О ПОДПРОСТРАНСТВЕ $L((x \wedge y)^m)$ В $S^m(\wedge^2 \mathbb{R}^4)$

В. Ю. Губарев

Аннотация. Пусть $\mathbb{R}^4 \wedge \mathbb{R}^4$ — внешнее произведение пространства \mathbb{R}^4 , пространство $V = S^m(\wedge^2\mathbb{R}^4) = (\mathbb{R}^4 \wedge \mathbb{R}^4) \vee (\mathbb{R}^4 \wedge \mathbb{R}^4) \vee \cdots \vee (\mathbb{R}^4 \wedge \mathbb{R}^4)$ — его m-я симметрическая степень, $V_0 = L((x \wedge y) \vee \cdots \vee (x \wedge y) : x, y \in \mathbb{R}^4)$. Найдены размерность V_0 и алгоритм эффективного построения базиса V_0 (данная задача возникла в векторной томографии [1] при восстановлении соленоидальной части симметричного тензорного поля).

Ключевые слова: симметрическая степень пространства, внешняя степень пространства.

1. Инвариантные и неинвариантные векторы

Пусть $\{e_i, i=1,\ldots,4\}$ — базис \mathbb{R}^4 . Ясно, что $\dim \mathbb{R}^4 \wedge \mathbb{R}^4 = 6$, а набор векторов $\{(e_1 \wedge e_2), (e_1 \wedge e_3), (e_1 \wedge e_4), (e_2 \wedge e_3), (e_2 \wedge e_4), (e_3 \wedge e_4)\}$ будет базисом пространства $\mathbb{R}^4 \wedge \mathbb{R}^4$. Сразу же условимся обозначать данные базисные векторы $\mathbb{R}^4 \wedge \mathbb{R}^4$ соответственно через $(12),\ldots,(34)$. Базис $\{(e_1 \wedge e_2) \vee \ldots \vee (e_1 \wedge e_2), (e_1 \wedge e_2) \vee \ldots \vee (e_1 \wedge e_3),\ldots,(e_3 \wedge e_4) \vee \ldots \vee (e_3 \wedge e_4)\}$ в $S^m(\wedge^2\mathbb{R}^4)$ назовем стандартным. Записывать вектор из стандартного базиса $S^m(\wedge^2\mathbb{R}^4)$ будем следующим образом: $(e_i \wedge e_j) \vee \ldots \vee (e_k \wedge e_l) = (ij,\ldots,kl)$, а каждую из m компонент вектора будем называть napoù.

Как известно [2],

$$\dim V = C_{m+5}^5. \tag{1}$$

Определим на базисных векторах $S^m(\wedge^2\mathbb{R}^4)$ стандартную форму записи $(k_1l_1,k_2l_2,\ldots,k_ml_m)$ такую, что $k_i < l_i,\, k_i \le k_{i+1}$ для любого i и если $k_i = k_{i+1}$, то $l_i \le l_{i+1}$. Степенной формой записи вектора v назовем запись $(12)^{i_1} \vee (13)^{i_2} \vee (14)^{i_3} \vee (23)^{i_4} \vee (24)^{i_5} \vee (34)^{i_6}$, если вектор v содержит в своей записи пару (12) i_1 раз и каждую другую пару соответственное число раз $(i_1+\cdots+i_6=m)$.

Рассмотрим вектор $v = (i_1 j_1, \dots, i_m j_m)$ стандартного базиса $S^m(\wedge^2 \mathbb{R}^4)$. Со-поставим цифрам $i_1, j_1, \dots, i_m, j_m$ числа $1, \dots, 2m$ следующим образом:

$$i_k \to 2k-1, \quad j_k \to 2k, \quad k=1,\ldots,m.$$

Отображение $\tau \colon \{1,\dots,2m\} \to \{1,2,3,4\}$ совершает обратное сопоставление.

Определим действие подстановки $\varphi \in S_{2m}$ на векторы стандартного базиса V следующим образом:

$$\varphi(v) = \varphi((i_1j_1, \dots, i_mj_m)) = (\tau(\varphi(1))\tau(\varphi(2)), \dots, \tau(\varphi(2m-1))\tau(\varphi(2m))).$$

Работа выполнена при финансовой поддержке Совета по грантам Президента РФ по поддержке ведущих научных школ (код проекта HIII-344.2008.1).

Вектор v стандартного базиса назовем неинвариантным, если существует подстановка $\varphi \in S_{2m}$ такая, что вектор $\varphi(v)$ принадлежит стандартному базису и отличен от v. В обратном случае вектор стандартного базиса назовем инвариантным.

Примеры. 1. Вектор (12,12) инвариантен, так как под действием подстановок $\varphi \in S_{2m}$ мы получим или нулевой вектор, или $\pm v$, что не удовлетворяет условию неинвариантности.

2. Вектор (12, 34) неинвариантен, так как под действием подстановки $\varphi =$ (23) мы получим вектор (13, 24) (в этом примере τ будет тождественным).

Лемма 1 (о классификации инвариантных векторов). Вектор $v=(i_1j_1,\ldots,i_mj_m)\in S^m(\wedge^2\mathbb{R}^4)$ инвариантен тогда и только тогда, когда выполнено хотя бы одно из двух условий:

- 1) в записи v нет хотя бы одной цифры из $\{1,2,3,4\}$;
- 2) в каждой из т пар есть одна и та же повторяющаяся цифра.

Доказательство. Достаточность. Пусть вектор v представим в первом виде. Предположим, что существует подстановка $\varphi \in S_n$ такая, что вектор $(\tau(\varphi(1))\tau(\varphi(2)),\ldots,\tau(\varphi(2m-1))\tau(\varphi(2m)))$ принадлежит стандартному базису и отличен от v. Действие любой подстановки φ можно представить как композицию действий транспозиций. Действие транспозиции ϕ можно трактовать как перестановку двух цифр 2m-набора $(i_1j_1\ldots i_mj_m)$ и составление из полученного набора вектора $u=(\phi(i_1)\phi(j_1),\ldots,\phi(i_m)\phi(j_m))$.

Но имея в первом случае только пары вида (ij), (ik), (jk), нельзя переставить две цифры, не получив пару (ll) или вектор $\pm v$.

