Семинар «Прикладная статистика» (ИМ СО РАН) 15 апреля 2024 года

Экономичные алгоритмы моделирования одномерных непрерывных случайных величин, основанные на принципе «уравнивания вероятностей»

Войтишек Антон Вацлавович (ИВМиМГ СО РАН, г. Новосибирск) Брызгалов Виктор Леонидович (Лицей № 130, г. Новосибирск)

ПЛАН ДОКЛАДА

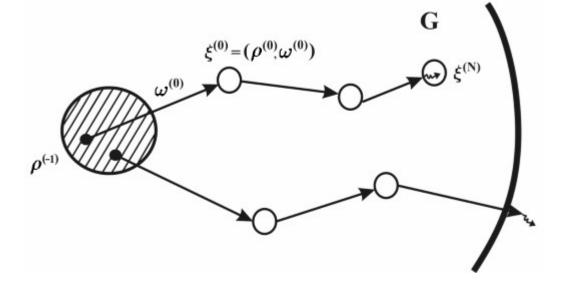
- 1. О «необычном» стиле доклада (для семинара «Прикладная статистика»).
- 2. О необходимости получения многочисленных, смоделированных на компьютере выборочных значений одномерных случайных величин при реализации основной схемы метода Монте-Карло для решения практически значимых задач.
 - 3. Метод обратной функции распределения: преимущества и ограничения.
- 4. Двусторонний метод исключения как альтернатива методу обратной функции распределения.
 - 5. Обоснование мажорантного метода исключения. Двусторонний метод.
- 6. Использование кусочно-постоянных мажорант и минорант (для монотонных плотностей на конечных интервалах распределения).
- 7. Моделирование вспомогательной случайной величины по кусочно-постоянной плотности, пропорциональной мажоранте. Использование теории модифицированного метода дискретной суперпозиции и уравнивания вероятностей.
- 8. Компьютерная система EDSRM (Economical Double-Sided Rejection Method cm. http://edsrm.nikita-e.ru/). Примеры сравнения экономичного двустороннего метода и метода обратной функции распределения (степенное распределение и др.).

2. О необходимости получения многочисленных, смоделированных на компьютере выборочных значений одномерных случайных величин при реализации основной схемы метода Монте-Карло для решения практически значимых задач.

Широкое распространение получают **стохастические (вероятностные) модели**. Им соответствуют вычислительные (компьютерные) алгоритмы статистического моделирования (или **методы Монте-Карло**); здесь и далее приведены сведения из книги [1].

Рассмотрим классический пример «практически значимой» задачи: модель переноса

излучения.



Модель переноса излучения

[1] Войтишек А. В. Лекции по численным методам Монте-Карло. Новосибирск, НГУ, 2018.

Основная схема метода Монте-Карло (ММК) выглядит следующим образом.

Пусть требуется приближенное вычисление величины I.

Предполагается возможность выбора такой случайной величины (**монте-карловской оценки, оценивателя**) ζ , для которой $I = \mathbf{E}\zeta$ и выборочные значения $\zeta_1, ..., \zeta_n$ случайной величины ζ могут быть достаточно эффективно (экономично) получены на компьютере. Используя закон больших чисел, строим приближение

$$I = \mathbf{E}\zeta \approx Z_n = \frac{\zeta_1 + \dots + \zeta_n}{n}$$

Средняя погрешность ММК

$$\delta_n = \mathbf{E}|I - Z_n| \approx H \frac{\sqrt{\mathbf{D}\zeta}}{\sqrt{n}}; \ H = \sqrt{\frac{2}{\pi}} \approx 0.80 \dots$$

(НЕДАВНЕЕ «ОТКРЫТИЕ»); здесь $\mathbf{D}\zeta = \mathbf{E}|\zeta - \mathbf{E}\zeta|^2$ — дисперсия случайной величины ζ (при выводе этого соотношения используется центральная предельная теорема).

Скорость сходимости основной схемы ММК при $n \to \infty$ невелика, но «стабильна» (например, не зависит от размерности задачи).

