УСЛОВИЯ СХОДИМОСТИ ИНТЕРПОЛЯЦИОННЫХ РАЦИОНАЛЬНЫХ ДРОБЕЙ С КОНЕЧНЫМ ЧИСЛОМ ПОЛЮСОВ

А. Г. Липчинский

Аннотация. Рассматривается интерполяционный процесс для класса функций, имеющих конечное число особых точек, с помощью рациональных функций, полюсы которых совпадают с особыми точками интерполируемой функции. Узлы интерполяции образуют треугольную матрицу. Найдены необходимые и достаточные условия равномерной сходимости на любом компакте, не содержащем особых точек функции, последовательности интерполяционных дробей к интерполируемой функции, а также другие условия сходимости. Обобщаются и улучшаются известные результаты по интерполированию функций с конечным числом особых точек рациональными дробями и целых функций многочленами.

 $DOI\,10.17377/smzh.2015.56.308$

Ключевые слова: аналитическая функция, особая точка функции, интерполяционный процесс, рациональная дробь, равномерная сходимость, условия сходимости.

Пусть однозначная аналитическая функция f(z) не имеет других особых точек, кроме, быть может, точек $a_s, s=1,2,\ldots,p+1, \ a_{p+1}=\infty$. Класс таких функций обозначим через $A(a_1,a_2,\ldots,a_{p+1})$.

Порядок ρ_s и тип σ_s функции около особой точки a_s определяются формулами (см. [1,2])

$$ho_s=\varlimsup_{r o\infty}rac{\ln\ln M_s(f,r)}{\ln r},\;
ho_s>0,\quad \sigma_s=\varlimsup_{r o\infty}rac{\ln M_s(f,r)}{r^{
ho_s}},\;s=1,2,\ldots,p+1,$$
 где $M_k(f,r)=\max_{|z-a_k|=rac{1}{r}}|f(z)|,\;k=1,2,\ldots,p,\quad M_{p+1}(f,r)=\max_{|z|=r}|f(z)|.$

Класс функций $f(z) \in A(a_1, a_2, \ldots, a_{p+1})$, у которых порядок около точки a_s либо меньше, либо равен ρ_s , а тип около этой точки меньше σ_s , обозначим через $[\rho_s, \sigma_s)$.

Пусть матрица узлов интерполяции $\{z_j^{(n)}\},\ j=1,2,\ldots,n,\ n=1,2,\ldots,$ обладает следующим свойством. При всех n>N n-ю строку матрицы можно разбить на p+2 группы точек $\{z_{s,j}^{(n)}\},\ s=1,2,\ldots,p+1,$ и $\{z_{0,j}^{(n)}\}$ так, что узлы $\{z_{s,j}^{(n)}\},\ j=1,2,\ldots,\lambda_n^{(s)},$ при неограниченном возрастании n имеют единственную точку сгущения $a,\ z_{p+1,j}^{(n)}\neq 0,$ а множество точек $\{z_{0,j}^{(n)}\},\ j=1,2,\ldots,\lambda_n^{(0)},$ содержится в некотором компакте, не включающем точек $a_k,\ k=1,2,\ldots,p.$ Класс матриц, обладающих таким свойством, обозначим символом $\bigcup_{j=1}^{n} a_s$.

Введем обозначения

$$u_{n,j}^{(k)} = \left| a_k - z_{k,j}^{(n)} \right|^{-1}, \ k = 1, 2, \dots, p, \quad u_{n,j}^{(p+1)} = \left| z_{p+1,j}^{(n)} \right|.$$

Не нарушая общности, далее будем полагать, что при всех $n>n_0$ выполнены неравенства $u_{n,j}^{(s)}\leq u_{n,j+1}^{(s)},\ s=1,2,\ldots,p+1$, в противном случае узлы интерполяции в строках матрицы можно перенумеровать.