Если вектор v представим во втором виде, то также под действием транспозиций получим или $\pm v$, или 0. Значит, и при композиции действий транспозиций будет инвариантность v.

НЕОБХОДИМОСТЬ. Предположим противное: существует хотя бы один инвариантный вектор v, не отвечающий обоим условиям леммы. Тогда в записи v участвуют все цифры 1,2,3,4 и нет цифры, содержащейся в каждой паре вектора.

Без ограничения общности можно считать, что пара (12) входит в запись вектора v. Теперь рассмотрим пару, содержащую 4. Если существует пара (34) в записи v, то под действием транспозиции, меняющей указанные цифры 2 и 3, получим вектор, совпадающий в m-2 парах с вектором v, но отличающийся парами (13, 24), что противоречит выбору v. Тогда 3 входит в пары вектора v только с 1 или 2. Если есть пара (13), то при наличии пары (24) вновь получим неинвариантность вектора v. Чтобы этого не было, необходимо, чтобы 4 входила только в пары (14). Если 3 входит в пары (23), то под действием транспозиции, меняющей цифры 2 и 4 в парах (14), (23), также получим неинвариантность v. В итоге имеем, что в v входят только пары (12), (13), (14), т. е. v инвариантен, и мы пришли к противоречию.

Если в записи v есть пара (23), то, рассуждая аналогичным образом, придем к тому, что во всех парах есть цифра 2, а это опять противоречит выбору v.

Замечание 1. В лемме было фактически доказано, что любой неинвариантный вектор хотя бы единожды содержит в своей записи пары (ij),(kl) для попарно различных i,j,k,l. Назовем все три пары таких векторов (12),(34),(13),(24) и (14),(23) ортогональными.

Введем понятие *цепочки* неинвариантного вектора v как множества, состоящего из него самого и всех векторов, получаемых из v действием подстановок, удовлетворяющих определению неинвариантности этого вектора. Легко заметить, что в цепочке каждого неинвариантного вектора содержится не менее трех векторов. Действительно, находя в векторе v одну ортогональную пару, можно получить из нее действием транспозиций и две другие. К примеру, цепочка неинвариантного вектора $\{(12,12,34),(12,13,24),(12,14,23)\}$.

Теорема 1 (о векторах стандартного базиса). Все инвариантные базисные векторы $S^m(\wedge^2\mathbb{R}^4)$ входят в V_0 , а все неинвариантные векторы не входят в V_0 .

Доказательство. Пусть вектор v инвариантен. По предыдущей лемме он удовлетворяет хотя бы одному из условий леммы, т. е. либо у него нет в записи одной цифры, либо есть цифра, содержащаяся в каждой его паре. Рассмотрим второй случай. Пусть для определенности вектор v содержит в каждой паре 1, т. е. $v = (12)^i \lor (13)^j \lor (14)^k$.

Рассмотрим $(e_1 \wedge (e_2 + \alpha e_3 + \beta e_4))^m = (e_1 \wedge e_2 + \alpha e_1 \wedge e_3 + \beta e_1 \wedge e_4)^m$. Обозначим через \tilde{e} выражение $(e_1 \wedge e_2 + \alpha e_1 \wedge e_3)$. Тогда, раскрывая скобки, получим

$$(e_1\wedge e_2+lpha e_1\wedge e_3+eta e_1\wedge e_4)^m=\sum_{i=0}^m C_m^ieta^i(e_1\wedge e_4)^iee(ilde{e})^{m-i}\in V_0.$$

Отбросим случай i=0, так как соответствующий вектор лежит в V_0 . Выбирая поочередно $\beta=1,\ldots,m$ при фиксированном α , будем иметь

$$\sum_{i=1}^{m} C_{m}^{i} \cdot 1^{i} \cdot (e_{1} \wedge e_{4})^{i} \vee (\tilde{e})^{m-i} = a_{1} \in V_{0},$$

$$\sum_{i=1}^{m} C_{m}^{i} \cdot 2^{i} \cdot (e_{1} \wedge e_{4})^{i} \vee (\tilde{e})^{m-i} = a_{2} \in V_{0},$$

$$\sum_{i=1}^{m} C_{m}^{i} \cdot m^{i} \cdot (e_{1} \wedge e_{4})^{i} \vee (\tilde{e})^{m-i} = a_{m} \in V_{0}.$$

Принимая $(e_1 \wedge e_4)^i \vee (\tilde{e})^{m-i}$ за неизвестные, придем к линейной системе из m уравнений с m неизвестными. При подсчете определителя этой системы из каждого столбца следует вынести C_m^i , и тогда получим определитель Вандермонда, который отличен от нуля. Значит, мы можем линейно выразить все $(e_1 \wedge e_4)^i \vee (\tilde{e})^{m-i}$ через векторы пространства V_0 , тем самым они сами лежат в этом пространстве. Таким образом, для любого α имеем $(e_1 \wedge e_4)^i \vee (e_1 \wedge e_2 + \alpha e_1 \wedge e_3)^{m-i} \in V_0$.

Зафиксируем i и раскроем $(e_1 \wedge e_2 + \alpha e_1 \wedge e_3)^{m-i}$ последовательно при $\alpha = 1, \ldots, m-i$. Получим аналогичную систему с неизвестными $(e_1 \wedge e_4)^i \vee (e_1 \wedge e_2)^t \vee (e_1 \wedge e_3)^{m-i-t}$ и ненулевым определителем. Решая ее, окончательно получим, что $(e_1 \wedge e_4)^i \vee (e_1 \wedge e_2)^t \vee (e_1 \wedge e_3)^{m-i-t} \in V_0$ для любых i, t. Ясно, что доказанное без изменений переносится на общий случай векторов, которые содержат в своей записи не все цифры.

Если вектор v удовлетворяет первому условию леммы, то форма его записи по степеням выглядит как $(ij)^r \vee (ik)^s \vee (jk)^t$. Но этот случай легко сводится к только что доказанному при рассмотрении:

$$((e_i + \alpha e_j) \wedge (e_j + \beta e_k))^m = (e_i \wedge e_j + \beta e_i \wedge e_k + \alpha \beta e_j \wedge e_k)^m.$$

Фиксируя β и заменяя $(e_i \wedge e_j + \beta e_i \wedge e_k)$ через \tilde{e} , после решения соответствующей системы получаем $(e_i \wedge e_j + \beta e_i \wedge e_k)^i \vee (e_j \wedge e_k)^{m-i} \in V_0$ для любых i. Поступая аналогично с β , окончательно докажем требуемое.

