2, . . ., k = 1,m,

the corresponding group frequencies defined by the sample
X

(k)
1 , . . . ,X

(k)
nk . Put

ν̄i n̄ := V n̄(∆i ) =
(
ν

(1)
n1i

, . . . , ν
(m)
nmi

)
, i = 1, 2, . . . .



Consider a class of additive functionals of the form

Φf (V n̄) :=
∑
i≥1

fi n̄ (ν̄i n̄) , (1)

where f ≡ {fi n̄} is an array of arbitrary finite functions defined on
Zm

+ under the condition∑
i≥1

|fi n̄(0, . . . , 0)| < ∞ ∀n, (2)

which ensures the correct definition of the functional Φf (V n̄) in the
case of a countable partition of the sample space, since the sum
under consideration contains only a finite set of nonzero random
vectors ν̄i n̄. In the case of a finite partition and m = 1 additive
functionals of the form (1) were considered by Yu.I. Medvedev in
1970-1977.



Examples.
1) Consider a finite partition {∆i ; i = 1, . . . ,N} of the sample
space. Put fi n̄(x̄) := |x̄−n̄pi |2

|n̄pi | , i = 1, . . . ,N, where | · | is the
standard Euclidean norm in Rm. Then the functional

Φχ2(V n̄) :=
N∑

i=1

|ν̄i n̄ − n̄pi |2

|n̄pi |
(3)

is an m-variate version of a well-known χ2-statistic. Note that, in
the present paper, we are primarily interested in the case where
N ≡ N(n̄) →∞ as n̄ →∞ (i.e., nk →∞ ∀k ≤ m).



2) Let now the sizes of all m samples be equal: nj = n
∀j = 1, . . . ,m. In an equivalent reformulation of the original
problem, we consider a sample of m-dimensional observations
{(X 1

i , . . . ,Xm
i ); i ≤ n} under the main hypothesis that the sample

vector coordinates are independent and have the same N-atomic
distribution with unknown masses p1, . . . , pN . In this case, the
log-likelihood function can be represented as the additive functional

Φlog(V n̄) :=
N∑

i=1

(ν̄i n̄, 1̄) log pi ,

where 1̄ is the unit vector in Rm and (·, ·) is the Euclidean inner
product.



3) Consider a finite or countable partition {∆i ; i ≥ 1}. Let
fi n̄(x̄) ≡ f (x̄) := IB(x̄) be the indicator function of some subset
B ⊂ Zm

+ . Then the functional

ΦIB (V n̄) :=
∑
i≥1

IB(ν̄i n̄) (4)

counts the number of partition elements (cells) containing any
number of vector sample observations from the range B in a
polynomial scheme (finite or infinite) of placing particles into cells
Note that in the case of an infinite polynomial scheme in (4), it is
additionally assumed that 0 /∈ B. The case of infinite polynomial
scheme for m = 1 in (4) was studied by R.Bahadur (1960); S.Karlin
(1967); D.Darling (1967); V.Kolchin, B.Sevastyanov, and
V.Chistyakov (1976); A.Barbour, A.Gnedin (2009); A.Kovalevsky,
M.Chebunin (2016), and others.



4) In the case m = 1, consider the joint distribution of the r.v-s

ΦIB (Vn1),ΦIB (Vn1+n2), . . . ,ΦIB (Vn1+...+nm)

defined in (4) by the sample (X1, . . . ,XN), with N = n1 + . . . + nm.
It is clear that proving the multivariate CLT for this joint
distribution, we study the limit behavior of the linear combinations

a1ΦIB (Vn1) + a2ΦIB (Vn1+n2) + . . . + amΦIB (Vn1+...+nm)

for almost all vectors (a1, . . . , am). It is easy to see that

Vn1+...+nj = V
(1)
n1 + . . . + V

(j)
nj ∀j ≤ m,

where the EPP V
(1)
n1 , . . . ,V

(j)
nj are defined by the independent

subsamples (X1, . . . ,Xn1), (Xn1+1, . . . ,Xn1+n2),. . . ,
(XN−nm+1, . . . ,XN).



So, in this case, we deal with a functional of the form (1) defined
by m independent empirical point processes corresponding to the m
independent subsamples (X1, . . . ,Xn1), (Xn1+1, . . . ,Xn1+n2),. . . ,
(XN−nm+1, . . . ,XN), and with the array of functions of m variables

fi n̄(x̄) := a1IB(x1)+ a2IB(x1 + x2)+ . . .+ amIB(x1 + . . .+ xm), (5)

where x̄ := (x1, ..., xm).



