ОБ ИНВЕРСНЫХ МОНОИДАХ КОС И ОТРАЖЕНИЙ ТИПА B

В. В. Вершинин

Аннотация. Хорошо известны связи между группой кос и симметрической группой, между группами кос Артина — Брискорна и группами Кокстера: последние являются фактор-группами групп кос Артина — Брискорна. Инверсный моноид кос аналогичным образом связан с инверсным симметрическим моноидом. В настоящей работе мы показываем, что аналогичные связи существуют между инверсным моноидом кос типа B и инверсным моноидом отражений типа B. Это дает копредставление последнего моноида.

Ключевые слова: коса, инверсный моноид кос, группа отражений типа B, представление, моноид отражений.

Юрию Григорьевичу Решетняку по случаю его 80-летия

1. Введение

Пусть V — конечномерное вещественное векторное пространство (dim V=n) с евклидовой структурой. Пусть W — конечная подгруппа группы GL(V), порожденная отражениями. Мы предполагаем, что W существенна, т. е. что множество неподвижных векторов по отношению к действию W состоит только из нуля: $V^W=0$. Пусть \mathscr{M} — множество гиперплоскостей в пространстве V такое, что группа W порождена ортогональными отражениями по отношению к $M\in \mathscr{M}$. Мы предполагаем, что для каждого элемента $w\in W$ и для каждой гиперплоскости $M\in \mathscr{M}$ гиперплоскоскость w(M) принадлежит \mathscr{M} .

Рассмотрим комплексификацию V_C пространства V и комплексификации M_C гиперплоскостей $M\in \mathcal{M}$. Пусть $Y_W=V_C-\bigcup_{M\in \mathcal{M}}M_C$. Группа W действует свободно на Y_W . Пусть $X_W=Y_W/W$, тогда Y_W есть накрытие над X_W , соответствующее группе W.

Обобщенная группа кос Br(W), соответствующая группе Кокстера W, определяется как фундаментальная группа пространства X_W регулярных орбит действия W, и соответствующая группа крашеных кос P(W) определяется как фундаментальная группа пространства Y_W . Таким образом, для обобщенных групп кос имеем $Br(W) = \pi_1(X_W), \ P(W) = \pi_1(Y_W)$. Группы Br(W) были определены Брискорном [1] и называются также группами кос Артина — Брискорна. Брискорн [1] и Делинь [2] доказали, что пространства X_W и Y_W суть пространства типа $K(\pi,1)$.

Накрытие, соответствующее действию группы W на пространстве Y_W , порождает точную последовательность

$$1 \to \pi_1(Y_W) \stackrel{p_*}{\to} \pi_1(X_W) \to W \to 1.$$

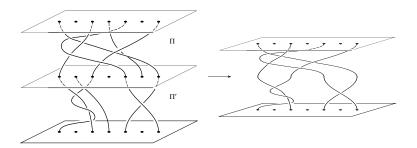


Рис. 1.

Таким образом, имеется естественным образом определенный гомоморфизм

$$\rho: Br(W) \to W$$
.

Геометрическая коса как система n кривых в \mathbb{R}^3 естественным образом ведет к понятию частичной косы, у которой некоторые $k, 0 \le k \le n$, из этих n кривых могут быть удалены; частичные косы образуют инверсный моноид кос IB_n [3]. По определению моноид называется инверсным, если для любого его элемента a существует единственный элемент b (называемый обратным) такой, что a = aba и b = bab. Это понятие введено В. В. Вагнером в 1952 г. [4]. Книги [5,6] являются стандартными ссылками по теории инверсных полугрупп.

Умножение частичных кос показано на рис. 1. На конечной стадии удаляются все неполные нити, т. е. те, которые не имеют пересечений либо с верхней, либо с нижней полуплоскостью.

Таким образом, классическая группа кос (которая соответствует случаю $W = \Sigma_n$, симметрической группы) вложена в инверсный моноид кос IB_n .

Наиболее важным примером инверсного моноида является моноид частичных (т. е. определенных на подмножестве) инъективных отображений множества в себя. Для конечного множества это приводит к понятию симметрического инверсного моноида I_n , которое обобщает и включает классическую симметрическую группу Σ_n . Копредставление симметрического инверсного моноида получено Л. М. Поповой [7], см. также формулы (2)–(4) ниже.

Пусть теперь W — группа Кокстера типа B_n . Соответствующий инверсный моноид $IB(B_n)$ изучался в [8], а моноид отражений $I(B_n)$ — в [9].

