О СТРУКТУРЕ СПЕКТРА ЗАДАЧИ ТЕОРИИ УПРУГОСТИ ДЛЯ ТЕЛА СО СВЕРХОСТРЫМ ПИКОМ

Ф. Л. Бахарев, С. А. Назаров

Аннотация. Установлено, что непрерывный спектр задачи Неймана для системы уравнений теории упругости занимает всю вещественную замкнутую положительную полуось в случае трехмерного тела с пикообразным заострением, сечение которого стягивается к точке со скоростью $O(r^{1+\gamma})$, где r — расстояние до вершины пика, а $\gamma > 1$ — показатель заострения.

Ключевые слова: система уравнений теории упругости, пик, нулевое заострение, непрерывный спектр.

1. Введение. Цель работы — изучение структуры спектра оператора линейной задачи теории упругости для трехмерного тела с пикообразной особенностью границы (рис. 1), свободной от напряжений (краевые условия Неймана). Пусть гладкость границы $\partial\Omega$ тела Ω нарушается лишь в начале $\mathscr O$ декартовой системы координат $x=(x_1,x_2,x_3)$. Для того чтобы указать характер особенности, зафиксируем положительный показатель заострения γ и область $\omega \subset \mathbb R^2$ с гладкой границей и компактным замыканием $\overline{\omega}=\omega\cup\partial\omega$. Форма пика в окрестности $\mathscr U$ точки $\mathscr O$ описывается соотношением

$$\Omega \cap \mathscr{U} = \{ x = (y_1, y_2, z) \in \mathscr{U} : z > 0, y = (y_1, y_2) \in z^{1+\gamma} \omega \}, \tag{1}$$

где $t\omega=\{y:t^{-1}y\in\omega\}$ при t>0. Масштабированием добиваемся равенства $\operatorname{mes}_2\omega=1.$

Рис. 1.

Исследование спектра задачи теории упругости в пикообразных областях начато в работах [1, 2], где, в частности, доказано весовое неравенство Корна [1, теорема 1], которое, в свою очередь, устанавливает дискретность спектра в случае малого показателя заострения $\gamma \in (0,1)$. Подчеркнем, что в случае $\gamma = 0$ начало координат — вершина конуса, т. е. граница $\partial\Omega$ становится липшицевой, справедливо обычное (не весовое) неравенство Корна (см., например, [3]), и поэтому спектр задачи теории упругости для тела со свободной границей заведомо дис-

кретный. Кроме того, в случае зажатой поверхности тела (краевые условия Дирихле) дискретность спектра также не вызывает сомнений при любом $\gamma \geq 0$.

В статье [1] показано, что непрерывный спектр у оператора краевой задачи Неймана для системы уравнений теории упругости появляется при $\gamma \geq 1$. Для

Работа выполнена при финансовой поддержке the Netherlands Organization for Scientific Research (NWO).

^{© 2009} Бахарев Ф. Л., Назаров С. А.

 $\gamma=1$ установлено, что непрерывный спектр покрывает целый луч $[\lambda^{\dagger},+\infty)$ с некоторым положительным зависящим от сечения ω и упругих свойств материала началом λ^{\dagger} и что на некотором полуинтервале $[0,\lambda^{\bullet})$ спектр является дискретным и состоит из единственного собственного числа $\lambda=0$ кратностью шесть (размерность линеала жестких смещений). При этом $\lambda^{\bullet}<\lambda^{\dagger}$, но в [1] нет сведений о качестве спектра на полуинтервале $[\lambda^{\bullet},\lambda^{\dagger})$.

Для $\gamma>1$ в [1] получена наиболее скудная информация: проверено лишь то, что точка $\lambda=0$ попадает на непрерывный спектр, по-прежнему являясь собственным числом кратностью шесть. В настоящей статье доказано (теорема 1), что при $\gamma>1$ непрерывный спектр оператора совпадает с замкнутой положительной вещественной полуосью, и тем самым полностью закрыт вопрос о строении спектра для сверхострых ($\gamma>1$) пиков. Искусственные краевые условия на плоскостях упругой и геометрической симметрии, предложенные в [4] и уже использованные в [1] для аналогичных целей, позволяют на область непрерывного спектра $[0,+\infty)$ при $\gamma>1$ поместить бесконечно большую последовательность собственных чисел с конечной кратностью.

Упомянем смежные результаты. В работе [5] (см. также [2]) найдены достаточные условия сохранения дискретного спектра и возникновения непрерывного спектра у оператора краевой задачи Неймана для широкого класса формально самосопряженных эллиптических систем дифференциальных уравнений второго порядка в области с пиком (1), причем для острых ($\gamma \geq 1$) пиков названные условия объединяются в критерий непустого непрерывного спектра. В то же время все вопросы по детализации строения непрерывного спектра остались открытыми в случае общих систем. Полная информация о спектре для $\gamma \in (0,1), \ \gamma = 1$ и $\gamma > 1$ получена соответственно в статьях [6] и [7], где изучена спектральная задача Стеклова (отыскивается гармоническая функция u, удовлетворяющая краевому условию $\partial_n u = \lambda u$ на $\partial \Omega \setminus \mathscr{O}$, в котором ∂_n — производная вдоль внешней нормали и λ — спектральный параметр). Отметим, что некоторые конструкции из [7] приспособлены в данной работе к рассматриваемому упругому пикообразному телу. Наконец, в [7-9] построены асимптотики собственных чисел задачи Стеклова и системы уравнений теории упругости в области с затупленным пиком.