В приведенной выше основной схеме ММК

$$I = \mathbf{E}\zeta \approx Z_n = \frac{\zeta_1 + \dots + \zeta_n}{n}$$

случайная величина (монте-карловская оценка, оцениватель) ζ имеет вид $\zeta = q(\xi)$ (например, при приближении интеграла мы имели $q(\xi) = \frac{g(\xi)}{f_{\xi}(\xi)}; \; \xi \sim f_{\xi}(x).$

В свою очередь, для получения значений $\zeta_i = q(\xi_i)$ нужно уметь получать на компьютере выборочные значения случайного вектора $\boldsymbol{\xi} = \left(\xi^{(1)}, \dots, \xi^{(d)}\right)$ согласно заданной совместной плотности $f_{\boldsymbol{\xi}}(\boldsymbol{x})$.

Дело сводится к моделированию компонент $\xi^{(1)}, ..., \xi^{(d)}$ (одномерных случайных величин) согласно условным плотностям из разложения плотности $f_{\xi}(x)$.

Учитывая соотношение $\delta_n \approx H \frac{\sqrt{D\zeta}}{\sqrt{n}}$, весьма желательно, чтобы описанное моделирование случайных компонент $\xi^{(1)}, \dots, \xi^{(d)}$ было экономичным.

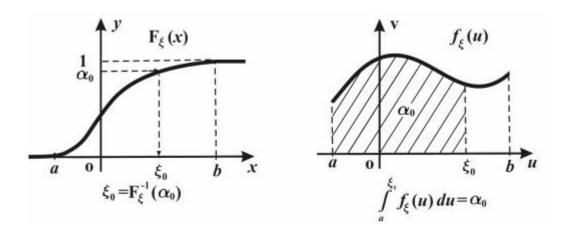
3. Метод обратной функции распределения: преимущества и ограничения.

Исторически основным методом моделирования одномерной случайной $\xi \in (a,b)$ величины согласно заданной плотности $f_{\xi}(u); u \in (a,b)$ является формула метода обратной функции распределения

$$\xi_0 = F_{\xi}^{-1}(\alpha_0); \quad F_{\xi}(x) = \mathbf{P}\{\xi < x\}, \quad \alpha_0 \in U(0,1),$$
 (*)

получающейся из решения уравнения $\int_{a}^{\xi_{0}} f_{\xi}(u) \ du = \alpha_{0}$ (**).

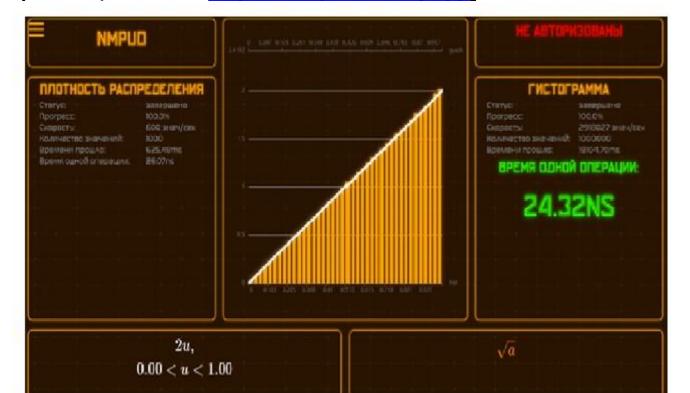
В формулах (*) и (**) $\alpha_0 \in U(0,1)$ — стандартное случайное число (выборочное значение случайной величины α , равномерно распределенной на интервале (0,1) — получается с помощью специальных подпрограмм; в Новосибирске — метод вычетов).



Далеко не для всех плотностей $f_{\xi}(u)$ уравнение $\int_a^{\xi_0} f_{\xi}(u) \, du = \alpha_0$ разрешимо в элементарных функциях. Определенным «методическим открытием» на курсах по ММК явилась **технология последовательных (вложенных) замен**, основанная на формулах

$$f_{\xi}(u) = f_{\eta}[\varphi(u)]|\varphi'(u)|; \ u \in (a,b); \varphi(u): (c,d) \to (a,b);$$
$$\xi_0 = \varphi^{-1}[\Psi_{\eta}(\alpha_0)].$$

Ограничения по применению этой технологии удалось изучить с помощью системы NMPUD (Numerical Modelling of Probabilistic Univariate Distributions — автор Черкашин Данил Андреевич, студент второго курса ВМК Московского государственного университета) — ссылка https://nmpud.netlify.app.