Цель настоящей заметки — показать, что в случае типа B ситуация во многом схожая: существует отображение $\rho_B:IB(B_n)\to I(B_n)$ такое, что коммутативна диаграмма

$$Br(B_n) \longrightarrow W(B_n)$$

$$\downarrow \qquad \qquad \downarrow$$

$$IB(B_n) \xrightarrow{\rho_B} I(B_n) , \qquad (1)$$

где вертикальные стрелки обозначают вложение группы обратимых элементов в моноид.

2. Инверсный моноид кос и тип B

Пусть N — конечное множество мощности n, скажем $N = \{v_1, \dots, v_n\}$. Инверсный симметрический моноид I_n может быть интерпретирован как моноид

частичных мономорфизмов множества N в себя. Оснастим элементы множества N знаками, т. е. пусть $SN=\{\delta_1v_1,\ldots,\delta_nv_n\}$, где $\delta_i=\pm 1$. Группа Вейля $W(B_n)$ типа B может быть интерпретирована как группа перестановок со знаками множества SN:

$$W(B_n) = \{ \sigma -$$
биекция $SN : (-x)\sigma = -(x)\sigma$ для $x \in SN \}.$

Моноид частичных перестановок со знаками $I(B_n)$ определяется следующим образом: $I(B_n) = \{ \sigma - \text{частичная биекция } SN : (-x)\sigma = -(x)\sigma$ для $x \in SN$ и $x \in \text{dom } \sigma$ тогда и только тогда, когда $-x \in \text{dom } \sigma \}$, где $\text{dom } \sigma$ означает область определения мономорфизма σ .

Напомним, что моноид M факторизуем, если M=EG, где E — множество идемпотентов моноида M, а G — подгруппа моноида M. Очевидным образом моноид $I(B_n)$ факторизуем [9], так как каждая частичная перестановка, учитывающая знаки, может быть продолжена до элемента группы единиц моноида $I(B_n)$, т. е. до перестановки, учитывающей знаки с областью определения, равной SN.

Обычно группа кос Br_n задается следующим копредставлением Артина [10]. Оно имеет образующие $\sigma_i, i=1,\ldots,n-1$, и два типа соотношений:

$$\sigma_i \sigma_j = \sigma_j \sigma_i$$
, если $|i - j| > 1$, $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$. (2)

Следующее копредставление инверсного моноида кос было получено в [3]. Оно имеет образующие $\sigma_i, \sigma_i^{-1}, i = 1, \ldots, n-1, \epsilon$, и соотношения

$$\sigma_i \sigma_i^{-1} = \sigma_i^{-1} \sigma_i = 1$$
, для всех i , $\epsilon \sigma_i = \sigma_i \epsilon$ для $i \ge 2$, $\epsilon \sigma_1 \epsilon = \sigma_1 \epsilon \sigma_1 \epsilon = \epsilon \sigma_1 \epsilon \sigma_1$, $\epsilon = \epsilon^2 = \epsilon \sigma_1^2 = \sigma_1^2 \epsilon$ (3)

плюс соотношения кос (2).

Геометрически образующая ϵ обозначает частичную косу, построенную из тривиальной косы удалением первой нити.

Если заменим первое соотношение в (3) следующим набором соотношений:

$$\sigma_i^2 = 1$$
 для всех i , (4)

и удалим лишние соотношения $\epsilon = \epsilon \sigma_1^2 = \sigma_1^2 \epsilon$, то получим копредставление симметрического инверсного моноида I_n [7]. Мы можем также просто добавить соотношения (7), если нас не беспокоит наличие излишних соотношений. Получаем канонический гомоморфизм [3]

$$\rho_n: IB_n \to I_n,$$

который является естественным продолжением соответствующего гомоморфизма для групп (кос и симметрической).