2. Постановка задачи. Задачу линейной теории упругости о собственных колебаниях тела Ω , следуя [10], запишем в матричной форме

$$D(-\nabla_x)^{\top} A(x) D(\nabla_x) u(x) = \lambda \rho(x) u(x), \quad x \in \Omega,$$

$$D(n(x))^{\top} A(x) D(\nabla_x) u(x) = 0, \quad x \in \partial\Omega \setminus \mathscr{O},$$
(2)

где шестимерный столбец деформаций

$$D(\nabla_x)u(x) = (\varepsilon_{11}(u), \varepsilon_{22}u, \sqrt{2}\varepsilon_{21}(u), \sqrt{2}\varepsilon_{13}(u), \sqrt{2}\varepsilon_{32}(u), \varepsilon_{33}(u))^{\top}$$
(3)

заменяет симметричный тензор деформаций, а множители $\sqrt{2}$ введены для уравнивания их норм. Согласно определению (3) и формулам Коши для декартовых компонент тензора деформаций (6×3) -матрица $D(\nabla_x)$ дифференциальных операторов первого порядка определена формулой

$$D(\xi) = \begin{pmatrix} \xi_1 & 0 & \frac{1}{\sqrt{2}}\xi_2 & \frac{1}{\sqrt{2}}\xi_3 & 0 & 0\\ 0 & \xi_2 & \frac{1}{\sqrt{2}}\xi_1 & 0 & \frac{1}{\sqrt{2}}\xi_3 & 0\\ 0 & 0 & 0 & \frac{1}{\sqrt{2}}\xi_1 & \frac{1}{\sqrt{2}}\xi_2 & \xi_3 \end{pmatrix}^\top, \quad \xi = (\xi_1, \xi_2, \xi_3)^\top.$$

Кроме того, n(x) — вектор-столбец единичной внешней нормали к границе тела, A(x) — симметричная и положительно определенная в $\overline{\Omega}$ матрица упругих модулей размером 6×6 , построенная по тензору Гука. Наконец, $\rho>0$ — плотность упругого материала, а λ — спектральный параметр, пропорциональный квадрату частоты собственных колебаний. В общей ситуации следует предположить, что плотность ρ и элементы матрицы A гладкие в окрестности замыкания тела Ω , но для сокращения формул далее считаем, что матрица A постоянна и $\rho=1$ (ср. [1, замечание 3(3)]).

Гильбертово пространство $\mathcal{H}(\Omega)$ является пополнением линейного множества $C_c^\infty(\overline{\Omega}\setminus\{O\})^3$ (бесконечно дифференцируемые функции с компактными носителями) по норме

$$||u; \mathcal{H}(\Omega)|| = ((AD(\nabla_x)u, D(\nabla_x)u)_{\Omega} + (u, u)_{\Omega})^{1/2},$$

где $(\cdot,\cdot)_{\Omega}$ — скалярное произведение в пространстве Лебега $L^2(\Omega)^6$ или $L^2(\Omega)^3$. Подчеркнем, что верхние индексы 3 и 6 указывают количество компонент вектор-функции и не отмечаются в обозначениях скалярных произведений и норм.

Интегральное тождество (см. [11])

$$(AD(\nabla_x)u, D(\nabla_x)v)_{\Omega} = \lambda(u, v)_{\Omega}, \quad v \in \mathcal{H}(\Omega),$$

обслуживающее задачу (2), запишем в виде абстрактного уравнения

$$Ku = \mu u$$

в гильбертовом пространстве $\mathscr{H}(\Omega)$; здесь $\mu = (1+\lambda)^{-1}$ — новый спектральный параметр. Оператор K, заданный формулой

$$(Ku, v)_{\mathscr{H}(\Omega)} = (u, v)_{\Omega}, \quad u, v \in \mathscr{H}(\Omega),$$

оказывается непрерывным, положительным и симметричным. На основе общих результатов [12, 13] в работе [1] показано, что оператор K имеет конечномерное ядро. Тем самым для проверки включения точки μ в непрерывный спектр достаточно найти сингулярную последовательность Вейля и применить критерий Вейля (см. [14, теорема 9.1.2]).

3. Построение одномерной модели. При $z \to +0$ пик (1) утончается, поэтому для выяснения поведения решения задачи (2) вблизи начала координат естественно принять асимптотический анзац теории упругих тонких стержней (см., например, [10, гл. 5; 1])

$$u(x) = W^{-2}(y, z) + W^{-1}(y, z) + W^{0}(y, z) + W^{1}(y, z) + W^{2}(y, z) + \dots,$$
(4)

где каждое последующее слагаемое приобретает дополнительный порядок затухания при $z \to +0$. При этом

$$W^{-2}(y,z) = w_1(z)e_1 + w_2(z)e_2,$$

$$W^{-1}(y,z) = e_3 \left(w_3(z) - y_1 \frac{\partial w_1}{\partial z}(z) - y_2 \frac{\partial w_2}{\partial z}(z) \right) + w_4(z)\theta(y),$$
(5)

где e_j — орт оси x_j , $\theta(y) = \frac{1}{\sqrt{2}}(y_1e_1 - y_2e_2)$ — поворот в плоскости $\{x: z = \text{const}\}$. Вектор-функции W^k при $k \geq 0$ подлежат дальнейшему определению, а $w = (w_1, w_2, w_3, w_4)^\top$ — неизвестный столбец функций, служащий для описания одномерной модели деформации стержня (в нашем случае — пика).

