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Let {X,.(k), i > 1}, k =1, m, be a finite set of independent copies

of a sequence of i.i.d. r.v-s in an arbitrary measurable space (X, .4)

and distribution P. For any natural ny, ..., ny,, consider m

independent empirical point processes based on respective samples
k K —

XM xP k=T m:

n
V,Sf)(A) = Z IA(X,-(k)), k=1,m, Ac A
i—1

Define also m independent accompanying Poisson point processes

NY(A) = Vo m(A), k=T,m, A€ A,

where m(t), k =1, m, are independent standard Poisson processes
on the positive half-line, which do not depend on all sequences
(x®.i>1y, k=T,m.



We consider the point processes V,, (-) and I, (+) as stochastic
processes with trajectories from the measurable space (B, C) of all
bounded functions indexed by the elements of the set A, with the
o-algebra C of all cylindrical subsets of the space B*. The
distributions of stochastic processes Vj, (-) and M, (-) on C are
defined in a standard way.

Now, introduce the vector-valued empirical and accompanying
Poisson point processes

Vi(A) = (VID(A), ..., VT (A) = Va,

Ma(A) == (NP (A), ..., M (A)) = T,

where i = (n1, ny, ..., Ny). The vector-valued point processes V5
and M5 are considered as random elements with values in the
measurable space ((B4)™,C™).



ADDITIVE STATISTICS
Let measurable sets A1, Ay, ... form a finite or countable partition
of the sample space under the condition p; := P(A;) > 0 for all .

Without loss of generality, we can assume that the sequence {p;} is
monotonically nonincreasing. Denote by V,(,Ik(%, 1/,(,2, o k=1,m,
the corresponding group frequencies defined by the sample

x® L x put



Consider a class of additive functionals of the form

V3) = Z fin (Vin) , (1)

i>1

where f = {fiz} is an array of arbitrary finite functions defined on
Z" under the condition

ZMn . |<OO Vn, (2)

i>1

which ensures the correct definition of the functional ®¢(V7) in the
case of a countable partition of the sample space, since the sum
under consideration contains only a finite set of nonzero random
vectors 7;5. In the case of a finite partition and m = 1 additive
functionals of the form (1) were considered by Yu.l. Medvedev in
1970-1977.



Examples.

1) Consider a finite partition {A;; i =1,..., N} of the sample
space. Put fi5(X) := R%’;ﬂ"'z, i=1,...,N, where | | is the
standard Euclidean norm in R™. Then the functional

N ’ 2

— Uiz — ND;
6o (Vs) = Y 17m TP

= (3)

= I7nil
is an m-variate version of a well-known y?-statistic. Note that, in
the present paper, we are primarily interested in the case where
N = N(n) — oo as it — oo (i.e., ng — oo Vk < m).



2) Let now the sizes of all m samples be equal: nj = n
Vj=1,...,m. In an equivalent reformulation of the original
problem, we consider a sample of m-dimensional observations
{(X},...,X™); i < n} under the main hypothesis that the sample
vector coordinates are independent and have the same N-atomic
distribution with unknown masses pi, ..., pn. In this case, the
log-likelihood function can be represented as the additive functional

N

q)log(vﬁ) = Z(_iﬁ’ I) lOg Pi,

i=1

where 1 is the unit vector in R™ and (-, -) is the Euclidean inner
product.



3) Consider a finite or countable partition {A;; i > 1}. Let
fin(x) = f(x) := Ig(X) be the indicator function of some subset
B C ZT . Then the functional

015(Va) = Y Ie(7in) (4)

counts the number of partition elements (cells) containing any
number of vector sample observations from the range B in a
polynomial scheme (finite or infinite) of placing particles into cells
Note that in the case of an infinite polynomial scheme in (4), it is
additionally assumed that 0 ¢ B. The case of infinite polynomial
scheme for m =1 in (4) was studied by R.Bahadur (1960); S.Karlin
(1967); D.Darling (1967); V.Kolchin, B.Sevastyanov, and
V.Chistyakov (1976); A.Barbour, A.Gnedin (2009); A.Kovalevsky,
M.Chebunin (2016), and others.