Более сбалансированный набор соотношений для инверсного моноида кос получен в [11]. Пусть ϵ_i — тривиальная коса с удаленной i-й нитью, т. е. $\epsilon_1 = \epsilon$, $\epsilon_{i+1} = \sigma_i^{\pm 1} \epsilon_i \sigma_i^{\pm 1}$. Таким образом, в качестве образующих берем $\sigma_i, \sigma_i^{-1}, \ i = 1, \ldots, n-1, \ \epsilon_i, \ i = 1, \ldots, n$, а соотношениями являются следующие:

$$\begin{split} \sigma_{i}\sigma_{i}^{-1} &= \sigma_{i}^{-1}\sigma_{i} = 1 \text{ для всех } i, \quad \epsilon_{j}\sigma_{i} = \sigma_{i}\epsilon_{j} \text{ для } j \neq i, i+1, \\ \epsilon_{i}\sigma_{i} &= \sigma_{i}\epsilon_{i+1}, \quad \epsilon_{i+1}\sigma_{i} = \sigma_{i}\epsilon_{i}, \quad \epsilon_{i} = \epsilon_{i}^{2}, \\ \epsilon_{i+1}\sigma_{i}^{2} &= \sigma_{i}^{2}\epsilon_{i+1} = \epsilon_{i+1}, \quad \epsilon_{i}\epsilon_{i+1}\sigma_{i} = \sigma_{i}\epsilon_{i}\epsilon_{i+1} = \epsilon_{i}\epsilon_{i+1}, \end{split}$$
 (5)

плюс соотношения кос (2).

Пусть EF_n — некоторый моноид частичных изоморфизмов свободной группы F_n , определенный следующим образом. Пусть a — элемент симметрического инверсного моноида I_n , $a \in I_n$, т. е. a — частичный изоморфизм множества $\{1,\ldots,n\}$. Пусть $J_k=\{j_1,\ldots,j_k\}$ — образ a и элементы i_1,\ldots,i_k , принадлежат области определения a. Моноид EF_n состоит из изоморфизмов

$$\langle x_{i_1}, \ldots, x_{i_k} \rangle \to \langle x_{j_1}, \ldots, x_{j_k} \rangle,$$

выражаемых формулой $f_a: x_i \mapsto w_i^{-1} x_{a(i)} w_i$, если i принадлежит множеству i_1,\ldots,i_k , и отображение f_a не определено на x_i в противном случае, а w_i слово из букв x_{j_1},\ldots,x_{j_k} . Композиция f_a и $g_b,\ a,b\in I_n$, определена для x_i , принадлежащего области определения $a\circ b$. Положим $x_{j_m}=1$ в слове w_i , если x_{j_m} не принадлежит области определения g_b . Если положим $w_i=1$, то получаем вложение I_n в EF_n . Отображая каждый $f_a\in EF_n$ в $a\in I_n$, получаем гомоморфизм $EF_n\to I_n$.

Предложение 1. Канонические гомоморфизмы $I_n \to EF_n$ и $EF_n \to I_n$ дают следующее расщепление $I_n \to EF_n \to I_n$. \square

Напомним, что группы кос Артина — Брискорна типа B изоморфны группам кос диска с фиксированной точкой [12–14]. По отношению к классической группе кос эта группа имеет одну дополнительную образующую τ и соотношения типа B:

$$au\sigma_1 au\sigma_1=\sigma_1 au\sigma_1 au, \quad au\sigma_i=\sigma_i au, \text{ если } i>1,$$
 $\sigma_i\sigma_{i+1}\sigma_i=\sigma_{i+1}\sigma_i\sigma_{i+1}, \quad \sigma_i\sigma_j=\sigma_j\sigma_i, \text{ если } |i-j|>1.$ (6)

Моноид $IB(B_n)$ частичных кос типа B можно также рассматривать как подмоноид моноида IB_{n+1} , состоящий из частичных кос с фиксированной первой нитью. Интерпретация как моноида классов изотопии гомеоморфизмов также возможна. Как обычно, рассмотрим диск D^2 с данными n+1 точками. Обозначим множество этих точек через Q_{n+1} . Рассмотрим гомеоморфизмы диска D^2 на копию этого диска с условием, что первая точка всегда отображается на себя и среди остальных n точек только k точек, $k \leq n$ (скажем i_1, \ldots, i_k), отображаются биективно на k точек (скажем j_1, \ldots, j_k) из множества Q_{n+1} (без первой точки) второй копии диска D^2 . Классы изотопии таких гомеоморфизмов образуют моноид $IB(B_n)$.