Если $\nu=(\nu_1,\nu_2)^\top$ — единичный вектор внешней нормали к границе области ω , то нормаль n к проколотой поверхности $\partial\Omega\setminus\mathscr{O}$ внутри окрестности \mathscr{U} имеет вид

$$n(x) = n_0(y, z)^{-1/2} (\nu_1(z^{-1-\gamma}y), \nu_2(z^{-1-\gamma}y), -(1+\gamma)z^{-1}y^\top \nu(z^{-1-\gamma}y))^\top,$$

где $n_0(y,z)$ — нормирующий множитель. Операторы $L(\nabla_x)$ и $N(x,\nabla_x)$ из левых частей (2) допускают расщепления $L=L^0+L^1+L^2$ и $n_0N=N^0+N^1+N^2$ со следующими слагаемыми:

$$L^{0}(\nabla_{x}) = D(-\nabla_{y}, 0)^{\top} A D(\nabla_{y}, 0),$$

$$L^{1}(\nabla_{y}, \partial_{z}) = D(-\nabla_{y}, 0)^{\top} A D(0, \partial_{z}) + D(0, -\partial_{z})^{\top} A D(\nabla_{y}, 0),$$

$$L^{2}(\partial_{z}) = D(0, -\partial_{z})^{\top} A D(0, \partial_{z}),$$

$$N^{0}(y, z, \nabla_{y}) = D(\nu(z^{-1-\gamma}y), 0)^{\top} A D(\nabla_{y}, 0),$$

$$N^{1}(y, z, \nabla_{y}, \partial_{z}) = D(\nu(z^{-1-\gamma}y), 0)^{\top} A D(0, \partial_{z})$$

$$- (1+\gamma)z^{\gamma} D(0, z^{-1-\gamma}y)(z^{-1-\gamma}y))^{\top} A D(\nabla_{y}, 0),$$

$$N^{2}(y, z, \partial_{z}) = -(1+\gamma)z^{\gamma} D(0, z^{-1-\gamma}y)(z^{-1-\gamma}y))^{\top} A D(0, \partial_{z}).$$
(6)

Подставляя формулы (4) и (6) в соотношения (2), получаем рекуррентную последовательность плоских задач теории упругости на поперечных сечениях $\omega(z)=z^{1+\gamma}\omega$. Анализ этих задач, детально описанный в [10, гл. 5], а также в [1], приводит к системе четырех обыкновенных дифференциальных уравнений, которая в матричной форме принимает вид

$$\mathscr{L}(z,\partial_z)w(z) := \mathscr{D}(-\partial_z)^{\top}\mathscr{M}(z)\mathscr{D}(\partial_z)w(z) = \lambda(w_1(z),w_2(z),0,0)^{\top}, \quad z > 0. \quad (7)$$

Здесь $\mathcal{D}(\partial_z) = \mathrm{diag}\{\partial_z^2,\partial_z^2,\partial_z,\partial_z\}$ — диагональная матрица дифференциальных операторов, а $\mathcal{M}(z)$ — симметричная положительно определенная матрицафункция размером 4×4 , зависящая от матрицы упругих модулей A и сечения ω , а также подчиненная равенству

$$\mathcal{M}(z) = \mathbf{D}(z^{1+\gamma})^{\top} \mathcal{M}(1) \mathbf{D}(z^{1+\gamma}), \quad \mathbf{D}(\zeta) = \operatorname{diag}\{\zeta^2, \zeta^2, \zeta, \zeta^2\}.$$

Разобьем матрицу $\mathcal{M}(1)$ на (2×2) -блоки $\mathcal{M}^{(\alpha\beta)}$, занумерованные естественным образом. В результате получаем, что столбцы $w' = (w_1, w_2)^{\top}$ и $w'' = (w_3, w_4)^{\top}$ удовлетворяют четырем обыкновенным дифференциальным уравнениям

$$\operatorname{diag}\{z^{1+\gamma}, z^{2(1+\gamma)}\}\partial_z w''(z) = -z^{2(1+\gamma)} (\mathcal{M}^{(22)})^{-1} \mathcal{M}^{(21)} \partial_z^2 w'(z), \tag{8}$$

$$\partial_z^2 \left(z^{4(1+\gamma)} M \partial_z^2 w'(z) \right) = \lambda z^{2(1+\gamma)} w'(z), \tag{9}$$

где матрица $M = \mathcal{M}^{(11)} - \mathcal{M}^{(12)}(\mathcal{M}^{(22)})^{-1}\mathcal{M}^{(21)}$ остается симметричной и положительно определенной. Ищем решение уравнений (9) в виде

$$w'(z) = f(z)v_{(1)}, (10)$$

где $v_{(1)}$ — собственный вектор матрицы M, соответствующий собственному числу $m_1>0$. Подстановка формулы (10) в систему (9) приводит к вырождающемуся уравнению четвертого порядка

$$\partial_z^2 \left(z^{2a} \partial_z^2 f(z) \right) = \Lambda z^a f(z), \quad z > 0, \tag{11}$$

где
$$a = 2(1 + \gamma) > 4$$
 и $\Lambda = m_1^{-1} \lambda > 0$.