5) Consider the stochastic process {ΦIB (V n̄); B ⊂ Zm
+} indexed by

all subsets of Zm
+. As was noted above, studying the asymptotic

behavior of the joint distributions of this process can be reduced to
studying the asymptotic behavior of the distributions of any linear
combinations of corresponding one-dimensional projections of this
process, i.e., to studying the asymptotic behavior of the
distributions of functionals of the form (1) for m = 1 and arrays of
functions

fi n̄(x) ≡ f (x) := a1IB1(x) + a2IB2(x) + . . . + ar IBr (x) (6)

for almost all vectors (a1, . . . , ar ). For one-point sets, the
asymptotic analysis of the above-mentioned joint distributions can
be found, for example, by S.Karlin (1967); D.Darling (1967);
V.Kolchin, B.Sevastyanov, and V.Chistyakov (1976); Barbour and
Gnedin (2009).



POISSONIZATION
The Poissonian version of functional (1) under condition (2) is as
follows:

Φf (Πn̄) :=
∑
i≥1

fi n̄ (π̄i n̄) , (7)

where π̄i n̄ =
(
π

(1)
n1i

, ..., π
(m)
nmi

)
, π

(k)
nk i := Πnk

(∆i ), i ≥ 1, is a sequence
of independent Poisson random variables with respective
parameters nkpi .



In addition, one can also indicate a third class of additive
functionals (under condition (2) that has the same property:

Φ∗f :=
∑
i≥1

fi n̄ (ν̄∗i n̄) ,

where {ν̄∗i n̄, i ≥ 1} is a sequence of independent random vectors
such that L(ν̄∗i n̄) = L(ν̄i n̄) for all i . The functional Φ∗f is well
defined due to the Borel–Cantelli lemma and the simple estimate
P(ν̄∗i n̄ 6= 0) = P(ν̄i n̄ 6= 0) ≤ m‖n̄‖pi , where ‖n̄‖ := maxj≤m nj .



MAIN RESULT (POISSONIZATION PRINCIPLE)
Let us agree that the symbol “=⇒” in what follows will denote the
weak convergence of distributions. The main result of the paper is
as follows.
Theorem 3. Let fi n̄(πi n̄)Dn̄

p→ 0 as n̄ →∞ for every fixed i . Then
the following three asymptotic relations are equivalent:

1) L
(
Φf (V n̄)Dn̄ −Mn̄

)
=⇒ L(γ) as n̄ →∞,

2) L
(
Φf (Πn̄)Dn̄ −Mn̄

)
=⇒ L(γ) as n̄ →∞,

3) L (Φ∗f Dn̄ −Mn̄) =⇒ L(γ) as n̄ →∞,

where Mn̄ and Dn̄ are some scalar arrays and γ is some random
variable.



APPLICATIONS
First, we note one useful property of the expectations of the
functionals under consideration as functions of n̄.
Lemma 2. Let maxn̄ supx̄ |fi n̄(x̄)| ≤ Ci ,

∑
i≥1

Cipi < ∞, and let

∑
i≥1

E|fi n̄ (π̄i n̄) | < ∞ ∀n̄. (8)

Then the relation lim
n̄→∞

|EΦf (V n̄)| = ∞ is equivalent to the similar

relation lim
n̄→∞

|EΦf (Πn̄)| = ∞. In the case of infinite limit,

EΦf (V n̄) ∼ EΦf (Πn̄)

as n̄ →∞.



R e m a r k 3. For functionals of the form (4) in an infinite
polynomial scheme, the conditions of Lemma 2 are typical. Let
m = 1 and B := {j : j > k} for any k ≥ 0. Then

lim
n→∞

EΦf (Vn) = lim
n→∞

∑
i≥1

P(νin > k) = ∞,

since, by virtue of the law of large numbers, lim
n→∞

P(νin > k) → 1

holds for every fixed i . Moreover, in the case under consideration,
obviously, EΦf (Vn) ≤ n. Similarly, without any restrictions on the
probabilities {pi}, the infinite limits in Lemma 2 for functionals of
the form (4) also hold for the set B consisting of all odd natural
numbers. Here the limit relation
lim

n→∞
EΦf (Πn̄) ≡ lim

n→∞

∑
i ≥1

P(πin ∈ B) = ∞ follows immediately

from the equality P(πin ∈ B) = 1
2(1− e−2npi ).