Теорема 1 [8]. Добавление к копредставлению группы кос типа B (6) образующей ϵ и соотношений

$$\tau\tau^{-1} = \tau^{-1}\tau = 1, \quad \sigma_i\sigma_i^{-1} = \sigma_i^{-1}\sigma_i = 1 \text{ для всех } i, \quad \epsilon\sigma_i = \sigma_i\epsilon \text{ для } i \ge 2,$$

$$\epsilon\sigma_1\epsilon = \sigma_1\epsilon\sigma_1\epsilon = \epsilon\sigma_1\epsilon\sigma_1, \quad \epsilon = \epsilon^2 = \epsilon\sigma_1^2 = \sigma_1^2\epsilon, \quad \epsilon\tau = \tau\epsilon = \epsilon.$$
(7)

деат копредставление моноида $IB(B_n)$. Добавление к копредставлению (5) моноида IB_n одной образующей τ , соотношений типа B (6) и соотношений

$$\tau \tau^{-1} = \tau^{-1} \tau = 1, \quad \epsilon_1 \tau = \tau \epsilon_1 = \epsilon_1.$$

приводит к другому копредставлению моноида $IB(B_n)$, Это факторизуемый инверсный моноид.

Определим действие моноида $IB(B_n)$ на множестве SNс помощью частичных изоморфизмов следующим образом:

$$\sigma_i(\delta_j v_j) = \left\{egin{array}{ll} \delta_i v_{i+1}, & ext{если } j=i, \ \delta_{i+1} v_i, & ext{если } j=i+1, \ \delta_j v_j, & ext{если } j
eq i,i+1; \end{array}
ight.$$

$$au(\delta_j v_j) = \left\{ egin{array}{ll} -\delta_1 v_1, & ext{если } j=1, \\ \delta_j v_j, & ext{если} j
eq 1; \end{array}
ight.$$

$$dom \epsilon = \{\delta_2 v_2, \dots, \delta_n v_n\}; \tag{10}$$

$$\epsilon(\delta_j v_j) = \delta_j v_j, \quad \text{если } j = 2, \dots, n;$$
 (11)

$$dom \, \epsilon_i = \{ \delta_1 v_1, \dots, \widehat{\delta_i v_i}, \dots, \delta_n v_n \}; \tag{12}$$

$$\epsilon_i(\delta_i v_i) = \delta_i v_i, \quad \text{если } j = 1, \dots, \hat{i}, \dots, n.$$
 (13)

Прямая проверка показывает, что соотношения инверсного моноида кос типа B выполнены для соответствующих суперпозиций частичных изоморфизмов, определяемых элементами σ_i , τ и ϵ_i .

Теорема 2. Действие, заданное формулами (8)–(13), определяет гомоморфизм инверсных моноидов $\rho_B: IB(B_n) \to I(B_n)$ такой, что диаграмма (1) коммутативна. \square

Теорема 3. Гомоморфизм $\rho_B: IB(B_n) \to I(B_n)$ является эпиморфизмом. Если в копредставлении $IB(B_n)$ заменить первое соотношение из (3) набором соотношений $\sigma_i^2 = 1$ для всех i и удалить излишние соотношения $\epsilon = \epsilon \sigma_1^2 = \sigma_1^2 \epsilon$, а также заменить первое соотношение из (7) соотношением $\tau^2 = 1$, то получается копредставление моноида $I(B_n)$,

Доказательство. Обозначим временно через IV_n моноид, имеющий копредставление, данное в формулировке теоремы. Для доказательства того, что гомоморфизм ρ_B есть эпиморфизм, используем тот факт, что моноид $I(B_n)$ факторизуем, так что каждый его элемент может быть записан в виде ϵg , где ϵ принадлежит множеству идемпотентов, а g — элемент группы Вейля $W(B_n)$ типа B. Для группы Вейля гомоморфизм ρ_B есть эпиморфизм, $W(B_k) = Br(B_k)/P(B_k)$, множества идемпотентов моноидов $IB(B_n)$ и $I(B_n)$ совпадают и гомоморфизм ρ_B , ограниченный на множество $E(IB(B_n))$ идемпотентных элементов моноида $IB(B_n)$, тождествен.