4. Решение одномерной модельной задачи. Решение уравнения (11) будем искать в виде формального асимптотического ряда

$$f(z) = \exp(\pm 2\pi i dz^{-\alpha}) z^b \sum_{k=0}^{+\infty} c_k z^{k\alpha}, \tag{12}$$

причем $\alpha = \frac{a}{4} - 1 = \frac{\gamma - 1}{2} > 0$ и $c_0 = 1$. Обозначив $(\mathbf{L}g)(z) = z^{-a}\partial_z^2 \left(z^{2a}\partial_z^2 g(z)\right)$, получаем

$$\mathbf{L}(\exp(\pm 2\pi i dz^{-\alpha})z^{\beta}) = \exp(\pm 2\pi i dz^{-\alpha})(z^{\beta}(2\pi i d\alpha)^{4}$$
$$-z^{\alpha+\beta}(\pm 2\pi i d\alpha)^{3}(10\alpha + 10 + 4\beta) + p_{1}(\pm d, \alpha, \beta)z^{2\alpha+\beta}$$
$$+ p_{2}(\pm d, \alpha, \beta)z^{3\alpha+\beta} + p_{3}(\pm d, \alpha, \beta)z^{4\alpha+\beta}),$$

где $p_1,\ p_2,\ p_3$ — некоторые многочлены трех переменных. Ряд (12) подставим в уравнение (11) и соберем коэффициенты при одинаковых степенях переменной z. В результате приходим к бесконечной совокупности алгебраических уравнений, связывающей параметры и коэффициенты ряда (12). Первое уравнение $(2\pi id\alpha)^4=\Lambda$ определяет сомножитель d в показателе экспоненты из (12). Второе уравнение $10\alpha+10+4b=0$ позволяет найти величину $b=-\frac{5}{4}(1+\gamma)$ в правой части (12), т. е. соотнести особенность функции f в точке z=0 с показателем заострения пика. Остальные алгебраические уравнения однозначно задают коэффициенты $c_1,\ c_2,\ c_3,\dots$ ряда (12), ибо для каждого из них получается линейное уравнение со старшим коэффициентом $-(\pm 2\pi id\alpha)^3(10\alpha+10+4(b+k\alpha))=-(\pm 2\pi id\alpha)^34k\alpha\neq 0$.

Для дальнейших целей понадобятся только старший член асимптотического ряда (12), поэтому младшими членами и исследованием его сходимости не занимаемся.

5. Последовательность Вейля. В предыдущем пункте показано, как построить функции w_1 и w_2 в анзаце (4). Отметим, что при $z \to +0$

$$w_j(z) = O(z^{-5/4(1+\gamma)}), \quad j = 1, 2.$$
 (13)

Умножим обе функции на некоторую срезку χ_m . Компоненты \widetilde{w}_3 и \widetilde{w}_4 определим по $\widetilde{w}_1 = \chi_m w_1$ и $\widetilde{w}_2 = \chi_m w_2$ согласно уравнениям (8). Положим

$$\widetilde{W}^{-2}(z) = \chi_m(z)w_1(z)e_1 + \chi_m(z)w_2(z)e_2,$$

$$\widetilde{W}^{-1}(z) = e_3\left(\widetilde{w}_3(z) - y_1\frac{\partial \widetilde{w}_1}{\partial z}(z) - y_2\frac{\partial \widetilde{w}_2}{\partial z}(z)\right) + \widetilde{w}_4(z)\theta(y).$$
(14)

Процедуру построения модифицированного формального асимптотического анзаца можно продолжить и найти любое наперед заданное число его членов. В качестве функции Вейля Ψ_m возьмем сумму

$$\Psi_m = n_m(\widetilde{W}^{-2} + \widetilde{W}^{-1} + \widetilde{W}^0 + \widetilde{W}^1 + \widetilde{W}^2), \tag{15}$$

где n_m — подходящий нормирующий множитель.

Определим функцию χ_m следующим образом: $\chi_m(z)=\mathscr{X}_m(z^{\frac{1-\gamma}{2}}d)$. Здесь \mathscr{X}_m — гладкая функция, равная 1 на отрезке $[a_m,b_m]=[2^m+1,2^{m+1}-1]$ и равная нулю вне отрезка $[a_m-1,b_m+1]$. На единичных отрезках $[a_m-1,a_m]$ и $[b_m,b_m+1]$ срезка не зависит от индекса m и на нее позже будут наложены

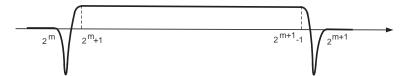


Рис. 2. Срезающая функция.

дополнительные условия ортогональности (приблизительный график функции \mathscr{X}_m изображен на рис. 2).

Коэффициент $n_m = 2^{-m/2}$ выбираем так, чтобы норма Ψ_m в пространстве $\mathcal{H}(\Omega)$ была отделена от нуля. Для этого заметим, что при достаточно большом m имеет место цепочка неравенств

$$\|\Psi_{m}; \mathcal{H}(\Omega)\| \geq \int_{\Omega} (\varepsilon_{33}(\Psi_{m}))^{2} dx \geq c n_{m}^{2} \int_{0}^{\infty} \chi_{m}(z) z^{4(1+\gamma)} \left| \partial_{z}^{2} w(z) \right|^{2} dz$$

$$\geq c n_{m}^{2} \int_{0}^{+\infty} |\mathcal{X}_{m}(z^{\frac{1-\gamma}{2}} d)| z^{4(1+\gamma)} z^{-5/2(1+\gamma)} z^{4(\frac{1-\gamma}{2}-1)} dz$$

$$= c n_{m}^{2} \int_{0}^{+\infty} |\mathcal{X}_{m}(z^{\frac{1-\gamma}{2}} d)| z^{-\frac{1+\gamma}{2}} dz = d^{-1} c n_{m}^{2} \int_{0}^{\infty} \mathcal{X}_{m}(t) dt \geq d^{-1} c 2^{m} n_{m}^{2}. \quad (16)$$

Поскольку носители вектор-функций Ψ_m и Ψ_n при $m \neq n$ не пересекаются, из равномерной ограниченности норм $\|\Psi_m; \mathcal{H}(\Omega)\|$, проверяемой при помощи аналогичных (16) оценок сверху, вытекает слабая сходимость к нулю последовательности Ψ_m в $\mathcal{H}(\Omega)$.

