ЭКОНОМНАЯ ОТДЕЛИМОСТЬ В СВОБОДНЫХ ГРУППАХ

Н. В. Бускин

Аннотация. Пусть F_n — свободная группа ранга n с базисом X. В [1, проблема 15.35] О. В. Богопольский выдвинул гипотезу, что любой элемент $w \in F_n$ длины $|w| \geq 2$ относительно X может быть отделен подгруппой $H \leq F_n$ индекса $\leq C \ln |w|$ с некоторой константой C. Доказывается истинность гипотезы при условии $w \notin [F_n, F_n]$, где $[F_n, F_n]$ — коммутант группы F_n , и отделимость подгруппой индекса $\leq \frac{|w|}{2} + 2$ в общем случае.

Ключевые слова: отделимость подгруппами.

§1. Введение

Пусть G — группа. Говорят, что элемент $g \in G$ отделяется подгруппой $H \leq G$, если $w \notin H$. Пусть $F_n = F(x_1, \dots, x_n)$ — свободная группа ранга n. О. В. Богопольский выдвинул следующую гипотезу.

Гипотеза [1, проблема 15.35]. Элемент $w \in F_n$ длины $|w| \ge 2$ отделяется некоторой подгруппой индекса $\le C \ln |w|$, где константа C зависит только от n.

Есть и другие варианты этой проблемы. Сравнительно недавно появились работы, посвященные экономной отделимости *нормальными* подгруппами. Из результатов работы [2] следует, что элемент w свободной группы F_n , $n \geq 2$, отделяется нормальной подгруппой индекса $O(|w|^3)$.

В работе И. Ривина [3] утверждается, что если элемент w лежит в $\gamma_k F_n \setminus \gamma_{k+1} F_n$, то w отделяется нормальной подгруппой индекса $O(\ln^k |w|)$. При этом в [4] доказано, что $k = O(\sqrt{|w|})$.

В настоящей работе исследуется экономная отделимость произвольными подгруппами конечного индекса, причем методы исследования отличаются от методов, использованных в работах [2,3].

Оценка, полученная здесь, гораздо слабее предложенной в гипотезе, но тем не менее является оригинальным результатом, составляющим основное содержание настоящей работы.

Теорема. Элемент $w \in F_n, w \neq 1$, отделяется подгруппой индекса $i \leq \frac{|w|}{2} + 2$.

Доказательство этой теоремы будет дано в §2. В процессе доказательства мы будем предполагать, что читатель знаком с заданием подгрупп группы F_n как фундаментальных групп размеченных графов, накрывающих букет n окружностей (см., например, [5]).

Работа выполнена при поддержке гранта АВЦП Минобразования России «Развитие научного потенциала высшей школы» (проект 2.1.1.419).

Докажем утверждение гипотезы в предположении, что $w \notin [F_n, F_n]$. Рассмотрим для начала пример, когда длина w нечетна. В группе F_n имеется подгруппа индекса 2, состоящая в точности из всех элементов $w \in F_n$, имеющих четную длину, и называемая *подгруппой четных слов*. Таким образом, любой элемент нечетной длины отделяется подгруппой четных слов.

Рассмотрим общий случай. Так как $w \notin [F_n, F_n]$, для одного из порождающих $a \in \{x_1, \dots, x_n\}$ суммарная степень $\sigma_a(w)$ этого порождающего в слове $w = w(x_1, \dots, x_n)$ отлична от нуля. Пусть $\varphi : F_n \to \mathbb{Z}$ — гомоморфизм такой, что $\varphi(a) = 1$ и $\varphi(x_i) = 0$ для любого порождающего $x_i \neq a$.

Определим функцию $d: \mathbb{Z} \setminus \{0\} \to \mathbb{N}$, считая, что d(t) равно наименьшему целому положительному числу, не делящему t. Например, d(1) = 2, d(2) = 3, d(2k+1) = 2, где k — произвольное целое число.

Пусть $\psi: \mathbb{Z} \to \mathbb{Z}_{d(\sigma_a(w))}$ — канонический гомоморфизм. Тогда образ w относительно $\psi \circ \varphi$ нетривиален. Значит, w отделяется нормальной подгруппой $H = \operatorname{Ker} \psi \circ \varphi$ индекса $d(\sigma_a(w))$ в F_n . Так как $|\sigma_a(w)| \leq |w|$, достаточно доказать, что функция d(t) оценивается сверху логарифмом $C \ln |t|$.