Что удалось выяснить с помощью системы NMPUD — см. работу

Войтишек А. В., Гаджиахмедов М. Г., Рыжов И. А., Трофимов И. А. Сравнение вычислительных затрат на основные математические операции с помощью системы NMPUD // Информационные технологии и математической моделирование (ИТММ-2021): Материалы XX Международной конференции имени А. Ф. Терпугова (1–5 декабря 2021 года). – Томск: Издательство Томского государственного университета, 2022. – С. 329 – 334:

- компьютерные затраты на сложение, умножение и деление примерно одинаковы (часто даже умножение и деление оказываются чуть экономичнее сложения); экономичным (сравнимым с затратами на одно сложение) является взятие квадратного корня;
- затраты на обращение к генератору *RAND*, используемому в системе NMPUD (метод вычетов с множителем $Q=5^{17}$ и контролируемой мантиссой длины m=40), примерно в 5–6 раз больше затрат на одно сложение (умножение, деление, взятие квадратного корня) и примерно равны затратам на вычисление функций синус и косинус;
- «умеренно большими» (вместе с затратами на обращение к генератору *RAND* и к вычислению синуса и косинуса) можно назвать затраты на вычисление обратных тригонометрических функций и логарифмов примерно в 7–10 раз больше затрат на одно сложение (умножение, деление, взятие квадратного корня);
- «экстремально большими» являются затраты на вычисление степенной и показательной функций в десятки (от 30 до 80) раз больше затрат на одно сложение (умножение, деление, взятие квадратного корня); использование этих функций в компьютерных расчетах желательно ограничивать.

Полученные результаты во многом объясняют повышенную, неприемлемую для практических расчетов трудоемкость многих формул метода обратной функции распределения $\xi_0 = F_\xi^{-1}(\alpha_0); \; \alpha_0 \in U(0,1).$

4. Двусторонний метод исключения как альтернатива методу обратной функции распределения.

Для трудоемких формул метода обратной функции распределения $\xi_0 = F_\xi^{-1}(\alpha_0)$ в научной группе А. В. Войтишека рассмотрена универсальная (во всяком случае, для конечных интервалов распределения (a,b)) технология двустороннего метода исключения с кусочно-постоянными мажорантой и минорантой и с уравниванием вероятностей при моделировании вспомогательной случайной величины методом дискретной суперпозиции и создана компьютерная система EDSRM (Economical Double-Sided Rejection Method).

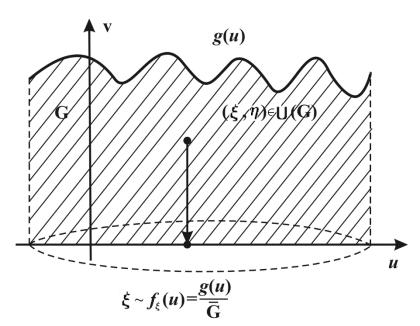
ПРЕДСТАВЛЕНИЯ ДВУСТОРОННЕГО АЛГОРИТМА И СИСТЕМЫ EDSRM ЯВЛЯЮТСЯ ПРЕДМЕТОМ ДАННОГО ДОКЛАДА.

5. Обоснование мажорантного метода исключения. Двусторонний метод.

Пусть требуется построить алгоритм численного моделирования выборочного значения ξ_0 случайной величины ξ , распределенной на отрезке (конечном интервале) в области [a,b] согласно плотности $f_{\xi}(u)$, которая пропорциональна заданной неотрицательной функции g(u), т. е.

$$f_{\xi}(u) = \frac{g(u)}{\bar{G}}, \qquad u \in [a, b], \qquad \bar{G} = \int_a^b g(u)du. \qquad (*)$$

УТВЕРЖДЕНИЕ 1. Пусть случайная точка (ξ, η) равномерно распределена в области $G = \{(u, v): u \in [a, b]; 0 < v < g(u)\}$, т. е. в подграфике функции g(u) из соотношения (*) (обозначение $(\xi, \eta) \in U(G)$; при этом $\xi \in [a, b]$ и $\eta \in (0, g(\xi))$). Тогда случайная величина ξ распределена согласно плотности (*).