6. Оценка объемного интеграла в невязке. Функцию Ψ_m следует трактовать как приближенное решение задачи (2). Невязки возникают в задаче по двум причинам: из-за того, что функции \widetilde{w}_i не удовлетворяют системе уравнений (8), (9), и из-за того, что полный асимптотический анзац заменен суммой первых пяти слагаемых. Для того чтобы функции Ψ_m образовали последовательность Вейля, необходимо соотношение $\|K\Psi_m - \mu\Psi_m; \mathcal{H}(\Omega)\| \to 0$. Проверим его.

Из определения оператора K и формулы Γ рина выводим, что

$$||K\Psi_m - \mu\Psi_m; \mathcal{H}(\Omega)|| = \mu^{-1} \sup |(L(\nabla_x)\Psi_m - \lambda\Psi_m, u)_{\Omega} + (N(x, \nabla_x)\Psi_m, u)_{\partial\Omega}|.$$

При этом супремум вычисляется по всем пробным функциям u из единичного шара в пространстве $\mathcal{H}(\Omega)$.

Главная часть разности $L(\nabla_x)\Psi_m - \lambda\Psi_m$ определяется формулой

$$\mathscr{Z}(y,z)\Phi^{(m)}(z) = n_m z^{-2(1+\gamma)} \mathscr{Z}(y,z) (\mathscr{L}(z,\partial_z)(\chi_m w_1,\chi_m w_2,\widetilde{w}_3,\widetilde{w}_4)^\top - \lambda(\chi_m w_1,\chi_m w_2,0,0)^\top).$$
(17)

Носитель вектор-функции (17) сосредоточен в объединении двух сегментов

$$\Xi_m^1 = \{ x \in \Omega \cap \mathcal{U} : dz^{\frac{1-\gamma}{2}} \in [a_m - 1, a_m] \},$$

$$\Xi_m^2 = \{ x \in \Omega \cap \mathcal{U} : dz^{\frac{1-\gamma}{2}} \in [b_m, b_m + 1] \},$$
(18)

а столбцы гладкой (3 × 4)-матрицы

$$\mathscr{Z}(y,z)=(\mathscr{Z}^1(z^{-1-\gamma}y),\mathscr{Z}^2(z^{-1-\gamma}y)),\mathscr{Z}^3,z^{-1-\gamma}\mathscr{Z}^4(z^{-1-\gamma}y)),$$

при z=1 образуют биортогональную систему с векторами e_1 , e_2 , e_3 , $\theta(y)$ (относительно скалярного произведения в $L^2(\omega)^3$). Поскольку только вектор e_3 имеет нетривиальную третью компоненту, можно положить

$$\mathscr{Z}^3 = (0, 0, (\text{mes}_2 \omega)^{-1})^{\top} = (0, 0, 1)^{\top}.$$

Займемся интегралами по множеству Ξ_m^1 ; интегралы по Ξ_m^2 обрабатываются аналогично. Зафиксируем точку z_m так, чтобы $dz_m^{\frac{1-\gamma}{2}}=2^m$. Компоненты $\Phi^{(m)}$ при $z\in\Xi_m^1$ подчинены соотношениям

$$\left|\Phi_{j}^{(m)}(z)\right| = O(n_{m}z_{m}^{-\frac{5}{4}(1+\gamma)}), \quad j = 1, 2,$$

а объем $\left|\Xi_m^1\right|$ множеств (18) является бесконечно малой порядка $z_m^{\frac{1+\gamma}{2}}z_m^{2(1+\gamma)}$ (длина интервала, умноженная на площадь сечения). Таким образом, обнаруживаем, что при j=1,2 справедлива формула

$$\left| \int_{\Xi_{m}^{1}} \Phi_{j}^{(m)}(z) \mathscr{Z}^{j}(z^{-1-\gamma}y)^{\top} u(x) dx \right| \leq c n_{m} z_{m}^{-\frac{5}{4}(1+\gamma)} \left| \Xi_{m}^{1} \right|^{1/2} \left\| u; L^{2}(\Xi_{m}^{1}) \right\|$$

$$= c n_{m} \left\| u; L^{2}(\Xi_{m}^{1}) \right\| \leq c n_{m} \| u, \mathscr{H}(\Omega) \|.$$

Для оценки аналогичного интеграла при j=3 воспользуемся явным видом столбца \mathscr{Z}^3 матрицы \mathscr{Z} . Учитывая уравнение для \widetilde{w}_3 , получаем равенства

$$\int_{\Xi_{m}^{1}} \Phi_{3}^{(m)}(z) \mathcal{Z}^{3}(z^{-1-\gamma}y)^{\top} u(x) dx$$

$$= c n_{m} \int_{\Xi_{m}^{1}} z^{-2(1+\gamma)} \partial_{z}(z^{2(1+\gamma)} \partial_{z} \widetilde{w}_{3}(z)) u_{3}(x) dx$$

$$= -c n_{m} \int_{\Xi_{m}^{1}} \partial_{z}(z^{3(1+\gamma)} \partial_{z}^{2}(\chi_{m}(z)v(z))) \bar{u}_{3}(z) dz. \quad (19)$$

Здесь $a^{\frac{1-\gamma}{2}}d=a_m,\ b^{\frac{1-\gamma}{2}}d=a_m-1,\ \bar{u}_3(z)$ — среднее значение функции $y\mapsto u_3(y,z)$ по приведенному сечению $\omega,$ а v(z) — первая компонента столбца

$$(\mathcal{M}^{(22)})^{-1}\mathcal{M}^{(21)}\partial_z^2(\chi_m(z)w'(z)). \tag{20}$$