Для этого достаточно доказать существование констант $C_1>0, C_2>0$ таких, что $d(t)\leq C_1\ln|t|+C_2, t\in\mathbb{Z}\setminus\{0\}$. Действительно, если это будет доказано, то можно подобрать константу C такую, что $d(\sigma_a(w))\leq C_1\ln|\sigma_a(w)|+C_2\leq C\ln|w|$ для любого w такого, что $\sigma_a(w)\neq 0$ и $|w|\geq 2$. Здесь нам понадобятся следующие результаты, известные из анализа и элементарной теории чисел.

Лемма 1. Для любого $k \in \mathbb{N}$ выполняется $\left(\frac{k}{e}\right)^k \leq k!$.

Как несложно видеть, эта лемма является следствием формулы Стирлинга.

Лемма 2. Пусть $\pi(m)$ — число простых чисел, не превосходящих m, где $m \geq 2$. Существует константа c>0 такая, что $c\frac{m}{\ln m} < \pi(m)$.

Утверждение этой леммы есть часть двойного неравенства, доказанного Чебышёвым: $c_1 \frac{m}{\ln m} < \pi(m) < c_2 \frac{m}{\ln m}$ (см., например, [6]).

Докажем требуемое неравенство для d(t). Пусть p_1,\ldots,p_k — все простые числа, не превосходящие m=d(t)-1. Тогда так как эти простые числа строго меньше d(t), то $p_1,p_2,\ldots,p_k|t$, а значит, $p_1p_2\ldots p_k|t$, откуда вытекает, что $k! \leq p_1p_2\ldots p_k \leq |t|$. Из этого неравенства и леммы 1 следует, что $\left(\frac{k}{e}\right)^k \leq |t|$. Логарифмируя, получаем

$$k(\ln k - 1) \le \ln |t|. \tag{*}$$

Из леммы 2 вытекает, что $c\frac{m}{\ln m} < k$. Подставляя $c\frac{m}{\ln m}$ вместо k в неравенство (*) (левая часть (*) — строго возрастающая функция k), получаем, что $c\frac{m}{\ln m}(\ln c + \ln m - \ln(\ln m) - 1) \leq \ln |t|$. При больших m левая часть последнего неравенства имеет порядок cm, значит, для любого $\varepsilon \in (0,c)$ найдется $N(\varepsilon) \in \mathbb{N}$ такой, что при всех $m \geq N(\varepsilon)$ выполнено $(c-\varepsilon)m \leq \ln |t|$. Тем самым для любого m выполняется $(c-\varepsilon)m \leq \ln |t| + (c-\varepsilon)N(\varepsilon)$, что влечет требуемое неравенство для d(t).

§ 2. Доказательство теоремы

Будем доказывать теорему для случая n=2, $F_2=F(a,b)$. Все рассуждения легко переносятся на общий случай. Пусть B(a,b) — букет двух окружностей, размеченных буквами a и b. Будем работать в категории графов, размеченных буквами a и b, имеющих выделенную вершину и определяющих конечнолистные накрытия графа B(a,b).

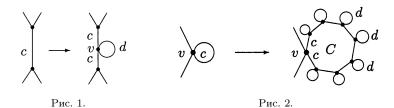
Во-первых, можно считать, что w принадлежит подгруппе четных слов (в противном случае для данного w утверждение теоремы очевидно) и, следовательно, имеет четную длину. Пусть |w|=2(i-1) для подходящего i. Докажем, что существует подгруппа индекса $\leq i+1$, не содержащая w, или, что равносильно, существует размеченный граф Γ , определяющий $\leq i+1$ -листное накрытие букета B(a,b), такой, что путь с меткой w, начинающийся в базисной вершине графа Γ , не замкнут. Далее любой размеченный граф, определяющий конечнолистное накрытие букета B(a,b), будем называть иногда pappom-nakpumuem.