Как следует из определения действия моноида $IB(B_n)$ на множестве SN, элементы τ^2 и σ_i^2 отображаются в единицу под действием гомоморфизма ρ_B . Таким образом, гомоморфизм ρ_B разлагается с помощью гомоморфизма $\tilde{\rho}_B$: $IV_n \to I(B_n)$ в следующую композицию: $\rho_B: IB(B_n) \to IV_n \to I(B_n)$. Чтобы показать, что $\tilde{\rho}_B$ есть изоморфизм, сравниваем мощности множеств IV_n и $I(B_n)$. Легко посчитать, что мощность (число элементов) множества $I(B_n)$ равна

$$\sum_{k=0}^{n} 2^{k} {n \choose k}^{2} k!.$$

Пусть $\epsilon_{k+1,n}$ обозначает частичную косу с тривиальными первыми k нитями и отсутствующими остальными n-k нитями. Она может быть выражена с использованием образующей ϵ или образующих ϵ_i следующим образом:

$$\epsilon_{k+1,n} = \epsilon \sigma_{n-1} \dots \sigma_{k+1} \epsilon \sigma_{n-1} \dots \sigma_{k+2} \epsilon \dots \epsilon \sigma_{n-1} \sigma_{n-2} \epsilon \sigma_{n-1} \epsilon,$$

$$\epsilon_{k+1,n} = \epsilon_{k+1} \epsilon_{k+2} \dots \epsilon_{n}.$$

Как доказано в [3], каждая частичная коса имеет представителя вида

$$\sigma_{i_1}\dots\sigma_{1}\dots\sigma_{i_k}\dots\sigma_{k}\epsilon_{k+1,n}x\epsilon_{k+1,n}\sigma_{k}\dots\sigma_{j_k}\dots\sigma_{1}\dots\sigma_{j_1},$$
 $k\in\{0,\dots,n\},\ 0\leq i_1<\dots< i_k\leq n-1$ и $0\leq j_1<\dots< j_k\leq n-1,$

где $x \in Br_k$. То же самое верно и для $IB(B_n)$, где $x \in Br(B_k)$. Элементы τ^2 и σ_i^2 отображаются в 1 под действием ρ_B так, что все представители какого-либо класса эквивалентности по модулю группы крашеных кос типа B_k отображаются в тот же самый элемент моноида $I(B_n)$. Эти классы эквивалентности образуют группу Вейля $W(B_k)$. Порядок группы Вейля типа B_k равен $2^k k!$. Таким образом, множество мощности, меньшей или равной $\sum_{k=0}^n 2^k \binom{n}{k}^2 k!$, отображается эпиморфно на множество в точности этой мощности. Это означает, что эпиморфизм $\tilde{\rho}_B$ есть изоморфизм. \square

Пусть $\mathscr E$ — моноид, порожденный единственной идемпотентной образующей $\epsilon.$

Предложение 2. Абеленизация $Ab(IBB_n)$ моноида $IB(B_n)$ изоморфна моноиду $\mathcal{E} \oplus \mathbb{Z}^2$, профакторизованному по соотношениям $\epsilon + \tau = \epsilon$, $\epsilon + \sigma = \epsilon$, где τ и σ суть образующие \mathbb{Z}^2 . Канонический гомоморфизм абеленизации $a:IB(B_n) \to Ab(IB(B_n))$ задается по формулам $a(\epsilon_i) = \epsilon$, $a(\tau) = \tau$, $a(\sigma_i) = \sigma$. Канонический гомоморфизм из $Ab(IB(B_n))$ в $Ab(I(B_n))$ состоит из факторизации \mathbb{Z}^2 по модулю 2. \square