Достаточно убедиться в том, что интеграл (19) ограничен, если $||u; \mathcal{H}(\Omega)|| = 1$. Поскольку производные функции χ_m на концах отрезка $[a_m-1, a_m]$ равны нулю, при помощи формулы интегрирования по частям находим

$$\begin{split} &-\int\limits_{a}^{b}\partial_{z}(z^{3(1+\gamma)}\partial_{z}^{2}(\chi_{m}(z)v(z)))\bar{u}_{3}(z)\,dz\\ &=\int\limits_{a}^{b}z^{3(1+\gamma)}\partial_{z}^{2}(\chi_{m}(z)v(z))\partial_{z}\bar{u}_{3}(z)\,dz-z^{3(1+\gamma)}\partial_{z}^{2}(\chi_{m}(z)v(z))\bar{u}_{3}(z)|_{a}^{b} \end{split}$$

$$=\int\limits_a^b z^{3(1+\gamma)}\partial_z^2(\chi_m(z)v(z))\partial_z\bar{u}_3(z)\,dz-z^{3(1+\gamma)}\chi_m(z)\partial_z^2v(z)\bar{u}_3(z)|_a^b.$$

Последний интеграл обозначим через I_1 , а двойную подстановку преобразуем согласно формуле Ньютона — Лейбница

$$\begin{split} z^{3(1+\gamma)}\chi_{m}(z)\partial_{z}^{2}v(z)\bar{u}_{3}(z)|_{a}^{b} &= \int_{a}^{b}\partial_{z}\left(z^{3(1+\gamma)}\chi_{m}(z)\partial_{z}^{2}v(z)\bar{u}_{3}(z)\right)dz \\ &= \int_{a}^{b}P_{2}(z)\exp(\pm 2\pi iz^{\frac{1-\gamma}{2}}d)\,\mathcal{X}_{m}(dz^{\frac{1-\gamma}{2}})\bar{u}_{3}(z)\,dz \\ &+ \int_{a}^{b}P_{3}(z)\exp(\pm 2\pi iz^{\frac{1-\gamma}{2}}d)\,\mathcal{X}'_{m}(dz^{\frac{1-\gamma}{2}})\bar{u}_{3}(z)\,dz \\ &+ \int_{a}^{b}P_{4}(z)\,\mathcal{X}_{m}(dz^{\frac{1-\gamma}{2}})\partial_{z}\bar{u}_{3}(z)\,dz =: I_{2} + I_{3} + I_{4}. \end{split}$$

Заметим, что каждое дифференцирование функции χ_m и экспоненты, входящей в первую компоненту столбца (20), понижает показатель степенного множителя на величину $\frac{1+\gamma}{2}>1$. Поскольку $v(z)=O(z^{-\frac{5}{4}(1+\gamma)})$ при $z\to 0$, обнаруживаем, что

$$\begin{split} P_2(z) &= O(z^{-\frac{5}{4}(1+\gamma)}z^{3(\gamma+1)}z^{-\frac{3}{2}(\gamma+1)}) = O(z^{\frac{1}{4}(1+\gamma)}), \\ P_3(z) &= O(z^{\frac{1}{4}(1+\gamma)}), \quad P_4(z) = O(z^{\frac{3}{4}(1+\gamma)}). \end{split}$$

Лемма. При достаточно большом m верно неравенство

$$\int_{a}^{b} z^{2(1+\gamma)} |\partial_{z} \bar{u}_{3}(z)| dz \le c z_{m}^{\frac{5}{4}(1+\gamma)},$$

где c — константа, зависящая только от области ω и показателя заострения $\gamma.$

Доказательство. Замена $y\mapsto \eta=z^{-1-\gamma}y$ обеспечивает равенство

$$\bar{u}_3(z) = \frac{1}{\operatorname{mes}_2 \omega(z)} \int\limits_{\omega(z)} u_3(y,z) \, dy = \int\limits_{\omega} u_3(\eta z^{1+\gamma},z) \, d\eta.$$

Таким образом,

$$egin{aligned} \partial_z ar{u}_3(z) &= \int\limits_{\omega} \left(\partial_z u_3(\eta z^{1+\gamma},z) + (1+\gamma) z^{\gamma} \partial_y u_3(\eta z^{1+\gamma},z)
ight) d\eta \ &= z^{-2(1+\gamma)} \int\limits_{\omega(z)} \left(\partial_z u_3(y,z) + (1+\gamma) z^{\gamma} \partial_y u_3(y,z)
ight) dy. \end{aligned}$$

Теперь выводим нужную оценку:

$$\int_{a}^{b} z^{2(1+\gamma)} |\partial_{z} \bar{u}_{3}(z)| dz \leq c \int_{\Xi_{m}^{1}} |\nabla_{x} u_{3}| dx \leq c |\Xi_{m}^{1}|^{1/2} ||\nabla_{x} u_{3}; L^{2}(\Omega)|| \\
\leq c z_{m}^{\frac{5}{4}(1+\gamma)} ||u; \mathcal{H}(\Omega)||. \quad \Box$$

Перейдем к рассмотрению интегралов I_l . Первый из них удовлетворяет неравенству

$$|I_1| \le c z_m^{1+\gamma} z_m^{-\frac{5}{4}(1+\gamma)} z_m^{-2\frac{1+\gamma}{2}} \int\limits_a^b z^{2(1+\gamma)} |\partial_z \bar{u}_3(z)| \, dz.$$