It is also worth noting that for some sets B the main contribution
to the limit behavior of the series

∑
i≥1

P(πin ∈ B) can be made not

only by their initial segments but also tails. For example, this will
be the case for any one-point sets Bk := {k} for k > 0 if the group
probabilities are given as pi = Ci−1−b or pi = ce−Co iα for some
constants c ,C ,Co , b > 0 and α ∈ (0, 1). In this case, for any
subset B of natural numbers in the definition of the functionals (4),
the expectation limits indicated in Lemma 2 will be infinite. On the
other hand, if pi = ce−Co i , then for any one-point set the
expectations mentioned will be bounded uniformly in n.



Now we present one of the corollaries of Theorem 3, the law of
large numbers for the additive functionals under consideration,
setting in this theorem Dn̄ := (EΦf (Πn̄))

−1, Mn̄ := 0 and γ := 1.
Corollary 2. Let the conditions of Lemma 2 be fulfilled. If
|EΦf (Πn̄)| → ∞ as n̄ →∞ then the following criterion holds:

Φf (V n̄)

EΦf (V n̄)

p−→ 1 iff
Φf (Πn̄)

EΦf (Πn̄)

p−→ 1;

in this case, the normalizations EΦf (V n̄) and EΦf (Πn̄) can be
swapped.



R e m a r k 4. In virtue of Chebyshev inequality, a sufficient
condition for the limit relations in Corollary 2 is as follows:∑

i≥1
Varfi n̄(π̄i n̄)(∑

i≥1
Efi n̄(π̄i n̄)

)2
→ 0.

For example, let fi n̄(·) ≥ 0 and sup
x̄ ,i ,n̄

fi n̄(x̄) ≤ C0. Then

Varfi n̄(π̄i n̄) ≤ C0Efi n̄(π̄i n̄) and∑
i≥1

Varfi n̄(π̄i n̄)(∑
i≥1

Efi n̄(π̄i n̄)

)2
≤ C0

∣∣∣∣∣∣
∑
i≥1

Efi n̄(π̄i n̄)

∣∣∣∣∣∣
−1

→ 0.

In particular, this estimate is valid in the case fi n̄(x̄) := IB(x̄),
where 0 /∈ B, and EΦf (Πn̄) =

∑
i≥1

P(π̄i n̄ ∈ B) →∞.



Lemma 3. Under the conditions maxn̄ supx̄ |fi n̄(x̄)| ≤ Ci ∀i and∑
i≥1

C 2
i pi < ∞ the limit relation lim

n̄→∞
VarΦf (V n̄) = ∞ holds if and

only if lim
n̄→∞

VarΦf (Πn̄) = ∞. In the case of infinite limit the

following equivalence is valid: VarΦf (V n̄) ∼ VarΦf (Πn̄) as n̄ →∞.



Corollary 3. Under the conditions of Lemma 3 and
VarΦf (Πn̄) →∞ as n̄ →∞ the limit relation

L

(
Φf (V n̄)− EΦf (V n̄)

Var1/2Φf (V n̄)

)
=⇒ N(0, 1) as n̄ →∞,

is valid if and only if

L

(
Φf (Πn̄)− EΦf (Πn̄)

Var1/2Φf (Πn̄)

)
=⇒ N (0, 1) as n̄ →∞,

where N (0, 1) is the standard normal distribution. In this case, the
normalizing and centering sequences in these two limit relations can
be respectively swapped.
In order to prove this corollary we should put in Theorem 3
Dn̄ := Var−1/2Φf (Πn̄), Mn̄ := EΦf (V n̄)Var−1/2Φf (Πn̄), and
L(γ) := N (0, 1).



R e m a r k 5. The validity of the central limit theorem for the
sequence Φf (Πn̄) in Theorem 3 will be justified if, say, the
third-order Lyapunov condition is met:∑

i≥1
E|fi n̄(π̄i n̄)− Efi n̄(π̄i n̄)|3(∑
i≥1

Varfi n̄(π̄i n̄)

)3/2
→ 0 as n̄ →∞.