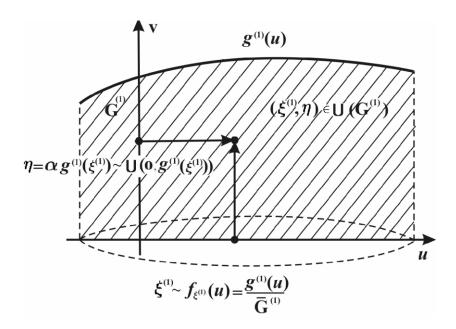


УТВЕРЖДЕНИЕ 2. Пусть случайный вектор $oldsymbol{\xi^{(1)}}$ распределен согласно плотности

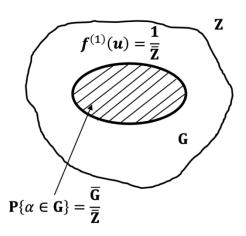
$$f_{\xi^{(1)}}(u) = \frac{g^{(1)}(u)}{\bar{g}^{(1)}}, \bar{G}^{(1)} = \int_X g^{(1)}(u) du,$$

а условное распределение при фиксированном значении $\xi^{(1)} = \xi_0^{(1)}$ случайной величины η является равномерным в интервале $\left(0,g^{(1)}\left(\xi_0^{(1)}\right)\right)$.

Тогда случайная точка $(\xi^{(1)}, \eta)$ равномерно распределена в «подграфике» $G^{(1)} = \{u \in [a,b], \ 0 < v < g^{(1)}(u)\}$ функции $g^{(1)}(u)$, т. е. $(\xi^{(1)}, \eta) \in U(G^{(1)})$.

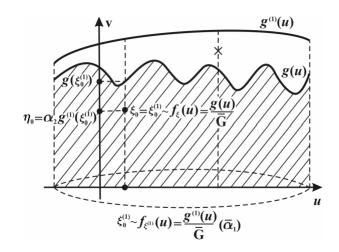


УТВЕРЖДЕНИЕ 3. Если **d**-мерная случайная точка $\alpha \in U(Z)$ равномерно распределена в области $Z \in R^d$ конечного объема (площади) $\bar{Z} = \int_Z du$, то она также равномерно распределена в любой подобласти $G \in Z$ объема \bar{G} при условии попадания в эту подобласть; при этом $\mathbf{P}\{\alpha \in G\} = \bar{G}/\bar{Z}$.



Для «существенной части» g(u) плотности $f_{\xi}(u)$ (для которой строится алгоритм моделирования) строим мажоранту $g^{(1)}(u)$: $g(u) \leq g^{(1)}(u)$.

Главное требование к мажоранте $g^{(1)}(u)$ таково, что для плотности $f_{\xi}(u)$ имеется эффективный алгоритм (формула) вида $\xi_0^{(1)} = \Psi^{(1)}(\bar{\alpha}_1)$ для моделирования выборочного значения случайного вектора $\xi^{(1)}$; здесь $\bar{\alpha}_1 = (\alpha_{1,1},...,\alpha_{1,K}); \alpha_{1,j} \in U(0,1); j=1,...,K$ — набор стандартных случайных чисел (компьютерных реализаций — с помощью соответствующих генераторов — случайной величины $\alpha \in U(0,1)$, равномерно распределенных в интервале (0,1)). Это дает **мажорантный метод исключения**.



АЛГОРИТМ 1. 1. Моделируем выборочное значение $\xi_0^{(1)}$ случайного вектора (случайной величины) $\xi^{(1)}$ согласно плотности $f_{\xi^{(1)}}(u)$: $\xi_0^{(1)} = \Psi^{(1)}(\bar{\alpha}_1)$, а также значение $\eta_0 = \alpha_2 g^{(1)}\left(\xi_0^{(1)}\right)$; $\alpha_2 \in U(0,1)$.

Согласно утверждению 2, $\left(\xi_0^{(1)}, \eta_0\right) \in U\left(\xi_0^{(1)}\right)$.

2. Если $\eta_0 < g\left(\xi_0^{(1)}\right)$, то, согласно утверждению 3, $\left(\xi_0^{(1)},\eta_0\right) \in U(G)$, и, согласно утверждению 1, величину $\xi_0^{(1)}$ можно принять в качестве искомого выборочного значения, имеющего нужную плотность распределения $f_{\xi}(u)$:

$$\xi_0 = \xi_0^{(1)}$$
.