Аналогично обрабатывается интеграл I_4 . Для того чтобы оценить I_2 , наложим на срезку χ_m следующее ограничение: функции $\chi_m(z)$ и $\exp(\pm 2\pi i z^{\frac{1-\gamma}{2}}d)$ переменной z ортогональны в $L^2[a,b]$. (На самом деле требуется ортогональность части срезки, не зависящей от m, и экспоненты на ее периоде.) Кроме того, временно заменим в интеграле I_2 сомножитель $P_2(z)$ его значением $P_2(z_m)$ и результат обозначим символом I_2' . Тогда

$$I_2' = \left| \int_a^b P_2(z_m) \exp(\pm 2\pi i z^{\frac{1-\gamma}{2}} d) \chi_m(z) (\bar{u}_3(z) - \bar{\mathbf{u}}_3) dz \right|$$

$$\leq c z_m^{\frac{1}{4}(1+\gamma)} z_m^{\frac{1+\gamma}{2}} \int_a^b |\partial_z \bar{u}_3(z)| dz \leq c,$$

где $\bar{\mathbf{u}}_3$ — среднее значение функции \bar{u}_3 на отрезке [a,b]. Здесь использован вариант неравенства Пуанкаре

$$\int_{a}^{b} |f(x) - \mathbf{f}| dx \le (b - a) \int_{a}^{b} |\partial_{x} f(x)| dx.$$

Осталось проверить, что I_2 мало отличается от I_2' . Поскольку

$$|P_2(z) - P_2(z_m)| \le c|P_2'(z_m)|(b-a) \le cz_m^{\frac{1}{4}(1+\gamma)-1}z_m^{\frac{1+\gamma}{2}},$$

видим, что

$$|I_2 - I_2'| \le cz_m^{\frac{3}{4}(1+\gamma)-1} \left| \int_a^b \bar{u}_3(z) \, dz \right| = cz_m^{\frac{3}{4}(1+\gamma)-1} z_m^{-2(1+\gamma)} \int_{\Xi_m^1} |u_3(x)| \, dx$$

$$\le cz_m^{-\frac{5}{4}(1+\gamma)-1} z_m |\Xi_m^1|^{1/2} \left(\int_{\Omega} \frac{|u_3(x)|^2}{|x|^2} \, dx \right)^{1/2} \le c \|u, \mathcal{H}(\Omega)\|.$$

Последняя оценка верна в силу весового неравенства Корна (см. [1, теорема 1]). Осталось рассмотреть интеграл

$$I = \int\limits_{\Xi_{4}^{1}} \Phi_{4}^{(m)}(z) z^{-(1+\gamma)} \mathscr{Z}^{4}(z^{-(1+\gamma)}y)^{\top} u(x) \, dx.$$

При этом функция $\Phi_{A}^{(m)}$ как линейная комбинация выражений

$$\partial_z(z^{4(1+\gamma)}\partial_z^2(\chi_m(z)w_1(z))), \ \partial_z(z^{4(1+\gamma)}\partial_z^2(\chi_m(z)w_2(z))),$$
$$\partial_z(z^{3(1+\gamma)}\partial_z(\widetilde{w}_3(z))) \quad \text{if} \quad \partial_z(z^{4(1+\gamma)}\partial_z(\widetilde{w}_4(z))),$$

умноженных на $n_m z^{-2(1+\gamma)}$, составляет $O(n_m z^{-\frac{3}{4}(1+\gamma)})$ при $z\to 0$. Про столбец \mathscr{Z}^4 известно, что у него только две нетривиальные компоненты \mathscr{Z}_1^4 и \mathscr{Z}_2^4 , каждая из которых имеет нулевое среднее по области ω . Таким образом,

$$\begin{split} I &= I_{1} + I_{2} = \sum_{l=1}^{2} \int_{\Xi_{m}^{l}} \Phi_{4}^{(m)}(z) z^{-(1+\gamma)} \mathscr{Z}_{l}^{4}(z^{-(1+\gamma)}y) u_{l}(x) \, dx \\ &= \sum_{l=1}^{2} \int_{a}^{b} \Phi_{4}^{(m)}(z) z^{(1+\gamma)} \int_{\omega(z)} \mathscr{Z}_{l}^{4}(z^{-(1+\gamma)}y) u_{l}(x) z^{-2(1+\gamma)} \, dy \, dz \\ &= \sum_{l=1}^{2} \int_{a}^{b} \Phi_{4}^{(m)}(z) z^{(1+\gamma)} \int_{\omega} \mathscr{Z}_{l}^{4}(\eta) u_{l}(\eta, z) \, d\eta \, dz \\ &= \sum_{l=1}^{2} \int_{a}^{b} \Phi_{4}^{(m)}(z) z^{(1+\gamma)} \int_{\omega} \mathscr{Z}_{l}^{4}(\eta) (u_{l}(\eta, z) - \bar{u}_{l}) \, d\eta \, dz \\ &= \sum_{l=1}^{2} \int_{\Xi_{m}^{l}} \Phi_{4}^{(m)}(z) z^{-(1+\gamma)} \mathscr{Z}_{l}^{4}(z^{-(1+\gamma)}y) (u_{l}(x) - \bar{u}_{l}) \, dx. \end{split}$$

Следовательно, используя неравенство Пуанкаре, получаем, что

$$|I| \le c n_m z_m^{-\frac{3}{4}(1+\gamma)} z_m^{-(1+\gamma)} \left| \Xi_m^1 \right|^{1/2} \|u - \bar{u}\|_{L^2(\Xi_1^m)}$$

$$\le c n_m z_m^{-\frac{1}{2}(1+\gamma)} \operatorname{diam}(\Xi_m^1) \|\nabla u\|_{L^2(\Xi_1^m)} \le c n_m \|u; \mathcal{H}(\Omega)\|.$$

Замечание 1. Младшие члены невязки оцениваются при помощи весового неравенства Корна так же, как и выражение I_2-I_2' , благодаря дополнительному множителю — переменной z, входящей в подынтегральное выражение.