For example, let sup
x̄ ,i ,n̄

|fi n̄(x̄)| ≤ C0. Then it is easy to see that∑
i≥1

E|fi n̄(π̄i n̄)− Efi n̄(π̄i n̄)|3 ≤ 2C0

∑
i≥1

Varfi n̄(π̄i n̄).



Examples of asymptotic behavior of the mean and variance.
1) Let m = 1, Bk := {i : i > k} for any k ∈ Z+ and let
pi := C i−1−b, where b > 0, i = 1, 2, . . .. Then

E
∑
i≥1

I (πin > k) =
∑
i≥1

P(πin > k) =
∑
i≥1

γk+1,1(npi )

∼ (Cn)
1

1+b

∞∫
0

γk+1,1(y
−1−b)dy =

(Cn)
1

1+b

k!
Γ

(
k +

b

1 + b

)
, (9)

where γk+1,1(z) :=
z∫
0

tk

k!e
−tdt, Γ(z) :=

∞∫
0

tz−1e−tdt, z > 0. For an

arbitrary subset B of naturals one has

E
∑
i≥1

I (πin ∈ B) ∼ (Cn)
1

1+b

(1 + b)

∑
k∈B

1

k!
Γ

(
k − 1

1 + b

)
. (10)



Φf (Πn̄) :=
∑
i≥1

∑
s≤r

as I (πin = ks), where kj are pairwise different.

Var
∑
i≥1

∑
s≤m

as I (πin = ks) ∼
(Cn)

1
1+b

b + 1

[
r∑

s=1

a2
s

ks !
Γ

(
ks −

1

b + 1

)

−
r∑

s 6=j=1

2
1

b+1
−ks−kj asaj

ks !kj !
Γ

(
ks + kj −

1

b + 1

) ≡ n
1

1+b

r∑
s,j=1

Bs,jasaj

if only
r∑

s,j=1
Bs,jasaj 6= 0 . Note that {Bs,j} is the limit covariance

matrix of the sequence of random vectorsn
− 1

2(1+b)

∑
i≥1

I (πin = k1), . . . , n
− 1

2(1+b)

∑
i≥1

I (πin = km)

 .



Φf (Πn̄) :=
∑
i≥1

∑
s≤r

as I (πin > ks) ∀k1 ≤ . . . ≤ kr .

VarΦf (Πn) ∼ (Cn)
1

1+b

 r∑
s=1

a2
s

∞∫
0

Γks+1,1(v
−1−b)dv

−
r∑

s 6=j=1

asaj

∞∫
0

Γks+1,1(v
−1−b)Γkj+1,1(v

−1−b)dv

 .



χ2-STATISTICS
Finally, here is another consequence of theorem 3, relating to the
asymptotic behavior of χ2-statistics in (3) for m = 1 and
N ≡ N(n) →∞. First of all, note that

EΦχ2(Πn) = N,

Dn := VarΦχ2(Πn) = 2N +
N∑

i=1

1

npi
.

Corollary 4. Let N ≡ N(n) →∞ as n →∞. Then the following
two asymptotic relations are equivalent:

L
(

Φχ2(Vn)− N

Dn
1/2

)
=⇒ N (0, 1), (11)

L
(

Φχ2(Πn)− N

Dn
1/2

)
=⇒ N (0, 1). (12)



Note that the centering sequence En can be replaced with its
equivalent sequence EΦχ2(Vn) = N − 1. Replacing in the
normalization in (11) the variance Dn with the variance of the
χ2-statistic itself, i.e., by the term

VarΦχ2(Vn) = 2N +
1

N

N∑
i=1

1

npi
− 3N − 2

n
,

is possible only if these two variances are equivalent. For example,
this would be the case if mini≤N npi →∞. This means that the
growth rate of the sequence N ≡ N(n) is subject to appropriate
constraints, which is not the case in the above consequence.
So, in Corollary 4, we can talk about a double limit when
n,N →∞.



The formulated criterion allows us to establish a fairly general
sufficient condition for the asymptotic normality of χ2-statistics
with an increasing number of groups.
Theorem 4. Let N ≡ N(n) →∞ as n →∞. Then the asymptotic
relation (11) is valid if ∑N

i=1(npi )
−2(

N +
∑N

i=1(npi )−1
)3/2

−→ 0 (13)

as n →∞.
The problem of finding more or less broad sufficient conditions for
asymptotic normality χ2-statistics with a growing number of groups
were studied by many authors in the second half of the last century
(for example, see S.Tumanyan, Y.Medvedev, V.Kruglov).