Пусть вектор v неинвариантен. Тогда по замечанию к лемме 1 в записи этого вектора есть хотя бы одна ортогональная пара. Пусть для определенности это будет пара (12), (34), из дальнейшего будет ясна истинность утверждения для любой ортогональной пары. Представим вектор v в виде $(u_1, \ldots, u_{m-2}, 12, 34)$.

Предположим от противного, что $v \in V_0$. Тогда

$$v = \sum_{i=1}^n \lambda_i (x^i \wedge y^i)^m = \sum_{i=1}^n \lambda_i \left(\left(\sum_{j=1}^4 \alpha^i_j e_j \right) \wedge \left(\sum_{j=1}^4 \beta^i_j e_j \right) \right)^m.$$

Раскроем скобки и обозначим через ω_i коэффициент, соответствующий паре u_i (в случае m=2 положим $\omega_i=1$ для всех i). Тогда

$$v = \sum_{i=1}^{n} C\lambda_{i}(\omega_{1} \dots \omega_{m-2}) \left(\alpha_{1}^{i}\beta_{2}^{i} - \alpha_{2}^{i}\beta_{1}^{i}\right) \left(\alpha_{3}^{i}\beta_{4}^{i} - \alpha_{4}^{i}\beta_{3}^{i}\right) (u_{1}, \dots, u_{m-2}, 12, 34),$$

где $C \in \mathbb{N}$. Обозначим через μ_i произведение $C\lambda_i(\omega_1 \dots \omega_{m-2})$, а через u_{ijk} — вектор $(u_1, \dots, u_{m-2}, 1i, jk)$. Собирая слагаемые по каждому базисному вектору, имеем

$$\sum_{i=1}^{n} \mu_{i} \left(\left(\alpha_{1}^{i} \alpha_{3}^{i} \beta_{2}^{i} \beta_{4}^{i} + \alpha_{2}^{i} \alpha_{4}^{i} \beta_{1}^{i} \beta_{3}^{i} \right) - \left(\alpha_{1}^{i} \alpha_{4}^{i} \beta_{2}^{i} \beta_{3}^{i} + \alpha_{2}^{i} \alpha_{3}^{i} \beta_{1}^{i} \beta_{4}^{i} \right) \right) = 1 \quad (\text{no } u_{234}), (2)$$

$$\sum_{i=1}^{n} \mu_{i} \left(\left(\alpha_{1}^{i} \alpha_{2}^{i} \beta_{3}^{i} \beta_{4}^{i} + \alpha_{3}^{i} \alpha_{4}^{i} \beta_{1}^{i} \beta_{2}^{i} \right) - \left(\alpha_{1}^{i} \alpha_{4}^{i} \beta_{2}^{i} \beta_{3}^{i} + \alpha_{2}^{i} \alpha_{3}^{i} \beta_{1}^{i} \beta_{4}^{i} \right) \right) = 0 \quad (\text{no } u_{324}), (3)$$

$$\sum_{i=1}^{n} \mu_{i} \left(\left(\alpha_{1}^{i} \alpha_{2}^{i} \beta_{3}^{i} \beta_{4}^{i} + \alpha_{3}^{i} \alpha_{4}^{i} \beta_{1}^{i} \beta_{2}^{i} \right) - \left(\alpha_{1}^{i} \alpha_{3}^{i} \beta_{2}^{i} \beta_{4}^{i} + \alpha_{2}^{i} \alpha_{4}^{i} \beta_{1}^{i} \beta_{3}^{i} \right) \right) = 0 \quad (\text{no } u_{423}). \tag{4}$$

Вычитая из второго уравнения третье, получим левую часть, равную левой части первого уравнения, а справа получим 0. Тем самым одно и то же выражение одновременно равняется и 0, и 1; противоречие. Значит, $v \notin V_0$.

Замечание 2. Утверждение теоремы верно для произвольного n>1 в \mathbb{R}^n для пространства $V=S^m(\wedge^2\mathbb{R}^n).$

Замечание 3. При n=2 и n=3 из определения получаем, что все векторы стандартного базиса V инвариантны. Значит, в этих случаях $V_0=V$, и при n=2 будет $\dim V_0=1$, а при n=3 имеем $\dim V_0=\frac{(m+1)(m+2)}{2}$.

Найдем количество инвариантных векторов. Пусть n_1 — количество векторов, удовлетворяющих первому условию леммы 1, а n_2 — количество векторов, удовлетворяющих только второму из двух условий леммы 1. Если построить $S^m(\wedge^2\mathbb{R}^3)$ на каждой тройке из четырех цифр $\{1,2,3,4\}$, то $n_1=4\frac{(m+1)(m+2)}{2}-6=2m^2+6m-2$ (так как мы дважды посчитали базисные векторы вида $(ij)^m$). А n_2 находим как решение уравнения $i_1+i_2+i_3=m$ в натуральных числах, значит, $n_2=4C_{m-1}^2=2m^2-6m+4$. Окончательно

$$I(m) = 4m^2 + 2 \tag{5}$$

есть количество инвариантных векторов V. Это может служить грубой оценкой размерности V_0 , т. е. $\dim V_0 \geq 4m^2 + 2$.

2. Верхняя оценка размерности V_0

Найдем N(m) — количество цепочек неинвариантных векторов в пространстве $S^m(\wedge^2\mathbb{R}^4)$. Заметим, что каждая цепочка однозначно определяется количеством вхождений цифр в каждый из ее векторов, т. е. набором $\{k_1, k_2, k_3, k_4\}$, где k_i обозначает количество вхождений цифры i. Поэтому в дальнейшем под цепочкой будем понимать и набор (k_i) .

Количество различных наборов (k_i) , где $k_i \in \mathbb{N}$, найдем из условий: (a) $k_1 + k_2 + k_3 + k_4 = 2m$, (б) $k_i < m$.