4) In the case m = 1, consider the joint distribution of the r.v-s

¢IB( an), ¢/B( Vn1+n2)7 R ¢IB(V”1+---+nm)
defined in (4) by the sample (Xi,..., Xy), with N =n; + ...+ np,.
It is clear that proving the multivariate CLT for this joint
distribution, we study the limit behavior of the linear combinations
31¢IB(Vn1) + 32¢IB(Vn1+n2) +...+ am¢IB(Vn1+...+nm)
for almost all vectors (a1, ..., am). It is easy to see that

Vi t.tn = Vrgll) +... 4+ V,g) Vj<m,

where the EPP V,Sll), ce V,sf) are defined by the independent
subsamples (X1,..., Xn), (Xng+15- -+, Xngtny ) e -+
(XN—npt1y---s XN)-



So, in this case, we deal with a functional of the form (1) defined
by m independent empirical point processes corresponding to the m
independent subsamples (Xi,..., Xn,), (Xnj41,-- s Xnytm)o- - -
(XN—n,+1,---,Xn), and with the array of functions of m variables

fin(x) = a1lg(x1) +a2lg(x1+x2) + ...+ amls(xa+ ...+ xm), (5)

where X 1= (X1, ..., Xm)-



5) Consider the stochastic process {®,(V5); B C Z7T} indexed by
all subsets of Z'7. As was noted above, studying the asymptotic
behavior of the joint distributions of this process can be reduced to
studying the asymptotic behavior of the distributions of any linear
combinations of corresponding one-dimensional projections of this
process, i.e., to studying the asymptotic behavior of the
distributions of functionals of the form (1) for m = 1 and arrays of
functions

fin(x) = f(x) = ailg,(x) + azlg,(x) + ... + arlg,(x)  (6)

for almost all vectors (a1, ..., a,). For one-point sets, the
asymptotic analysis of the above-mentioned joint distributions can
be found, for example, by S.Karlin (1967); D.Darling (1967);
V.Kolchin, B.Sevastyanov, and V.Chistyakov (1976); Barbour and
Gnedin (2009).



POISSONIZATION
The Poissonian version of functional (1) under condition (2) is as

follows:
=Y fin(Fin) (7)
i>1
where 75 = 5113" ,wf,:,)) ff;? =My, (Aj), i > 1, is a sequence
of independent Poisson random variables with respective
parameters nyp;.



In addition, one can also indicate a third class of additive
functionals (under condition (2) that has the same property:

: me Zap

i>1

where {7%, i > 1} is a sequence of independent random vectors
such that £(7};) = L(7ia) for all i. The functional ®F is well
defined due to the Borel-Cantelli lemma and the simple estimate
P(i}, # 0) = P(7in # 0) < ml[lpi, where [[7] := maxjm y.



MAIN RESULT (POISSONIZATION PRINCIPLE)

Let us agree that the symbol “=" in what follows will denote the
weak convergence of distributions. The main result of the paper is
as follows.

Theorem 3. Let fiz(mi7n)Ds £.0ash— oo for every fixed i. Then
the following three asymptotic relations are equivalent:

1) L (CDf(V,—,)D,-, — Mﬁ) — ﬁ("}/) as n — oo,

2) L ((Df(ﬁ,—,)D,—, — Mﬁ) — E(’}/) as n — oo,
3) L(®:Ds — Mz) = L(y) as 1 — oo,

where My and Dy are some scalar arrays and ~ is some random
variable.



APPLICATIONS

First, we note one useful property of the expectations of the

functionals under consideration as functions of 7.

Lemma 2. Let maxzsupy |fia(X)| < G, > Cipi < oo, and let
i>1

> Elfa (Ria) | < 0o VA. (8)

i>1

Then the relation I|m |[E®#(V7)| = oo is equivalent to the similar

relation I|m ]Ed>,c( )\ = 00. In the case of infinite limit,

Ed(V7) ~ Edf(M5)



R e m ar k 3. For functionals of the form (4) in an infinite
polynomial scheme, the conditions of Lemma 2 are typical. Let
m=1and B:={j: j > k} for any k > 0. Then

lim E®¢(V,) = lim > P(vj, > k) =
n—oo

n—o0 .
i>1

since, by virtue of the law of large numbers, lim P(v;, > k) — 1
n—oo

holds for every fixed i. Moreover, in the case under consideration,
obviously, E®¢(V},,) < n. Similarly, without any restrictions on the
probabilities {p;}, the infinite limits in Lemma 2 for functionals of
the form (4) also hold for the set B consisting of all odd natural
numbers. Here the limit relation

lim Ed¢(M5) = [lim 3> P(min € B) = oo follows immediately
n—=oo >

from the equality P(m;, € B) = %(1 —2np,-).



It is also worth noting that for some sets B the main contribution
to the limit behavior of the series Y P(m, € B) can be made not
i>1
only by their initial segments but also tails. For example, this will
be the case for any one-point sets By := {k} for k > 0 if the group
probabilities are given as p; = Ci~17 or p; = ce= %" for some
constants ¢, C, Co, b > 0 and « € (0, 1). In this case, for any
subset B of natural numbers in the definition of the functionals (4),
the expectation limits indicated in Lemma 2 will be infinite. On the
other hand, if p; = ce= %/, then for any one-point set the
expectations mentioned will be bounded uniformly in n.