В случае, когда неравенство $\eta_0 < g\left(\xi_0^{(1)}\right)$ не выполнено, повторяем пункт 1 данного алгоритма и т. д.

Следующая модификация алгоритма 1 эффективна в достаточно распространенном случае, когда требуется моделировать выборочное значение случайной величины ξ , плотность которой пропорциональна функции g(u), вычисление значений которой весьма трудоемко. В этом случае помимо мажоранты $g^{(1)}(u)$ строим миноранту $g^{(2)}(u)$, такую, что $0 \le g^{(2)}(u) \le g(u) \le g^{(1)}(u)$; $u \in [a,b]$.

АЛГОРИТМ 2. 1. Моделируем выборочное значение $\xi_0^{(1)} = \Psi^{(1)}(\bar{\alpha}_1)$ согласно плотности $f_{\xi^{(1)}}(u)$, а также значение $\eta_0 = \alpha_2 g^{(1)}\left(\xi_0^{(1)}\right)$.

2. Вместо неравенства $\eta_0 < g\left(\xi_0^{(1)}\right)$ проверяем сначала соотношение

$$\eta_0 \le g^{(2)} \left(\xi_0^{(1)} \right).$$

Если оно выполнено, то пара $\left(\xi_0^{(1)},\eta_0\right)$ принадлежит «подграфику» функции $g^{(2)}(u)$, а значит, и области G. Тогда можно положить $\xi_0=\xi_0^{(1)}$.

В случае же $\eta_0 > g^{(2)}\left(\xi_0^{(1)}\right)$ проверяем неравенство $\eta_0 < g\left(\xi_0^{(1)}\right)$. Если оно выполнено, то $\xi_0 = \xi_0^{(1)}$, иначе повторяется пункт 1 данного алгоритма и т.д.

В связи с соотношением $g^{(2)}(u) \le g(u) \le g^{(1)}(u)$ алгоритм 2 называют двусторонним методом исключения.

В качестве функций $g^{(2)}(u)$ и $g^{(1)}(u)$ в данной работе используются **кусочно**-постоянные приближения снизу и сверху для функции g(u).

6. Использование кусочно-постоянных мажорант и минорант (для монотонных плотностей на конечных интервалах распределения).

При выборе функций
$$g^{(1)}(u)$$
, $g^{(2)}(u)$ таких, что
$$0 \leq g^{(2)}\left(u\right) \leq g(u) \leq g^{(1)}(u),$$

наиболее универсальным и целесообразным является использование кусочно-постоянных приближений функции g(u) снизу и сверху.

Для монотонно возрастающей функции (например, для функции, $g(u) = u^s$, $0 \le u \le 1$, соответствующей плотности степенного распределения) можно взять

$$g^{(1)}(u) \equiv g(u_i) = A_i^{(+)} (= u_i^s); g^{(2)}(u) \equiv g(u_{i-1}) = A_i^{(-)} (= u_{i-1}^s); u \in \Delta_i \in (u_{i-1}, u_i]; i = 1, ..., M,$$

для сетки

$$a = u_0 < u_1 < \dots < u_{M-1} < u_M = b$$
.

7. Моделирование вспомогательной случайной величины по кусочно-постоянной плотности, пропорциональной мажоранте. Использование теории модифицированного метода дискретной суперпозиции и уравнивания вероятностей.

Для построенной кусочно-постоянной мажоранты $g^{(1)}(u)$ плотность $f_{\xi^{(1)}}(u)$ случайной величины $\xi^{(1)} \in [a,b]$ можно представить в виде составной плотности

$$f_{\xi^{(1)}}(u) = \sum_{i=1}^M p_i g_i(u) \chi^{\Delta_i}(u)$$
, где $p_i = rac{A_i^{(+)}(u_i - u_{i-1})}{\sum_{j=1}^M \left[A_j^{(+)}(u_j - u_{j-1})
ight]}$; $g_i(u) \equiv rac{1}{u_i - u_{i-1}}$

и $\chi^{\Delta_i}(u)$ — индикатор полуинтервала Δ_i , т. е. $\chi^{\Delta_i}(u)\equiv 1$ при $u\in\Delta_i$ и $\chi^{\Delta_i}(u)=0$ иначе.