Условию (a) удовлетворяет $A=C_{2m-1}^3=\frac{(2m-1)(2m-3)(m-1)}{3}$ векторов. Количество векторов, удовлетворяющих условию (a), но не удовлетворяющих условию (б), есть сумма $B=4\left(C_{m-1}^2+C_{m-2}^2+\cdots+C_2^2\right)$ натуральных решений уравнений вида $k_i+k_j+k_l=m,\ldots,3$. Тогда имеем

$$B = 2\sum_{k=1}^{m-2} (m-k)(m-k-1) = 2\sum_{k=1}^{m-2} (m-k)^2 - 2\sum_{k=1}^{m-2} (m-k) = \frac{m(m-1)(2m-4)}{3}.$$

Вычитая B из A, находим количество наборов (k_i) , удовлетворяющих обоим условиям, т. е. количество цепочек в пространстве V равняется

$$N(m) = \frac{2m^3}{3} - 2m^2 + \frac{7m}{3} - 1. \tag{6}$$

Найдем количество векторов в каждой цепочке. Введем для цепочки (k_i) числа

$$\tilde{k} = \min\{k_i\}, \quad \hat{k} = m - \max\{k_i\}, \quad k_0 = \min\{\tilde{k}, \hat{k}\}.$$
 (7)

Рассмотрим вместе с начальной цепочкой $\sigma=(k_i)$ симметрическую цепочку $\delta=(k_0,k_0,k_0,k_0).$

Лемма 2. Между векторами цепочек $\sigma=(k_i)$ и $\delta=(k_0,k_0,k_0,k_0)$ существует взаимно однозначное соответствие.

Доказательство. Пусть $t = \frac{1}{2} \sum k_i$. Если $t = 2k_0$, то утверждение очевидно. Поэтому будем считать, что $t > 2k_0$. Главная идея заключается в представлении произвольного вектора $v \in \sigma$ в виде $v = u_v \lor w$, где $u_v \in \delta$, а w инвариантный вектор стандартного базиса $S^{t-2k_0}(\wedge^2 \mathbb{R}^4)$ (общая инвариантная часть цепочки σ).

(a) Сопоставим каждому вектору $u \in \delta$ однозначно вектор $v_u \in \sigma$.

Случай 1: $k_0 = \tilde{k}$, значит, $k_i \leq m - k_0$. Без ограничения общности предположим, что $k_0 = k_1$. Тогда рассмотрим набор чисел $(0, k_2 - k_0, k_3 - k_0, k_4 - k_0) = (k_1', k_2', k_3', k_4')$ и построим вектор w стандартного базиса $S^{t-2k_0}(\wedge^2 \mathbb{R}^4)$, количество вхождений цифры i в запись которого равняется k_i' . Это можно сделать, так как

$$k_i' = k_i - k_0 \le m - 2k_0 = \frac{1}{2} \sum k_i',$$

и не возникнет пары вида (ll).

Случай 2: $k_0 = \hat{k}$. Без ограничения общности предположим, что $k_1 = m - k_0$. Тогда рассмотрим набор чисел $(k_1 - k_0, k_2 - k_0, k_3 - k_0, k_4 - k_0) = (k'_1, k'_2, k'_3, k'_4)$ и построим вектор w стандартного базиса $S^{t-2k_0}(\wedge^2 \mathbb{R}^4)$, количество вхождений цифры i в запись которого равняется k'_i . Это можно сделать, так как

$$k_i' \le k_1' = k_1 - k_0 = m - 2k_0 = \frac{1}{2} \sum k_i',$$

и не возникнет пары вида (ll).

Однозначность построения следует из инвариантности вектора w, и мы однозначно находим вектор $v_u = u \lor w \in \sigma$.

(б) Обратно, сопоставим каждому вектору $v \in \sigma$ однозначно вектор $u_v \in \delta$, представляя вектор v в виде $v = u_v \vee w$. Единственность такого представления будет следовать из инвариантности вектора w.

Случай 1: $k_0 = \tilde{k}$, значит, $k_i \leq m - k_0$. Предположим, что $k_1 = \tilde{k}$. Рассмотрим пары, входящие в запись v и содержащие 1: $(12)^i$, $(13)^j$, $(14)^k$, где $i+j+k=k_0$. Покажем, что в запись v входят также пары $(34)^i$, $(24)^j$, $(23)^k$, из этого будет следовать существование искомого разложения вектора v. Предположим от противного, что число o < i есть количество вхождений пары (34) в запись v. Тогда если $v = (12)^i \vee (13)^j \vee (14)^k \vee (23)^a \vee (24)^b \vee (34)^o$, то

$$k_2 = i + a + b > o + a + b = m - k_0$$

что противоречиво. Аналогично доказывается и для остальных пар (13) и (14). Случай 2: $k_0 = \hat{k}$. Без ограничения общности предположим, что $k_4 = m - k_0$. Пусть $w = (14)^{k_1-k_0} \lor (24)^{k_1-k_0} \lor (34)^{k_3-k_0}$ — инвариантный вектор стандартного базиса $S^{t-2k_0}(\wedge^2\mathbb{R}^4)$ (так как $k_1+k_2+k_3-3k_0=t-2k_0$). Докажем, что $v = u_v \lor w$, где $u_v \in \delta$. Для этого достаточно показать, что все пары вектора w входят в v. Действительно, рассмотрим пары (14), входящие в запись вектора v. Так как $k_1 > k_0, k_4 = m - k_0$, то цифры 1 и 4 обязательно встретятся не менее, чем в $k_1 + k_4 - m = k_1 - k_0$ парах. Доказательство для оставшихся

Пусть $v=(1i_1,\ldots,1i_{k_0},j_1l_1,\ldots,j_{k_0}l_{k_0})$ — вектор симметрической цепочки (k_0,k_0,k_0,k_0) . Назовем вид $(1i_1,\ldots,1i_{k_0})$ краткой формой записи вектора v. Ясно, что вектор симметрической цепочки однозначно определяется своей краткой формой. Количество векторов такого вида равно

$$\dim S^m(\wedge^2\mathbb{R}^3) = \frac{(k_0+1)(k_0+2)}{2} = \frac{k_0^2}{2} + \frac{3k_0}{2} + 1.$$

Значит, в произвольной цепочке $\sigma=(k_i)$ количество векторов равняется

$$n(\sigma) = \frac{k_0^2}{2} + \frac{3k_0}{2} + 1,\tag{8}$$

где k_0 находится из (7).