Note that all known sufficient conditions for the above weak
convergence provide execution of (13). For example, the condition
mini≤N npi →∞ along with N →∞ (see G.Steek, S.Tumanyan),
obviously immediately entails the limit relation (13). It is equally
obvious that the requirement of the so-called regularity of
polynomial models (see Y.Medvedev, V.Kruglov), i.e.,

0 < c1 ≤ min
i≤N

Npi , max
i≤N

Npi < c2 < ∞,

where the constants c1 and c2 do not depend on N, also implies
(13).



On the other hand, it is easy to construct examples when the
regularity requirement of the polynomial model is violated, the
relation (13) is valid.
For example, let pi := CN i−1−b, i = 1, . . . ,N, where b > 0 and

CN :=
(∑

i≤N i−1−b
)−1

. It is easy to see that, as N →∞, the

sums
∑N

i=1 p−2
i and

∑N
i=1 p−1

i increase as N3+2b and N2+b,
respectively. Therefore, as n,N →∞, the limit relation (13) is
equivalent to

N3+2b

√
n(N2+b)3/2

=
Nb/2

√
n
→ 0, i.e., N = o(n

1
b ).

The conditions by Tumanyan will be satisfied if N = o(n
1

1+b ).



Proof of Theorem 4.

ξin :=
(πin − npi )

2

npi
− 1, i = 1, . . . ,N(n), n ≥ 1.

The Lyapunov condition of third order, which guarantees the
fulfillment of the central limit theorem (12), is as follows:

D
−3/2
n

N(n)∑
i=1

E|ξin|3 → 0 as n →∞. (14)

To estimate the absolute third moment in (14), we need the
well-known recurrence relation

E(πλ − λ)n = λ

n−2∑
k=0

C k
n−1E(πλ − λ)k , n ≥ 2,

where πλ is a Poisson random variable with parameter λ. From here
it follows that

E(πλ − λ)6 = 15λ3 + 25λ2 + λ.



Putting λ = npi and using the elementary estimate
|a2 − 1|3 ≤ 4(a6 + 1), we obtain

E|ξin|3 ≤
4

(npi )3
(
15(npi )

3 + 25(npi )
2 + npi

)
+4 = 64+

100

npi
+

4

(npi )2
.

Thus, the Lyapunov ratio (14) is estimated by the value

64N + 100
∑N

i=1
1

npi
+ 4

∑N
i=1

1
(npi )2(

2N +
∑N

i=1
1

npi

)3/2

≤ 100

(
2N +

N∑
i=1

1

npi

)−1/2

+
4
∑N

i=1
1

(npi )2(
N +

∑N
i=1

1
npi

)3/2
→ 0,

that is true in virtue of (13). �



GENERALIZATION
We can reformulate the above-mentioned Poissonization duality
theorem for more general type of additive statistics

V
(m)
n (νn) :=

∑
i1≤...≤im

fn,i1,...,im(νn,i1 , . . . , νn,im),

where {fn,i1,...,im(·)} is an array of finite functions defined on Zm
+

and satisfying only the restriction∑
i1≤...≤im

|fn,i1,...,im(0, . . . , 0)| < ∞ ∀n.



Theorem. As n →∞, the following three limit relations are
equivalent:

1) L
(
V

(m)
n (νn)Dn −Mn

)
=⇒ L(γ),

2) L
(
V

(m)
n (πn)Dn −Mn

)
=⇒ L(γ),

3) L
(
V

(m)
n (ν∗n)Dn −Mn

)
=⇒ L(γ)

provided that fn,i1,...,im(πn,i1 , . . . , πn,im)Dn
p→ 0 for all multiindices

(i1, . . . , im), where Mn and Dn are some sequences, γ is some
random variable, and the symbol «=⇒» denotes the weak
convergence of distributions.



For example, one can study in this setting the functional

Φ̃
(m+2)
I (Vn) :=

∑
i≥1

IĀ(νi−1,n)IA(νi ,n) · · · IA(νi+m−1,n)IĀ(νi+m,n),

where 0 /∈ A, Ā is the complement of A in the set Z+, and ν0n = 0.
This functional is the number of success chains of length m in the
Bernoulli trials {IA(νi ,n); i ≥ 1}.