Now we present one of the corollaries of Theorem 3, the law of
large numbers for the additive functionals under consideration,
setting in this theorem Dy := (E®¢(M7))~t, M7 :=0and v := 1.
Corollary 2. Let the conditions of Lemma 2 be fulfilled. If
|E®¢(M5)| — oo as i — oo then the following criterion holds:

®r(Mz)  »p

— 1 ff —1;

Ed(V7) Ed/(N7)

in this case, the normalizations E®¢(V5) and E®¢(7) can be
swapped.



R em ar k4. Invirtue of Chebyshev inequality, a sufficient
condition for the limit relations in Corollary 2 is as follows:

Z Varf,-,—,(ﬁ,-;,)
i>1

<Z Ef;n Tin >
i>1
>

0 and sup fiz(x) < Cp. Then
n)

— 0.

For example, let fi7(+)

Varﬁﬁ(ﬁ'iﬁ) S COEf;n( Tin

Z Varf,-,—7(7_r,-,—,) -1
i>1 —
= 5> < Co ZEf;’ﬁ(ﬂ'iﬁ) — 0.

(; Ef;f,(fr,-,-,)) =t

In particular, this estimate is valid in the case fi5(X) := Ig(%),
where 0 ¢ B, and E®¢(M5) = > P(7is € B) — oo.
i>1

X,i,n
and




Lemma 3. Under the conditions maxz supy, |fin(X)| < C; Vi and
>~ C?pi < oo the limit relation lim Var®¢(V5) = oo holds if and

i>1 o h—o0
only if lim Var®¢(M5) = co. In the case of infinite limit the
n—oo

following equivalence is valid: Var® (V) ~ Var®¢(T5) as i — oo.



Corollag 3. Under the conditions of Lemma 3 and
Vard¢(7) — oo as i — oo the limit relation

, <¢f(v n) ~ E®f(V7)

= N(0,1) as n — oo,
Var1/2<b,c( ) > ( )

is valid if and only if

Or(M7) — E®r(M5) _
.C( Var 2o, (1) ) — N(0,1) as n— o0,

where N'(0,1) is the standard normal distribution. In this case, the
normalizing and centering sequences in these two limit relations can
be respectively swapped.

In order to prove this corollary we should put in Theorem 3

D5 := Var 120 (11;), M5 := Ed(V;)Var 1/2d¢(TT5), and

L(v) = N(0,1).



R e m ar k5. The validity of the central limit theorem for the

sequence ®¢(M5) in Theorem 3 will be justified if, say, the
third-order Lyapunov condition is met:

> Elfin(Tin) — Efa(7in)|?

i>1
3/2
(Z Varﬁ,—,(fr;,—,))

i>1

— 0 as n — .

For example, let sup [fiz(X)| < Co. Then it is easy to see that
Z Elfia(Tin) — Efia(Tin)|* < 2Co Zvarﬁﬁ(ﬁ'iﬁ)-

i>1 i>1



Examples of asymptotic behavior of the mean and variance.
1) Let m=1, Bx:={i: i >k} forany k € Z and let
pi = Ci~17b where b>0,i=1,2,.... Then

EZ I(7jn > k) = Z P(min > k) = Z%H,l(npi)

i>1 i>1 i>1
o0 1
= “1-by ., (Cn)T+s b
~ (@) [t ey = P (e 124) @
0
where vii1.1( ff(—k, “tdt, [(z) := [ t?"le~tdt, z > 0. For an
0 0

arbitrary subset B of naturals one has

(Cn) T — 1 1
EY I(min € B) ~ (Hb)émr<k—1+b>. (10)

i>1




S¢(Mz) == > > asl(min = ks), where k; are pairwise different.

i>1s<r

1
(Cn)1es
Var E g asl(min = ks) ~ byl

i>1s<m

r 2
as 1
ISl ke — ——
S o (k- 571)
L oma ke fasaj 1 B
-2 P (kg )| =0 X B

s#j=1 s,j=1

r
if only >~ Bsjasaj # 0 . Note that {B;;} is the limit covariance
sy=1
matrix of the sequence of random vectors

n_ﬁ Z /(7‘(',-” = k1)7 ce n_2(1%”’) Z I(7Tin = km)

i>1 i>1



CD,r(I'I,—,) = Z Z 35/(77',',, > ks) Vkl <...< kr.

i>1s<r
Vard(M,) ~ (Cn)Ts {Z ag/rks+1,1(v1b)dv
s=1 0

— Z asaj/rkerl,l(vlb)l'kﬁl,l(vlb)dv

s#j=1 0



x2-STATISTICS

Finally, here is another consequence of theorem 3, relating to the
asymptotic behavior of y2-statistics in (3) for m = 1 and

N = N(n) — oo. First of all, note that

N
1
D, :=Vard o(M,) =2N+ » —.
b Vard o) =204 Y
Corollary 4. Let N = N(n) — oo as n — oo. Then the following
two asymptotic relations are equivalent:

(B _yen,
(2N von m



Note that the centering sequence E,, can be replaced with its
equivalent sequence E®,2(V,;) = N — 1. Replacing in the
normalization in (11) the variance D, with the variance of the
x2-statistic itself, i.e., by the term

N
1 a1 3N-2
Var® o(Vo) = 2N + 53— — ,

is possible only if these two variances are equivalent. For example,
this would be the case if minj<y np; — oco. This means that the
growth rate of the sequence N = N(n) is subject to appropriate
constraints, which is not the case in the above consequence.