Как обычно, обозначим для графа Γ через $v(\Gamma)$, $e(\Gamma)$ множества его вершин и ребер. Для графа с разметкой будем называть c-ребром любое его ребро, имеющее метку c или c^{-1} . Для ребра графа e обозначаем через \bar{e} то же ребро, проходимое в обратном направлении, аналогично для пути γ определяется путь $\bar{\gamma}$. Для произвольной петли (т. е. ребра, у которого начало и конец совпадают) e введем естественные обозначения: $e^k = e \dots e$ (k раз) при k > 0 и $e^k = \bar{e} \dots \bar{e}$ (|k| раз) при k < 0. Путь с меткой w будем обозначать через γ_w независимо от того, в каком графе он рассматривается (для размеченных графов, соответствующих накрытиям, путь с началом в фиксированной вершине однозначно определяется своей меткой). Условимся называть npsmem pefpo, не являющееся петлей.

Опишем в общих чертах процесс поиска графа, определяющего $\leq i+1$ -листное накрытие для B(a,b), такого, что путь с меткой w, начинающийся в базисной вершине этого графа, не замкнут. Сначала введем необходимые в дальнейшем операции I и II, которые позволяют получать из графов-накрытий новые графы-накрытия.

Пусть дан граф-накрытие Γ и $e \in e(\Gamma)$ — некоторое его c-ребро, $c \in \{a,b\}$.

Операция I. Введем новую вершину v, разбивающую ребро e на два c-ребра и приклеим в вершине v d-петлю, где $d \in \{a,b\} \setminus \{c\}$ (рис. 1).



Операция Π_k . Пусть $e \in e(\Gamma) - c$ -петля, началом и концом которой является вершина v. Удалим эту петлю и приклеим к вершине v цикл C (отождествляя v и некоторую вершину C), состоящий из k штук c-ребер. К каждой вершине цикла C, кроме v, приклеим d-петлю, $d \in \{a,b\} \setminus \{c\}$, так, что вновь полученный граф будет снова определять накрытие (рис. 2).

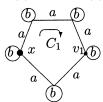
Можно сказать, что операция Π_k заключается в k-кратном применении операции $\mathbf{I}.$

Процесс поиска начинается с некоторого стартового графа Γ_1 , определяющего накрытие листности $\leq i$. Если Γ_1 не подходит (γ_w замкнут в Γ_1), то рассматриваем графы, получающиеся из Γ_1 с помощью операции І. Операция І, примененная к произвольному ребру графа Γ_1 , увеличивает число его вершин на 1. Если все графы, полученные с помощью операции І, не подходят (т. е. γ_w замкнут во всех этих графах, это важно!), то для некоторого s>1 с помощью

операции Π_s из графа Γ_1 будет получен либо граф-накрытие Γ' с числом вершин $\leq i+1$ такой, что путь γ_w не замкнут в Γ' , либо граф-накрытие $\Gamma_2 \neq \Gamma_1$ с числом вершин $\leq i$.

Если реализуется вторая возможность, то рассматриваем графы-накрытия, получаемые уже из Γ_2 с помощью операции I: если среди них нет подходящего, то, как и на предыдущем шаге, из графа Γ_2 с помощью операции II будет получен требуемый граф Γ' либо граф $\Gamma_3 \notin \{\Gamma_1, \Gamma_2\}$ с числом вершин $\leq i$. Так шаг за шагом построим последовательность графов-накрытий $\Gamma_1, \Gamma_2, \ldots, \Gamma_k$ с условием $|v(\Gamma_j)| \leq i$ для $j=1,\ldots,k$. Ясно, что такой процесс поиска конечен и для некоторого k либо Γ_k будет искомым, либо искомый граф содержится среди графов с числом вершин $\leq i+1$, получающихся из Γ_k с помощью операций I и II.

Приступим к более подробному описанию нашего алгоритма. Пусть в приведенной записи w начинается с буквы a, т. е. $w=a^tb^s\dots$, где $t\neq 0$. Положим h(t)=|t|+1, если $|t|\leq 2$, иначе $h(t)=\left\lceil\frac{|t|}{2}\right\rceil+1$. Ясно, что h(t) не делит t.



Puc 3

Стартовый граф. Рассмотрим граф Γ_1 , у которого все a-ребра составляют цикл длины h(t), а b-ребра суть петли с началом в вершинах этого цикла (рис. 3, пример для |t|=8), x — отмеченная вершина.

Стрелка показывает направление, в котором γ_w обходит цикл C_1 , образованный a-ребрами графа Γ_1 . Ориентации ребер не фиксированы, поэтому рис. 3 отражает оба случая $t=\pm 8$. Вершина v_1 графа Γ_1 является концом пути γ_{a^t} с началом в x (первый слог w).