Далее можно использовать соответствующую версию алгоритма метода суперпозиции.

- АЛГОРИТМ 3. 1. Реализуя стандартное случайное число $\alpha_0 \in U(0,1)$ и используя наиболее экономичный из алгоритмов моделирования целочисленной случайной величины μ с распределением вида $\mathbf{P}\{\mu=i\}=p_i;\ i=1,\ldots,M$ для вероятностей $\{p_i\}$, получаем значение $\mu_0=m$.
- 2. Моделируем выборочное значение $\xi_0^{(1)}$ случайной величины $\xi^{(1)}$ согласно плотности равномерного распределения $g_m(u)$ по формуле

$$\xi_0^{(1)} = u_{m-1} + (u_m - u_{m-1})\alpha_2; \ \alpha_2 \in U(0,1).$$

Выберем сетку $-\infty < a = u_0 < u_1 < \dots < u_{M-1} < u_M = b < +\infty$ таким образом, что площади $S_i = A_i^{(+)}(u_i - u_{i-1}) = g(u_i)(u_i - u_{i-1}) \equiv S$ одинаковы для $i = 1, \dots, M$.

Такая сетка может быть построена с помощью процедуры «подбора» (с компьютерной точностью), соответствующей следующей процедуре.

Определим процедуру-функцию от $a_M = r$ (самого правого из левых концов полуинтервалов $(u_{i-1}, u_i]$) — обозначим ее z(r) — как следующую последовательность команд в коде Maple:

$$\begin{split} z^{(rej)}(r) &: u_{M-1} = r; \quad S^{(rej)} = (b-r)g(b); \text{for } i \quad \text{from } M-2 \text{ by } -1 \text{ to } 1 \text{ do } u_i = \\ u_{i+1} - \frac{S^{(rej)}}{g(u_{i+1})} \quad \text{od } ; \text{ return } \quad (S^{(rej)} - (u_1 - a)g(u_1)) \end{split}$$

«Двигаем» (подбираем) параметр r пока с высокой точностью не будем иметь $z^{(rej)}(r) \approx 0$.

АЛГОРИТМ 4. Выберем $\Delta = \frac{b-a}{M}$ и возьмем $r_0 = b - \Delta$ и вычислим $z^{(rej)}(r_0)$. Для монотонно возрастающей функции имеем $z^{(rej)}(r_0) > 0$, т. е. площадь S «излишне большая» и параметр $r = r_0$ нужно увеличить.

Пусть стандартное представление числа $\Delta = a \times 10^k$; $1 \le a \le 10$ имеет порядок k (это целое — положительное или отрицательное — число). Возьмем $\varepsilon^{(1)} = 10^k$ и начнем прибавлять эту величину к r_0 до тех пор пока первый раз не получим точку r_1 такую, что $z^{(rej)}(r_1) < 0$. Теперь возьмем $\varepsilon^{(2)} = 10^{k-1}$ и начнем вычитать эту величину из r_1 до тех пор пока первый раз не получим точку r_2 такую, что $z^{(rej)}(r_2) > 0$ и т. д.

Процедуру продолжаем вплоть до номера интерации s такого, что $\varepsilon^{(s)} < 10^{-L}$ (например, для L=16), и полагаем $r=r_s$.

Наконец, можно использовать следующий факт.

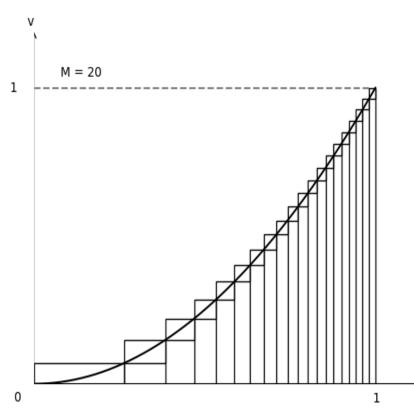
УТВЕРЖДЕНИЕ 4. Если в алгоритме 3 получено $\mu_0 = m$ (т. е. $\alpha \in [R_{m-1}, R_m)$), то случайная величина $\beta(\alpha) = \frac{\alpha - R_{m-1}}{p_m}$ равномерно распределена в интервале (0,1) (т.е. $\beta(\alpha) \in U(0,1)$); при этом величины μ и $\beta(\alpha)$ независимы.