So, in Corollary 4, we can talk about a double limit when

n,N — oo.



The formulated criterion allows us to establish a fairly general
sufficient condition for the asymptotic normality of x2-statistics
with an increasing number of groups.

Theorem 4. Let N = N(n) — oo as n — oo. Then the asymptotic
relation (11) is valid if

>iy(npi)~
(W + 52 (npi) )

75— 0 (13)

as n— oo.

The problem of finding more or less broad sufficient conditions for
asymptotic normality y?-statistics with a growing number of groups
were studied by many authors in the second half of the last century
(for example, see S.Tumanyan, Y.Medvedev, V.Kruglov).



Note that all known sufficient conditions for the above weak
convergence provide execution of (13). For example, the condition
min;<y np; — oo along with N — oo (see G.Steek, S.Tumanyan),
obviously immediately entails the limit relation (13). It is equally
obvious that the requirement of the so-called regularity of
polynomial models (see Y.Medvedev, V.Kruglov), i.e.,

0 < ¢ <minNp;, maxNp; < ¢ < o0,
i<N i<N

where the constants ¢; and ¢ do not depend on N, also implies
(13).



On the other hand, it is easy to construct examples when the

regularity requirement of the polynomial model is violated, the

relation (13) is valid.

For example, let p; := Cyi~172, i=1,..., N, where b > 0 and
-1

Cy = (ZKN i*1*b> . It is easy to see that, as N — oo, the

sums SN p~2and SN p ! increase as N320 and N2tP,
respectively. Therefore, as n, N — oo, the limit relation (13) is
equivalent to
N3+2b Nb/2 _ )
= — 0, ie,, N =o(nb).

/n(NZh)3/2 Jn

The conditions by Tumanyan will be satisfied if N = o(nﬁlb).



Proof of Theorem 4.

. _ np:)2
g e Tin = P)T_y i=1,...,N(n), n>1.
np;

The Lyapunov condition of third order, which guarantees the
fulfillment of the central limit theorem (12), is as follows:

N(n)

D7 %3 Elgnl* — 0 as n— oo, (14)

i=1
To estimate the absolute third moment in (14), we need the
well-known recurrence relation

E(my — ) )\Z kK JE(my— MK, n>2,

where 7y is a Poisson random varlable with parameter \. From here
it follows that
E(my — A\)° = 1503 +25)2 + ).



Putting A = np; and using the elementary estimate
|a? — 13 < 4(a® + 1), we obtain

4 100 4
15(npi)® + 25(np;)? + np;)+4 = 64+ +-—-=.
(np;)3 (15(np) (np;) ) np;  (np;)?

Thus, the Lyapunov ratio (14) is estimated by the value

E’finP <

64N + 100 S 1np +43N 1] np,)

(v + 3 ) V2

N —1/2 4N #
<100 [ 2N + Z T = n) L,
np; (N + ZI s ) /2

that is true in virtue of (13). O



GENERALIZATION
We can reformulate the above-mentioned Poissonization duality
theorem for more general type of additive statistics

Vlsm)(yn) = Z fn,il,...,im(yn,ila sy Vn,im)a

1<...<im

where {f,; i.(-)} is an array of finite functions defined on Z
and satisfying only the restriction

Z [foirim(0,...,0)] <00 Vn.

n<...<im



Theorem. As n — oo, the following three limit relations are
equivalent:

1) £ (Vi (n)Dn — My ) = £(7),

2) £ (vn(’”)(m)Dn — Mn) = L(7),

3) £ (Vi (v3)Dn — My) = £(7)

provided that fn i i (Tniys--- Tnin)Dn 2.0 for all multiindices
(i1y...,im), where M,, and D,, are some sequences, 7y is some
random variable, and the symbol «<=—>>» denotes the weak
convergence of distributions.



For example, one can study in this setting the functional

&3 m+2 ZIA Vi_ 1,, Va(vi n) (Vg me 1n)lA(V:+mn)
i>1

where 0 ¢ A, A is the complement of A in the set Z,, and vg, = 0.
This functional is the number of success chains of length m in the
Bernoulli trials {/a(vin); i > 1}.