Так как h(t) не делит t, то $v_1 \neq x$. Граф Γ_1 определяет h(t)-листное накрытие букета B(a,b) и, таким образом, соответствует некоторой подгруппе индекса h(t). Если слово w имеет слоговую длину 1, т. е. $w=a^t$, то $h(t) \leq \frac{|w|}{2} + 2$ и граф Γ_1 будет искомым.

Будем считать теперь, что слоговая длина w не меньше 2. В этом случае также верно неравенство $h(t) \leq \frac{|w|}{2} + 2 = i + 1$. На самом деле в случае слоговой длины 2 путь γ_w также не замкнут, случай слоговой длины 3 сопряжением (или применением описанной конструкции к единственному b-слогу b^s) сводится к случаю слоговой длины 2 или 1, так что по-настоящему интересным является случай слоговой длины > 4.

Если путь γ_w не замкнут в графе Γ_1 , то все доказано.

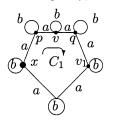


Рис. 4.

Допустим, что путь γ_w замкнут. Предположим, что для некоторого ребра e_a с меткой a суммарное число вхождений ребер e_a, \bar{e}_a в путь γ_w равно 1 (т. е. в пути γ_w встречается ровно одно из двух ориентированных ребер e_a, \bar{e}_a и ровно один раз). Пусть для определенности в путь γ_w входит ребро e_a . Начало и конец ребра e_a обозначим через p и q. Тогда $\gamma_w = \gamma_1 e_a \gamma_2$, подпути γ_1 и γ_2 не содержат вхождений e_a, \bar{e}_a . Применим к ребру e_a операцию I, новую вершину обозначим через v (рис. 4).

Ясно, что новый граф Γ' соответствует подгруппе индекса $\leq i+1$. Из равенства $\gamma_w=\gamma_1e_a\gamma_2$ для слова w имеем приведенное представление $w=w_1aw_2$, где подслова w_1,w_2 суть метки подпутей γ_1,γ_2 соответственно. В графе Γ' концы путей с метками w_1a и w_2^{-1} , начинающихся в вершине x, не совпадают (это вершины v и q), значит, путь γ_w не может быть замкнутым в этом графе. Таким образом, мы нашли подгруппу индекса $\leq i+1$, не содержащую w.

Точно так же можно отделить слово w подгруппой индекса $\leq i+1$, если для некоторой b-петли суммарное число вхождений этой петли в путь γ_w равно 1. Если путь γ_w замкнут в графе Γ_1 и любое ребро из Γ_1 входит в γ_w без учета ориентации по крайней мере дважды, то мы переходим к следующему шагу алгоритма.

ШАГ АЛГОРИТМА. Предположим, что для некоторого $k \geq 1$ уже построен граф Γ_k с отмеченными вершинами v_1, \ldots, v_k с условием $|v(\Gamma_k)| \leq i$, имеющий вид, как на рис. 5.

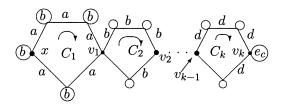


Рис. 5.

Вершина v_j , где $j=1,\ldots,k$, является концом подпути α_j пути γ_w , соответствующего первым j слогам слова w. Индекс c в символе e_c — это одна из букв $a,b;\ d\in\{a,b\}\setminus\{c\}$. При k=1 есть единственный цикл C_1 и мы имеем граф Γ_1 . Цикл C_j , $1\leq j\leq k$, в этом графе соответствует j-му слогу $c^{\pm s_j},\ c\in\{a,b\}$, слова w: он состоит из $h(s_j)$ c-ребер, где s_j — длина j-го слога w. Для простоты изображена конкретная ситуация, когда первые k слогов имеют длину 8.

Сделаем необходимое для дальнейшего замечание: если l_j , $1 \le j \le k$, — число различных пар прямых ребер $\{e, \bar{e}\}$ из цикла C_j графа Γ_k таких, что e или \bar{e} входит в подпуть β_j пути γ_w , соответствующий j-му слогу слова w и начинающийся в вершине $v_{j-1}(v_0=x)$, то

(A)
$$|C_j| = h(s_j) \le l_j + 1$$
.

Эти неравенства легко проверяются (достаточно проверить неравенство для j=1, остальные получаются аналогично).