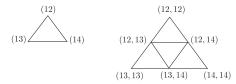
пар аналогичное.

Назовем два вектора одной цепочки взаимно обратимыми, если они отличаются ровно двумя (ортогональными) парами. Например, векторы одной цепочки (12,12,34,34) и (12,14,23,34) взаимно обратимы, так как отличаются парами 12,34 и 14,23. Ясно, что два вектора одной цепочки (k_i) взаимно обратимы тогда и только тогда, когда соответствующие им векторы цепочки (k_0,k_0,k_0,k_0) взаимно обратимы.

Пусть O(v) — множество всех векторов, взаимно обратимых с v. Несложно проверить, что для любого неинвариантного вектора v множество O(v) содержит или 2, или 4, или 6 векторов. Обозначим через $L(\sigma) = L(u_i : u_i \in \sigma)$ линейную оболочку цепочки σ .

Представим векторы цепочки $\sigma=(k_0,k_0,k_0,k_0)$ в виде связного графа, в котором вершинами будут служить векторы цепочки, а ребра будут соединять вершины, соответствующие взаимно обратимым векторам (два вектора одной цепочки будут взаимно обратимыми тогда и только тогда, когда их краткие

формы отличаются ровно на одну пару). Например, для $k_0=1$ и $k_0=2$ это будут следующие графы:



Ясно, что для произвольной цепочки $\varsigma = (k_i)$, для которой k_0 находится по (7), ввиду существования взаимно однозначного соответствия между векторами цепочек σ и ς , сохраняющего отношение взаимной обратимости, можно построить аналогичный граф, в котором вершинами будут служить векторы цепочки, а ребра будут соединять вершины, соответствующие взаимно обратимым векторам.

Из построения графа будем всегда получать граф-треугольник с однотипным строением, обозначим его через $G(\sigma)$. Для цепочки (k_0,k_0,k_0,k_0) выделим k_0+1 «этажей» с номерами $0,\ldots,k_0$. На i-м этаже будут все векторы, содержащие в своей записи i раз пару (12), их число будет увеличиваться с каждым этажом от «верхней» вершины $(12)^{k_0}$ до нулевого этажа на единицу («вверху» будет 1 вектор, ..., «внизу» будет k_0+1 векторов). На одном же этаже слева направо будет меняться количество пары (13) с (k_0-i) до нуля.

Назовем *тремя сторонами* (графа) множества векторов цепочки, не содержащие в своей записи соответственно пары 12,13 и 14, или соответствующие этим векторам вершины графа. Докажем следующую вспомогательную лемму.

Лемма 3. Если $v \in V_0 \cap L(\sigma)$, то ненулевым компонентам v по векторам цепочки σ соответствует связный подграф, содержащий для каждой из сторон хотя бы одну из ее вершин.

Доказательство. Рассмотрим случай $\sigma = (k_0, k_0, k_0, k_0)$, для общего случая доказательство аналогичное. Пусть подграф G' графа $G(\sigma)$ состоит из тех вершин, которым соответствуют векторы, по которым v имеет ненулевую компоненту. Без ограничения общности рассмотрим «нижнюю» сторону, т. е. векторы цепочки, не содержащие в своей записи (12). Пусть, от противного, подграф G' не содержит вершин, лежащих на нижней стороне, то найдем этаж с минимальным номером k > 0, вершину которого содержит G'. Пусть вершина $a \in G'$ лежит на k-м этаже.

Тогда выберем для вектора u_{234} , соответствующего вершине a и имеющего краткую форму $(12)^k\vee(13)^l\vee(14)^t$, векторы u_{324} и u_{423} , имеющие следующие краткие формы: $(12)^{k-1}\vee(13)^{l+1}\vee(14)^t$, $(12)^{k-1}\vee(13)^l\vee(14)^{t+1}$. Все эти три вектора попарно взаимно обратимы. Так как $v\in V_0$, имеем $v=\sum_{i=1}^n\lambda_i(x_i\wedge y_i)^m$. Аналогично тому, что делали в ходе доказательства теоремы 1, раскроем в правой части скобки и соберем слагаемые по данным векторам. Получим противоречивые формулы (2)–(4). Аналогичное доказательство для двух оставшихся «левой» и «правой» сторон.

Если граф несвязный, то он имеет хотя бы две компоненты связности, подграфы G_1 и G_2 . Как фактически доказано, каждый из них должен содержать для каждой из сторон хотя бы одну из ее вершин. Тем самым ввиду связности каждого из графов G_i получаем, что они пересекаются; противоречие с их выбором. Значит, граф G' связный.

Теорема 2 (о верхней оценке размерности V_0). Пусть $\sigma = (k_1, k_2, k_3, k_4)$, а k_0 найдено по формуле (7). Тогда

$$\dim(V_0 \cap L(\sigma)) \le k_0 + 1. \tag{9}$$

Доказательство. Сначала изучим случай цепочки $\delta=(k_0,k_0,k_0,k_0)$, для случая $\sigma=(k_1,k_2,k_3,k_4)$ доказательство будет аналогичным. Рассмотрим пространство $U=L(u_i:u_i\in\delta,(12)\in u_i)$. Предположим, что $U\cap V_0\neq 0$, тогда существует ненулевой вектор $v\in U\cap V_0$. Но если $v\in V_0$, то по предыдущей лемме он должен иметь ненулевую компоненту на нижней стороне, тем самым получаем противоречие с тем, что $v\in U$. Значит, $U\cap V_0=0$, и $\dim(V_0\cap L(\delta))\leq \dim L(\delta)-\dim U=k_0+1$.

3. Метод линеаризации

По определению $v = (x \wedge y)^m \in V_0$ для любых $x, y \in \mathbb{R}^4$. Совершим замену x на $x + \alpha t$. При подстановке вместо x этого выражения в вектор v получим

$$v = ((x + \alpha t) \wedge y)^m \equiv \sum_{i=1}^{m-1} C_m^i \alpha^i (x \wedge y)^{m-i} \vee (t \wedge y)^i \in V_0.$$

Пусть $(x+t) \land y \neq 0$, т. е. $(x+t) \neq \lambda y$, для всех $\lambda \in \mathbb{R}$. Ясно, что мы можем выбрать сколь угодно много коэффициентов α таких, что $(x+\alpha t) \land y \neq 0$. Тогда, выбирая последовательно m-2 раз эти коэффициенты α различными, аналогично тому, как делали в теореме 1, выводим, что

$$(x \wedge y)^{m-i} \vee (t \wedge y)^i \in V_0$$
 для $i = 1, \dots, m-1$.