7. Оценка поверхностного интеграла в невязке. Выражение $N(x,\nabla_x)\Psi_m$ есть сумма слагаемых $N^1W^2,~N^2W^1,~N^2W^2$ и поэтому имеет в нуле такую же асимптотику, как $N^1W^2,$ т. е. $N(x,\nabla_x)\Psi_m=O(n_mz^{\frac{1}{4}(1+\gamma)})$ при $z\to 0$. Используя следовое неравенство Корна [1, лемма 4.1]), получаем, что

$$\begin{split} |(N(x,\nabla_x)\Psi_m,u)_{\partial\Omega}| &\leq cn_m \int_a^b \int\limits_{\partial\omega(z)} z^{\frac{1}{4}(1+\gamma)} |u(x)| \, ds_y dz \\ &\leq cn_m z_m^{\frac{1}{4}(1+\gamma)} z_m^{\frac{3}{4}(1+\gamma)} z_m^{-\frac{1}{2}(1-3\gamma)} \\ &\times \left(\int\limits_{\partial\Omega} |x|^{-1+\gamma} (|u_3(x)|^2 + |x|^{2\gamma} (|u_1(x)|^2 + |u_2(x)|^2)) \, ds_x \right)^{1/2} \leq cn_m z_m^{\frac{1-\gamma}{2}} \|u; \mathscr{H}(\Omega)\|. \end{split}$$

Осталось вспомнить, что $n_m = z_m^{\frac{1+\gamma}{2}}$.

8. Формулировка результата и комментарии. Оценки, установленные в предыдущих двух разделах, показывают, что вектор-функции (15) образуют сингулярную последовательность Вейля для оператора K в точке $\mu=(1+\lambda)^{-1}$. Связь спектров этого оператора и задачи (2) приводит к основному утверждению статьи.

Теорема 1. При $\gamma > 1$ непрерывный спектр задачи (2) представляет собой луч $[0,+\infty)$. Кроме того, точка $\lambda = 0$ — собственное число задачи (2) с кратностью шесть.

Напомним, что при определенных геометрической и упругой симметриях на непрерывном спектре обнаружена [1,4] бесконечно большая последовательность собственных чисел, элементов точечного спектра.

ЛИТЕРАТУРА

- 1. Назаров С. А. О спектре задачи теории упругости для тела пикообразной формы // Сиб. мат. журн. 2008. Т. 49, № 5. С. 1105–1127.
- Nazarov S. A. A criterion for the continuous spectrum for elasticity and other self-adjoint systems on sharp peak-shaped domains // C. R. Acad. Sci. Paris. Mec. 2007. V. 335, N 12. P. 751–756.
- 3. Кондратьев В. А., Олейник О. А. Краевые задачи для системы теории упругости в неограниченных областях. Неравенство Корна // Успехи мат. наук. 1988. Т. 43, № 5. С. 55–98.
- Назаров С. А. Ловушечные моды для цилиндрического упругого волновода с демпфирующей прокладкой // Журн. вычислит. математики и мат. физики. 2008. Т. 48, № 5. С. 132–150.
- Назаров С. А. О существенном спектре краевых задач для систем дифференциальных уравнений в ограниченной области с пиком // Функциональный анализ и его приложения. 2009. Т. 43. № 1. С. 55–67.
- 6. Назаров С. А., Таскинен Я. О спектре задачи Стеклова в области с пиком // Вестн. СПбГУ. Сер. 1. 2008. № 1. С. 56–65.
- Назаров С. А. О спектре задачи Стеклова в пикообразных областях // Тр. Санкт-Петербург. мат. о-ва. 2008. Т. 14. С. 103–168.
- Назаров С. А. Асимптотика решения спектральной задачи Стеклова в области с затупленным пиком // Мат. заметки. 2009. Т. 86, № 4. С. 642–656.
- Назаров С. А. О собственных колебаниях упругого тела с затупленным пиком // Докл. РАН. 2007. Т. 416, № 4. С. 481–485.
- 10. Назаров С. А. Асимптотическая теория тонких пластин и стержней. Понижение размерности и интегральные оценки. Новосибирск: Научная книга, 2001.
- 11. Ладыженская О. А. Краевые задачи математической физики. М.: Наука, 1973.
- 12. Мазья В. Г., Пламеневский Б. А. Об асимптотическом поведении решений дифференциальных уравнений в гильбертовом пространстве // Изв. АН СССР. Сер. мат. 1972. Т. 36. № 5. С. 1080–1113; Письмо в редакцию// Изв. АН СССР. Сер. мат. 1973. Т. 37, № 3. С. 709–710.
- 13. Пламеневский Б. А. Об асимптотическом поведении решений квазиэллиптических дифференциальных уравнений с операторными коэффициентами // Изв. АН СССР. Сер. мат. 1973. Т. 37, № 6. С. 1332–1375.
- **14.** Бирман М. Ш., Соломяк М. З. Спектральная теория самосопряженных операторов в гильбертовом пространстве.. Л.: Изд-во Ленингр. ун-та, 1980.

Статья поступила 30 сентября 2008 г.

Бахарев Федор Львович

Санкт-Петербургский гос. университет, математико-механический факультет, кафедра математического анализа.

Университетский пр., 28, Санкт-Петербург 198504

fbakharev@yandex.ru

Назаров Сергей Александрович

Институт проблем машиноведения РАН,

Большой пр. В. О., 61, Санкт-Петербург 199178

 $\verb|srgnaz| arov@yahoo.co.uk, serna@snark.ipme.ru|$