Из утверждения 4 следует, что вместо алгоритма 3 можно применить т. н. **модифицированный метод дискретной суперпозиции**, означающий замену величины α_2 из второго пункта алгоритма 3 на величину $\frac{\alpha_1 - R_{m-1}}{p_m}$. Отметим также, что выполнении соотношения $S_i \equiv S$ получается

$$R_i = \frac{i}{M}$$
.

Для такого варианта моделирование значения $\xi_0^{(1)}$ из первого пункта алгоритма метода исключения может быть реализовано по рекордно экономичным формулам

$$m=[Mlpha_1]+1;$$
 $\xi_0^{(1)}=u_{m-1}+(u_m-u_{m-1})(Mlpha_1-m+1)$ для $lpha_1\in U(0,1).$



АЛГОРИТМ 5. Предварительно формируем массив $U = \{u_0, u_1, ..., u_{M-1}, u_M\}$, а также массивы минимумов и максимумов функции g(u) на элементах Δ_i :

$$\mathbf{MIN} = \{A_1^{(-)} = g(u_0), A_2^{(-)} = g(u_1), ..., A_M^{(-)} = g(u_{M-1})\} \ \mathbf{u}$$

$$\mathbf{MAX} = \{A_1^{(+)} = g(u_1), A_2^{(+)} = g(u_2), ..., A_M^{(+)} = g(u_M)\}.$$

- 1. Моделируем выборочное значение $\xi_0^{(1)}$ согласно формулам $m = [M\alpha_1] + 1$, $\xi_0^{(1)} = u_{m-1} + (u_m u_{m-1})(M\alpha_1 m + 1)$, а также значение $\eta_0 = \alpha_2 A_m^{(+)} \in U\left(0, A_m^{(+)}\right)$; здесь $\alpha_2 \in U(0, 1)$. Согласно утверждению 2, точка $(\xi_0^{(1)}, \eta_0)$ равномерно распределена в подграфике $G^{(1)} = \{(u, v) : u \in [a, b]; 0 < v < g^{(1)}(u)\}$.
- 2. Сравниваем сначала значение η_0 с соответствующим значением кусочно-постоянной миноранты $g^{(2)}(u)$, т. е. проверяем неравенство $\eta_0 < A_m^{(-)}$. Если оно выполнено, то пара $(\xi_0^{(1)},\eta_0)$ принадлежит подграфику функции $g^{(2)}(u)$, а значит, и области $G=\{(u,v): u\in [a,b];\ 0< v< g(u)\}$. Тогда, согласно утверждениям 1 и 3, можно положить $\xi_0=\xi_0^{(1)}$.
- 3. Если же $\eta_0 \geq A_m^{(-)}$, то проверяем неравенство $\eta_0 < g(\xi_0^{(1)})$. Если оно выполнено, то $(\xi_0^{(1)},\eta_0) \in G$, и тогда, согласно утверждениям 1 и 3, можно положить $\xi_0 = \xi_0^{(1)}$. В противном случае (т. е. при $\eta_0 \geq g(\xi_0^{(1)})$) повторяем пункт 1 и т. д. до получения значения ξ_0 .

Нами также разработана компьютерная система EDSRM (Economical Double-Sided Rejection Method) — ссылка http://edsrm.nikita-e.ru/. Система содержит библиотеку основных разработанных алгоритмов и удобную диалоговую систему.

Для исследуемой плотности $f_{\xi}(u) = Hg(u); -\infty < a \le u \le b < +\infty; H = \frac{1}{\int_a^b g(v) \, dv}$ (*) случайной величины $\xi \in [a,b]$ диалоговая система EDRSM позволяет:

- вносить в систему формулу функции g(u) и границы отрезка [a,b];
- вносить формулы метода обратной функции распределения для плотности (*);
- проводить сравнение (с построением соответствующих диаграмм) затрат двустороннего алгоритма метода исключения и формулы обратной функции распределения для различных монотонных функций g(u) для различных значений параметров n (это количество моделируемых выборочных значений случайной величины $\xi \in [a,b]$) и M (это количество интервалов разбиения для неравномерной сетки $\mathbf{U} = \{u_0 = a, u_1, u_2, ..., u_{M-1}, u_M = b\}$, используемой при уравнивании вероятностей); к слову, рекомендуемыми нами являются значения $n=10^8$ (это значение дает показательное значение затрат используемых алгоритмов и формул) и M=330 (для широкого класса распределений для M>330 не происходило сколько-нибудь существенного увеличения затрат двустороннего алгоритма это и определяет его универсальность и экономичность);
- наблюдать результаты построения кусочно-постоянных мажорант и минорант на неравномерных сетках $\mathbf{U} = \{u_0 = a, u_1, u_2, ..., u_{M-1}, u_M = b\}$, полученных после процедуры уравнивания вероятностей, для различных M на соответствующих графиках;
- наблюдать формирование гистограммы для моделируемого распределения и ее приближение (с ростом числа n) к исследуемой монотонной плотности распределения и др.

ЗАКЛЮЧЕНИЕ

Построен универсальный (во всяком случае, для случайных величин, распределенных на ограниченных интервалах — отрезках — согласно непрерывным кусочно-монотонным плотностям) экономичный алгоритм двустороннего метода исключения с кусочно-постоянными мажорантой и минорантой.

Предложена технология уравнивания вероятностей, основанная на построении специальных неравномерных сеток для формирования необходимых кусочно-постоянных мажорант. Эта технология определяет рекордную экономичность и универсальность предложенного двустороннего алгоритма метода исключения.

Разработана компьютерная система EDSRM, предоставляющая пользователю коды нового алгоритма на широко распространенном языке программирования С и позволяющая сравнивать — в удобном диалоговом формате — затраты построенного алгоритма с трудоемкостями соответствующих формул метода обратной функции распределения.

Имеется публикация

Брызгалов В. Л., Войтишек А. В. Анализ трудоемкости формул метода обратной функции распределения для случайных величин с конечным интервалом распределения // Информационные технологии и математической моделирование (ИТММ-2023): Материалы XXII Международной конференции им. А. Ф. Терпугова (4—9 декабря 2023 года). — Томск: Издательство Томского государственного университета, 2023. — Часть 1. — С. 314 — 321

+ готовятся более «основательные» и общедоступные статьи.

БЛИЖАЙШИЕ ПЛАНЫ ИССДЕДОВАНИЙ

- 1. Детально изучить построенный двусторонний алгоритм метода исключения для случайной величины, имеющей **монотонную плотность на отрезке** (основной пример **степенное распределение** $f_{\xi}(u) = (s+1)u^s$; $0 \le u \le 1, s > 0$).
- 2. Провести аналогичное исследование для случайной величины, имеющей кусочно-монотонную плотность на отрезке (основной пример бета-распределение $f_{\xi}(u) = Hu^{\mu-1}(1-u)^{\nu-1}; 0 \le u \le 1, \mu > 1, \nu > 1$).
- 3. Провести критический анализ и модернизацию (в сторону корректности использования) т. н. **зиккурат-метода** см.

Marsaglia G., Tsang W. W. The ziggurat method for generating random variables. Journal of Statistical Software. 2000. 5 (8)

(это «положенный набок» двусторонний метод, дающий возможность избавиться от одного обращения в датчику *RAND*) – **ПРЕДМЕТ ДОКЛАДА ЧЕРЕЗ ГОД (?!)**.

- 4. Провести анализ применения алгоритмов с уравниванием вероятностей (двустороннего алгоритма и зиккурат-метода) для **практически значимого** экспоненциального распределения $f_{\xi}(u) = \lambda e^{-\lambda u}; u > 0, \lambda > 0$ (это первый пример распределения «с хвостом», определяющим специфику конструкций алгоритмов).
- 5. Провести анализ применения алгоритмов с уравниванием вероятностей (двустороннего алгоритма и зиккурат-метода) для других важных распределений «с хвостами»; в частности, для гауссовского распределения $f_{\xi}(u) = \frac{1}{\sqrt{2\pi}}e^{-u^2/2}$ и для гамма-распределения $f_{\xi}(u) = Hu^{\nu-1}e^{-\lambda u}$; $u > 0, \nu > 0, \lambda > 0$.

СПАСИБО ЗА ВНИМАНИЕ!

vav@osmf.sscc.ru