Зафиксируем степень i и сделаем подобную замену x на $x+\gamma z$. Проделывая те же действия и рассуждения, что и выше, получим

$$(x \wedge y)^{m-i-j} \vee (t \wedge y)^i \vee (z \wedge y)^j \in V_0$$
 для $i = 1, \dots, m-1, \ j = 1, \dots, m-i-1.$

На основе этого алгоритма докажем следующую лемму

Лемма 4.
$$V_0 = L((x_1 \wedge y) \vee \ldots \vee (x_m \wedge y) : x_i, y \in \mathbb{R}^4).$$

ДОКАЗАТЕЛЬСТВО. Покажем, что $(x_1 \wedge y) \vee (x_2 \wedge y) \vee \cdots \vee (x_m \wedge y) \in V_0$ для любых x_i, y таких, что $\sum_{i=1}^k x_i \neq \lambda y$ (где берется суммирование по всем k, попарно не коллинеарным x_i).

Случай k=1 тривиален. При k=2 утверждение доказано выше.

При k>2 рассмотрим все k сумм, полученных из суммы $\sum\limits_{i=1}^{\kappa} x_i$ вычитанием слагаемого x_j . Ясно, что все они не могут быть коллинеарны y, так как иначе суммирование всех таких сумм привело бы к коллинеарности всей суммы $\sum\limits_{i=1}^{k} x_i$, что противоречит условию.

Тогда выберем сумму $s=\sum\limits_{i=1}^k x_i-x_j$, не коллинеарную y. Рассмотрим $((s+\alpha x_j)\wedge y)^m\in V_0$, забывая про все остальные x_i . Это есть случай k=2, и, значит, мы показали, что из условия $s+x_j\neq \lambda y$ получим $(s\wedge y)^{m-i}\vee (x_j\wedge y)^i\in V_0$. Фиксируем i и, продолжая аналогично с вектором $(s\wedge y)^{m-i}$ с уже k-1

различными вхождениями, попарно не коллинеарных x_i , и условием $\sum_{i=1}^k x_i - x_j \neq \lambda y$, получим $(x_1 \wedge y) \vee (x_2 \wedge y) \vee \cdots \vee (x_m \wedge y) \in V_0$.

Заметим, что и при условии $\sum\limits_{i=1}^k x_i=\lambda y$ будет верно заключение $(x_1\wedge y)\vee (x_2\wedge y)\vee\cdots\vee (x_m\wedge y)\in V_0.$

Действительно, рассмотрим все $(x_i \wedge y)$. Если хотя бы для одного вектора x это нулевой вектор, то в заключении леммы получим истинное включение $0 \in V_0$. Если все x_i не коллинеарны y, то при $\sum\limits_{i=1}^k x_i = \lambda y$ рассмотрим вместо x_1 вектор $x_1' = 2x_1$. Сумма векторов x_1', x_2, \ldots, x_k не коллинеарна y, т. е. выполнено условие доказанного утверждения. Замена $x_1' = 2x_1$ дает $(x_1 \wedge y) \vee (x_2 \wedge y) \vee \cdots \vee (x_m \wedge y) \in V_0$.

Тем самым получаем, что $V_0 \supseteq L((x_1 \land y) \lor \cdots \lor (x_m \land y) \mid x_i, y \in \mathbb{R}^4)$ и ввиду ясности обратного включения — равенство указанных пространств.

Замечание 4. Доказательство леммы может быть перенесено и на общий случай $\mathbb{R}^n: V_0 = L((x_1 \wedge y) \vee \cdots \vee (x_m \wedge y) : x_i, y \in \mathbb{R}^n).$

Замечание 5. Если $v=(x_1\wedge y)\vee(x_2\wedge y)\vee\cdots\vee(x_m\wedge y)$, то при подстановке вместо векторов x_i,y их выражений через e_1,e_2,e_3,e_4 получим (при отбрасывании инвариантных векторов) сумму неинвариантных векторов, вообще говоря, из разных цепочек, которая лежит в V_0 .

Ввиду того, что мы можем выбирать сколько угодно много различных коэффициентов α при векторе e_i из разложений x_i, y , можно разделить вектор v, представляющий сумму неинвариантных векторов, на суммы с векторами, которые содержат одинаковое количество вхождений цифр 1, 2, 3, 4, или с векторами из одной цепочки. Иначе говоря, обозначив через $\Pr(v, \sigma)$ суммы всех векторов (взятыми с соответствующими коэффициентами) из v, которые лежат в цепочке σ , получим, что $\Pr(v, \sigma) \in V_0$.

Продолжим метод линеаризации, совершая в векторе $v=(x_1\wedge y)\vee\cdots\vee(x_m\wedge y)\in V_0$ (для $(x_i\wedge y)\neq 0$) замену y на $y+\alpha t$. Обозначим через $\bigvee_{j=1}^k(a_j)$ вектор $(a_1)\vee\ldots\vee(a_k)$. Тогда при раскрытии скобок, аналогично сделанному выше, можно добиться того, что «векторный» коэффициент при каждой степени α будет лежать в V_0 , т. е. при α^{m-k} будет

$$\sum_{1 \leq i_1, \dots, i_k \leq m} \bigvee_{s=1}^k (x_{i_s} \wedge y) \bigvee_{j=1, j \not\in \{i_s\}}^m (x_j \wedge t) \in V_0.$$

Например, при m=2 получим $(x_1 \wedge y) \vee (x_2 \wedge t) + (x_1 \wedge t) \vee (x_2 \wedge y) \in V_0$.

Как и выше, можно показать, что для только что полученных векторов v (представляющих суммы простых векторов) $\Pr(v,\sigma) \in V_0$.

4. Размерность V_0

Теперь мы готовы дать ответ на вопрос о размерности пространства V_0 .