Если путь γ_w не замкнут в Γ_k , то мы нашли требуемый граф. Если γ_w замкнут, то, так как вершина v_k — это конец пути α_k , соответствующего первым k слогам слова w, петля e_c обязана входить в путь γ_w . Далее, если есть ребро e графа Γ_k такое, что суммарное число вхождений ребер e, \bar{e} в γ_w равно 1 (т. е. в γ_w входит только одно из ребер e, \bar{e} и ровно 1 раз), то операция I, примененная к этому ребру, даст граф с числом вершин $\leq i+1$ такой, что путь γ_w не будет замкнутым в этом графе.

Пусть теперь путь γ_w замкнут в любом графе, полученном из Γ_k с помощью операции І. В частности, выполнено следующее условие.

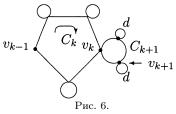
(В) Для каждого ребра e графа Γ_k , входящего в путь γ_w , суммарное число вхождений ребер e, \bar{e} в γ_w не меньше 2.

Отсюда, кстати, следует, что $2k \leq 2(l_1+\cdots+l_k) \leq |\gamma_w|=|w|$. Как сказано в наброске алгоритма в начале доказательства теоремы, наша цель — с помощью операции II построить либо Γ' , который будет искомым, либо Γ_{k+1} . Для понимания того, какая из этих возможностей реализуется, важно знать число вхождений петель e_c , \bar{e}_c в путь γ_w в графе Γ_k и расположение этих вхождений.

Выделим первое вхождение петли e_c в путь γ_w . Здесь есть несколько случаев (суммарное число вхождений e_c, \bar{e}_c , конечно же, не менее 2):

- 1а) $\gamma_w = \gamma_1 e_c^{\pm 2} \gamma_2$, подпути γ_1 и γ_2 не содержат вхождений петли e_c и обратной к ней;
 - 1b) $\gamma_w = \gamma_1 e_c^s \gamma_2, s \in \mathbb{Z}, |s| > 2$, условия на γ_1 и γ_2 те же, что и в п. 1a;
- 2
а) $\gamma_w = \gamma_1 e_c^{\pm 1} \gamma_2,$ здесь подпуть γ_1 не содержит в
хождений петли e_c и обратной к ней, а для подпути γ_2 суммарное число вхождений этих ребер равно по меньшей мере 1, при этом γ_2 не начинается с e_c , \bar{e}_c ;
 - 2b) $\gamma_w = \gamma_1 e_c^{\pm 2} \gamma_2$, условия на γ_1, γ_2 те же, что и в п. 2a;
 - 2c) $\gamma_w = \gamma_1 e_c^s \gamma_2, |s| > 2$, условия на γ_1, γ_2 те же, что и в п. 2a.

Покажем, что в первой группе случаев 1a, 1b можно построить граф Γ' , во второй группе 2a, 2b, 2c построим Γ_{k+1} .



Рассмотрим случай 1а. Пусть для опреде v_{k-1} c_k c_k c_{k+1} ленности $\gamma_w = \gamma_1 e_c e_c \gamma_2$. В этом случае из условия (В) и определения чисел l_j следует, что $2l_1+\cdots+2l_k+2 \leq |\gamma_w|=|w|=2(i-1)$ (слагаемое 2 возникает как вклад подпути $e_c e_c$ в длину пути γ_w), откуда получаем $l_1 + \cdots + l_k + 1 \le i - 1$. Применим к петле e_c операцию $\Pi_{h(2)}, h(2) = 3$

Новый цикл обозначим через C_{k+1} . Число вершин полученного графа равно $|C_1|+(|C_2|-1)+\cdots+(|C_k|-1)+(|C_{k+1}|-1)\leq_{(A)}(l_1+1)+l_2+\cdots+l_k+2\leq$ (i-1)+2=i+1. Для слова w имеем $w=w_1c^2w_2$, подслова w_1,w_2 суть метки подпутей γ_1 и γ_2 в графе Γ и в полученном графе концы путей с метками w_1c^2 и w_2^{-1} не совпадают (это вершины v_{k+1} и v_k). Значит, γ_w не будет замкнутым в построенном графе. Таким образом, найдена подгруппа индекса i+1, не содержащая w.