ЛИТЕРАТУРА

- Brieskorn E. Sur les groupes de tresses [d'après V. I. Arnol'd]. (French) // Séminaire Bourbaki, 24ème année. 1971/1972. N 401. P. 21–44. Berlin: Springer-Verl., 1973. (Lecture Notes Math.; V. 317).
- **2.** Deligne P. Les immeubles des groupes de tresses généralisés // Invent. Math. 1972. V. 17. P. 273–302.
- Easdown D., Lavers T. G. The inverse braid monoid // Adv. Math. 2004. V. 186, N 2. P. 438–455.
- 4. Вагнер В. В. Обобщенные группы // Докл. АН СССР. 1952. Т. 84, № 6. С. 1119–1122.
- Petrich M. Inverse semigroups. New York: John Wiley & Sons, 1984. (Pure Appl. Math. (New York). A Wiley-Intersci. Publ.).
- Lawson M. V. Inverse semigroups. The theory of partial symmetries. River Edge, NJ: World Sci. Publ. Co., Inc., 1998.
- Попова Л. И. Определяющие соотношения некоторых полугрупп частичных преобразований конечного множества // Уч. зап. Ленингр. гос. пед. ин-та им. А. И. Герцена. 1961. № 218. С. 191–212.
- $\textbf{8.} \ \ \textit{Vershinin V. V.} \ \textit{On the inverse braid monoid} \ // \ \textit{Topology Appl. 2009. V. 156}, \\ \textit{N 6. P. 1153-1166}. \\ \textit{On the inverse braid monoid} \ // \ \textit{Topology Appl. 2009. V. 156}, \\ \textit{N 6. P. 1153-1166}. \\ \textit{On the inverse braid monoid} \ // \ \textit{Topology Appl. 2009}. \\ \textit{V. 156}, \\ \textit{N 6. P. 1153-1166}. \\ \textit{On the inverse braid monoid} \ // \ \textit{Topology Appl. 2009}. \\ \textit{V. 156}, \\ \textit{N 6. P. 1153-1166}. \\ \textit{On the inverse braid monoid} \ // \ \textit{Topology Appl. 2009}. \\ \textit{On the inverse braid monoid} \ // \ \textit{Topology Appl. 2009}. \\ \textit{On the inverse braid monoid} \ // \ \textit{Topology Appl. 2009}. \\ \textit{On the inverse braid monoid} \ // \ \textit{Topology Appl. 2009}. \\ \textit{On the inverse braid monoid} \ // \ \textit{Topology Appl. 2009}. \\ \textit{On the inverse braid monoid} \ // \ \textit{Topology Appl. 2009}. \\ \textit{On the inverse braid monoid} \ // \ \textit{Topology Appl. 2009}. \\ \textit{On the inverse braid monoid} \ // \ \textit{Topology Appl. 2009}. \\ \textit{On the inverse braid monoid} \ // \ \textit{Topology Appl. 2009}. \\ \textit{On the inverse braid monoid} \ // \ \textit{Topology Appl. 2009}. \\ \textit{On the inverse braid monoid} \ // \ \textit{Topology Appl. 2009}. \\ \textit{On the inverse braid monoid} \ // \ \textit{Topology Appl. 2009}. \\ \textit{On the inverse braid monoid} \ // \ \textit{Topology Appl. 2009}. \\ \textit{On the inverse braid monoid} \ // \ \textit{Topology Appl. 2009}. \\ \textit{On the inverse braid monoid} \ // \ \textit{Topology Appl. 2009}. \\ \textit{On the inverse braid monoid} \ // \ \textit{Topology Appl. 2009}. \\ \textit{On the inverse braid monoid} \ // \ \textit{Topology Appl. 2009}. \\ \textit{On the inverse braid monoid} \ // \ \textit{Topology Appl. 2009}. \\ \textit{On the inverse braid monoid} \ // \ \textit{Topology Appl. 2009}. \\ \textit{On the inverse braid monoid} \ // \ \textit{Topology Appl. 2009}. \\ \textit{On the inverse braid monoid} \ // \ \textit{Topology Appl. 2009}. \\ \textit{On the inverse braid monoid} \ // \ \textit{Topology Appl. 2009}. \\ \textit{On the inverse braid monoid} \ // \ \textit{Topology Appl. 2009}. \\ \textit{On the inverse braid monoid} \ // \ \textit{Topology Appl. 2009}. \\ \textit{On the inverse braid monoid} \ // \ \textit{Do the inverse braid monoid} \ // \ \textit{Do th$
- Everitt B., Fountain J. Partial mirror symmetry. I: reflection monoids. 22 pages. arXiv:math/ 0701313
- 10. Artin E. Theorie der Zöpfe // Abh. Math. Semin. Univ. Hamburg. 1925. Bd 4. S. 47–72.
- Gilbert N. D. Presentations of the inverse braid monoid // J. Knot Theory Ramifications. 2006. V. 15, N 5. P. 571–588.
- 12. Lambropoulou S. Solid torus links and Hecke algebras of B-type // Proc. conf. on quantum topology, Manhattan, KS, 1993. River Edge, NJ: World Sci. Publ. Co., Inc., 1994. P. 225–245.
- Вершинин В. В. О группах кос в телах с ручками // Сиб. мат. журн. 1998. Т. 39, № 4. С. 755–764.
- Вершинин В. В. Группы кос и пространства петель // Успехи мат. наук. 1999. Т. 54, № 2.
 С. 3–84.

Статья поступила 21 февраля 2009 г.

Вершинин Владимир Валентинович Институт математики им. С. Л. Соболева СО РАН, пр. Академика Коптюга, 4, Новосибирск 630090 versh@math.nsc.ru, vershini@math.univ-montp2.fr