Теорема 3 (о размерности V_0). Имеет место равенство

$$\dim V_0 = C_{m+5}^5 - C_{m+3}^5. \tag{10}$$

ДОКАЗАТЕЛЬСТВО. Для начала рассмотрим произвольную цепочку $\sigma=(k_i)$ и соответствующую ей симметрическую цепочку $\delta=(k_0,k_0,k_0,k_0)$. Покажем, что $\dim(V_0\cap L(\sigma))=k_0+1$. Возможны два варианта.

Случай 1: $k_0 = \tilde{k}$. Без ограничения общности предположим, что $k_1 = k_0$. Пусть общая инвариантная часть цепочки имеет вид $u' = (23)^i \vee (24)^j \vee (34)^k$. Построим векторы вида $(x_1 \wedge y) \vee \ldots \vee (x_m \wedge y) \in V_0$:

$$u_0 = (e_1 \wedge (e_2 + e_3))^{k_0} \vee (e_2 \wedge (e_2 + e_3))^i \vee (-e_4 \wedge (e_2 + e_3))^{j+k+k_0}$$

= $(12 + 13)^{k_0} \vee (23)^i \vee (24 + 34)^{j+k+k_0}$,

$$u_{k_0} = (e_1 \wedge (e_3 + e_4))^{k_0} \vee (e_3 \wedge (e_3 + e_4))^k \vee (e_2 \wedge (e_3 + e_4))^{i+j+k_0}$$

= $(13 + 14)^{k_0} \vee (34)^k \vee (23 + 24)^{i+j+k_0}$.

Положим $v_0 = Pr(u_0, \sigma)$ и $v_{k_0} = Pr(u_{k_0}, \sigma)$, тогда при раскрытии скобок получим суммы векторов, лежащих соответственно на левой стороне графа цепочки для v_0 и на нижней стороне для v_{k_0} , причем все коэффициенты разложения по сторонам будут положительными. Тем самым векторы v_0, v_{k_0} лежат в пространстве $V_0 \cap L(\sigma)$.

Если $k_0=1$, то мы уже нашли искомые k_0+1 линейно независимых векторов $v_t\in V_0\cap L(\sigma)$, и по теореме 2 получим, что $\dim(V_0\cap L(\sigma))=k_0+1$. При $k_0>1$ аналогично вектору u_0 построим векторы

$$\hat{u}_t = (12+13)^{k_0} \vee (23)^{i+t} \vee (24+34)^{j+k+k_0-t} \in V_0, \quad t = 1, \dots, k_0 - 1.$$

Совершим замену $y\mapsto y+\alpha z$ в векторах \hat{u}_t , где $y=e_2+e_3,\ z=e_4$. По построению

$$x_1, \dots, x_{k_0} = e_1,$$
 $x_{k_0+1}, \dots, x_{k_0+i-t} = e_2,$
 $x_{k_0+i-t+1}, \dots, x_{i+j+k+2k_0} = -e_4$

и $x_i \wedge z = 0$ при $i > k_0 + i - t$. Через u_t обозначим вектор, получающийся при α^t после указанной замены. Тогда u_t есть сумма векторов, имеющих в своей записи пары $(14)^s \vee (24)^{t-s}$, где $s = 0, \ldots, t$. Окончательно вектор u_t имеет следующий вил:

$$u_t = \sum_{s=0}^t C_{k_0}^s C_{i+t}^{t-s} (12+13)^{k_0-s} \vee (14)^s \vee (23)^{i+s} \vee (24)^{t-s} \vee (24+34)^{j+k+k_0-t},$$

где коэффициент $C^s_{k_0}C^{t-s}_{i+t}$ связан с $C^s_{k_0}$ различными вариантами выбора s пар из k_0 пар для компоненты $(14)^s$ и C^s_{i+t} различными вариантами выбора t-s пар из i+t пар для компоненты $(24)^{t-s}$. Согласно разд. 3

$$v_t = \Pr(u_t, \sigma) \in V_0.$$

При раскрытии скобок получим сумму векторов цепочки σ с положительными коэффициентами λ_s^p :

$$v_t = \sum_{s=0}^t \sum_{p=0}^{q(s)} \lambda_s^p (12)^p \vee (13)^{k_0 - p - s} \vee (14)^s \vee (23)^s \vee (24)^{k_0 - p - s} \vee (34)^p \vee u',$$

где $0 \le s \le t$ (ввиду того, что t — максимальная возможная степень вхождения пары (14)) и $0 \le p \le q(s) = \min\{k_0 - s, j + k_0 - t\}$ (это ограничение в силу того, что q(s) + k — максимальная возможная степень вхождения пары (34) при фиксированном s).

Случай 2: $k_0 = \hat{k}$ и $k_0 < \tilde{k}$. Без ограничения общности предположим, что $k_1 = m - k_0$. Пусть общая инвариантная часть цепочки имеет вид $u' = (12)^i \vee (13)^j \vee (14)^k$. Построим векторы вида $(x_1 \wedge y) \vee \cdots \vee (x_m \wedge y) \in V_0$:

$$u_0 = (e_1 \wedge (e_1 + e_4))^k \vee (-e_2 \wedge (e_1 + e_4))^{i+k_0} \vee (-e_3 \wedge (e_1 + e_4))^{j+k_0}$$

= $(14)^k \vee (12 - 24)^{i+k_0} \vee (13 - 34)^{j+k_0}$,

$$u_{k_0} = (e_1 \wedge (e_1 + e_2))^{k_0} \vee (-e_3 \wedge (e_1 + e_2))^{j+k_0} \vee (-e_4 \wedge (e_1 + e_2))^{k+k_0}$$
$$= (12)^i \vee (13 + 23)^{j+k_0} \vee (14 + 24)^{k+k_0}.$$

Положим $v_0 = Pr(u_0, \sigma)$ и $v_{k_0} = Pr(u_{k_0}, \sigma)$, тогда при раскрытии скобок получим суммы векторов, лежащих соответственно на левой стороне графа цепочки для v_0 и на нижней стороне для v_{k_0} . При этом все коэффициенты разложения вектора v_{k_0} положительны, а коэффициенты разложения вектора v_0 одного знака, для определенности выберем в случае отрицательности коэффициентов этого разложения $v_0 = -\Pr(u_0, \sigma)$. Тем самым векторы v_0, v_{k_0} лежат в пространстве $V_0 \cap L(\sigma)$.