Рассмотрим случай 1b. Для удобства считаем s>0. Как и ранее, из условия (B) имеем $2l_1+\cdots+2l_k+s\leq |w|=2(i-1),$ откуда $l_1+\cdots+l_k+\left\lceil\frac{s}{2}\right\rceil\leq i-1.$ Применим к петле e_c операцию $\Pi_{h(s)},\ h(s)=\left[\frac{s}{2}\right]+1.$ Новый цикл обозначим через C_{k+1} . Число вершин в полученном графе равно

$$|C_1| + (|C_2| - 1) + \dots + (|C_k| - 1) + (|C_{k+1}| - 1) \le (l_1 + 1) + l_2 + \dots + l_k + \left[\frac{s}{2}\right] \le i.$$

Как и ранее, из равенства $\gamma_w = \gamma_1 e_c^s \gamma_2$ имеем приведенную запись $w = w_1 c^s w_2$. Так как h(s) не делит s, в новом графе пути с метками w_1c^s и w_2^{-1} с началом в x имеют несовпадающие концы v_{k+1}, v_k , следовательно, путь γ_w с началом в вершине x не будет замкнутым. Значит, найдется подгруппа индекса $\leq i$, не содержащая w.

Разберем теперь вторую группу случаев.

Случай 2a. Так как суммарное число вхождений e_c, \bar{e}_c в γ_w не менее 2, получаем $2l_1 + \cdots + 2l_k + 2 \le |w| = 2(i-1)$. Применим к петле e_c операцию $\Pi_{h(1)}$, h(1)=2. Конец подпути α_{k+1} пути γ_w (метка этого подпути равна $w_1c^{\pm 1}$) является вершиной нового цикла C_{k+1} , отличной от v_k . Обозначим ее через v_{k+1} (рис. 7).

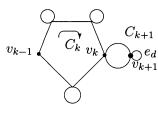


Рис. 7

Число вершин построенного графа Γ равно $|C_1|+(|C_2|-1)+\cdots+(|C_k|-1)+(|C_{k+1}|-1)\leq (l_1+1)+l_2+\cdots+l_k+1\leq i.$ Положим $\Gamma_{k+1}=\Gamma.$

Рассмотрим случай 2b. Так как в этом случае петля e_c входит в γ_w по меньшей мере три раза, имеем очевидное неравенство $2l_1+\cdots+2l_k+3\leq 2(i-1)$. Поскольку левая часть неравенства — нечетное число, на самом деле верно даже более сильное неравенство $2l_1+\cdots+2l_k+$

 $4 \leq 2(i-1)$. Применим к петле e_c операцию $\Pi_{h(2)}, h(2) = 3$, как и в случае 1а. Новый цикл обозначим через C_{k+1} . Число вершин полученного графа $|C_1| + (|C_2|-1) + \cdots + (|C_{k+1}|-1) \leq (l_1+1) + l_2 + \cdots + l_k + 2 \leq i$. Обозначим этот граф через Γ_{k+1} .

Рассмотрим случай 2с. Применим к петле e_c операцию $\Pi_{h(s)}$, как и в случае 1b. Новый цикл обозначим через C_{k+1} . Число вершин полученного графа $\leq i$. Таким образом, и в этом случае мы можем построить граф Γ_{k+1} . Доказательство завершено.

ЛИТЕРАТУРА

- Коуровская тетрадь. Нерешенные вопросы теории групп / составители В. Д. Мазуров, Е. И. Хухро. 15-е изд. Новосибирск: Ин-т математики СО РАН, 2002.
- Khalid Bou-Rabee. Quantifying residual finiteness. Technical Report arXiv:0807.0862v2 [math.GR], arxiv.org, 2008.
- Rivin I. Geodesics with one self-intersection, and other stories. Technical Report arXiv:0901. 2543v3 [math.GT], arxiv.org, 2009.
- 4. Malestein J., Putman A. On the self-intersections of curves deep in the lower central series of a surface group. arXiv, math.GT, Jan 2009. 12 pages, 2 figures.
- Богопольский О. В. Введение в теорию групп. М.; Ижевск: Институт компьютерных исследований, 2002.
- **6.** Айерленд К., Роузен М. Классическое введение в современную теорию чисел. М.: Мир, 1987.

Статья поступила 21апреля 2009 г.

Бускин Николай Владиславович Новосибирский гос. университет, механико-математический факультет, ул. Пирогова, 2, Новосибирск 630090 buskin1983@mail.ru