Если $k_0=1$, то мы уже нашли искомые k_0+1 линейно независимых векторов $v_t\in V_0\cap L(\sigma)$, и по теореме 2 получим, что $\dim(V_0\cap L(\sigma))=k_0+1$. При $k_0>1$ аналогично вектору u_{k_0} построим векторы

$$\hat{u}_t = (12)^{i+t} \vee (13+23)^{j+k_0-t} \vee (14+24)^{k+k_0} \in V_0, \quad t = 1, \dots, k_0 - 1.$$

Совершим замену $y\mapsto y+\alpha z$ в векторах \hat{u}_t , где $y=e_1+e_2,\ z=e_3$. Через u_t обозначим вектор, получающийся при α^t после указанной замены. Тогда u_t есть сумма векторов, имеющих в своей записи пары $(13)^{t-s}\vee (34)^s$ $(s=0,\ldots,t)$:

$$u_t = \sum_{s=0}^{t} C_{k+k_0}^s C_{i+t}^{t-s} (12)^{i+s} \vee (13)^{t-s} \vee (13+23)^{j+k_0-t} \vee (34)^s \vee (14+24)^{k+k_0-s},$$

где коэффициент $C^{t-s}_{k+k_0}C^s_{i+t}$ связан с C^s_{i+t} различными вариантами выбора t-s пар из i+t пар для компоненты $(13)^{t-s}$ и $C^s_{k+k_0}$ различными вариантами выбора s пар из $k+k_0$ пар для компоненты $(34)^s$. Имеем $v_t=\Pr(u_t,\sigma)\in V_0$.

При раскрытии скобок получим сумму векторов цепочки σ с положительными коэффициентами λ_c^p :

$$v_t = \sum_{s=0}^t \sum_{p=0}^{q(s)} \lambda_s^p (12)^s \vee (13)^{k_0 - p - s} \vee (14)^p \vee (23)^p \vee (24)^{k_0 - p - s} \vee (34)^s \vee u',$$

где $0 \le s \le t$ (ввиду того, что t — максимальная возможная степень вхождения пары (12)) и $0 \le p \le q(s) = \min\{k_0 - s, j + k_0 - t\}$ (это ограничение в силу того, что q(s) — максимальная возможная степень вхождения пары (23) при фиксированном s).

И в первом, и во втором случаях полученные векторы v_t лежат в $V_0 \cap L(\sigma)$, их количество равняется k_0+1 , и они линейно независимы, так как их компоненты по правой стороне также линейно независимы. Тем самым $\dim(V_0 \cap L(\sigma)) = k_0+1$.

Теперь найдем dim V_0 . Пусть $p=\left[\frac{m}{2}\right]$. Представим dim V_0 как

$$I(m) + \sum_{k_0=1}^{p} C_{k_0}(k_0+1) = I(m) + N(m) + \sum_{k_0=1}^{p} C_{k_0}k_0,$$
 (11)

где C_{k_0} — количество цепочек (k_0,k_0,k_0,k_0) для $k_0\leq p$. Вычислим сумму $S=\sum\limits_{k_0=1}^{\lfloor\frac{m}{2}\rfloor}C_{k_0}\cdot k_0.$

(а) Пусть m=2l. Для m=2 утверждение теоремы проверяется из условия $\dim(V_0\cap L(\sigma))=k_0+1$, поэтому рассматриваем $m\geq 4$. Отделим цепочку (k_0,k_0,k_0,k_0) для $k_0=\frac{m}{2}$, в сумме из (11) ей будет соответствовать $\frac{m}{2}$ векторов. Теперь для произвольной цепочки (k_0,k_0,k_0,k_0) при $k_0<\frac{m}{2}$ найдем $t=m-2k_0$ — количество пар общей инвариантной части цепочки, и C_{k_0} есть фактически количество инвариантных векторов в пространстве $S^t(\wedge^2\mathbb{R}^4)$, т. е. $I(t)=4t^2+2$. В итоге

$$S = \sum_{k_0 = 1}^{p-1} (4(m-2k_0)^2 + 2)k_0 + p = \frac{m^4}{12} - \frac{m^2}{12}.$$

(б) Пусть m=2l+1. Полагаем, что $m\geq 3$. Аналогично находим C_{k_0} и вычисляем S:

$$S = \sum_{k_0=1}^{rac{m-1}{2}} (4(m-2k_0)^2 + 2)k_0 = rac{m^4}{12} - rac{m^2}{12}.$$

Суммируя это значение с N(m) и I(m), получаем утверждение теоремы.

В ходе доказательства теоремы 3 мы непосредственно находили базис $V_0 \cap L(\sigma)$ для произвольной цепочки $\sigma = (k_0, k_0, k_0, k_0)$. Если взять объединение всех инвариантных векторов пространства V и всех базисов таких пересечений (по всем цепочкам, соответствующим цепочке (k_0, k_0, k_0, k_0) , и по всем таким k_0 , что $1 \le k_0 \le \left\lceil \frac{m}{2} \right\rceil$), то получим базис V_0 .

Замечание 6. К сожалению, количество ненулевых компонент базисных векторов пространства V_0 , не являющихся инвариантными, в разложении по стандартному базису велико. Возможно, есть более экономичный и удобный базис V_0 , но по лемме 3 в силу связности подграфа, соответствующего вектору v_t , и того, что он содержит хотя бы одну вершину каждой стороны, получаем, что он содержит не менее k_0+1 ненулевых компонент по векторам цепочки $\sigma=(k_0)$ (так как сумма расстояний любой вершины графа цепочки до трех сторон не менее k_0).

Автор выражает благодарность В. А. Шарафутдинову за постановку задачи и А. П. Пожидаеву, под руководством которого выполнена работа.

ЛИТЕРАТУРА

- Sharafutdinov V. Slice-by-slice reconstruction algorithm for vector tomography with incomplete data // Inverse Probl. 2007. V. 23. P. 2603–2627.
- Кострикин А. И., Манин Ю. И. Линейная алгебра и геометрия. М.: Изд-во Моск. ун-та, 1980.

Статья поступила 3 апреля 2008 г.

Губарев Всеволод Юрьевич Новосибирский гос. университет, механико-математический факультет, ул. Пирогова, 2, Новосибирск 630090 vsevolodgu@mail.ru