Порядок μ_s и тип A_s сходимости последовательности $\{z_{s,j}^{(n)}\},\ j=1,2,\ldots,$ $\lambda_n^{(s)},\ s=1,2,\ldots,p+1,$ около точек a_s определяются равенствами (см. [1,2])

$$rac{1}{\mu_s} = \overline{\lim}_{n o \infty} rac{\ln u_{n,j}^{(s)}}{\ln j}, \quad A_s = \overline{\lim}_{n o \infty} rac{u_{n,j}^{(s)}}{(j)^{1/\mu_s}}.$$

Функция плотности узлов интерполяции в окрестности точки a_k , обозначаемая через $n_k(R)$, равна количеству чисел из группы $\{z_{k,j}^{(n)}\}$, находящихся вне круга $|z-a_k|<\frac{1}{R},\ k=1,2,\ldots,p,$ и $n_{p+1}(R)$ — число точек группы $\{z_{p+1,j}^{(n)}\}$, попавших в круг $|z|\leq R$ (см. [2]).

Будем интерполировать функцию $f(z)\in A(a_1,a_2,\dots,a_{p+1})$ в узлах $\left\{z_j^{(n)}\right\}\in\bigcup_{s=1}^{p+1}a_s$ с помощью рациональных функций вида

$$R_{n-1}(z) = \frac{P_{n-1}(z)}{Q_{m_n}(z)},\tag{1}$$

где $P_{n-1}(z)$ — многочлен степени n-1, $Q_{m_n}(z)=\prod\limits_{k=1}^p(z-a_k)^{m_n^{(k)}},$ $m_n^{(k)}$ — целые неотрицательные числа, $\sum\limits_{k=1}^pm_n^{(k)}=m_n\leq n-1.$

Далее будем полагать $m_n^{(p+1)}=n-1-m_n$ и обозначать через $b_{\eta_n^{(s)}}^{(s)}$ коэффициент при $\eta_n^{(s)}$ -м члене главной части ряда Лорана в окрестности точки a_s функции $f(z)\in A(a_1,a_2,\ldots,a_{p+1}),$ где $\eta_n^{(s)}=m_n^{(s)}+1,$ если $b_{m_n^{(s)}+1}^{(s)}\neq 0,$ и $\eta_n^{(s)}$ — наименьший номер отличных от нуля членов $b_v^{(s)}$ при $v>m_n^{(s)}+1,$ если $b_{m_n^{(s)}+1}^{(s)}=0.$

Известно (см. [2, теорема 3]), что если

$$\overline{\lim_{n o\infty}}\,rac{1}{n}ig(\lambda_n^{(s)}-m_n^{(s)}ig)=0,\quad s=1,2,\ldots,p+1,$$

то для равномерной сходимости последовательности (1), построенной для функции $f(z) \in A(a_1,a_2,\ldots,a_{p+1})$ по матрице узлов $\left\{z_j^{(n)}\right\} \in \bigcup_{s=1}^{p+1} a_s$, для функции f(z) на любом компакте, не содержащем точек a_k , необходимо выполнение неравенств

$$\overline{\lim_{n \to \infty}} \left[\left| b_{\eta_n^{(s)}}^{(s)} \right| \cdot \prod_{j=1}^{\lambda_n^{(s)}} u_{n,j}^{(s)} \right]^{1/n} \le 1, \quad s = 1, 2, \dots, p+1,$$
 (2)

и достаточно, чтобы они были строгими.

Прологарифмировав обе части неравенства (2) и применив неравенство Коши для коэффициентов ряда и формулу (см. $[3, \text{ отд. II, гл. } 4, \S 1]$)

$$\sum_{j=1}^{\lambda_n^{(s)}} \ln u_{n,j}^{(s)} = n_s (R_n^{(s)}) \cdot \ln R_n^{(s)} - N_s (R_n^{(s)}),$$

где $R_n^{(s)}=u_{n,\lambda_n^{(s)}}^{(s)},\;n_sig(R_n^{(s)}ig)$ — функции плотности узлов интерполяции около точек $a_s,\;N_sig(R_n^{(s)}ig)=\int\limits_0^{R_n^{(s)}}\frac{n_s(t)}{t}\,dt$ — функции Неванлинна (см. [4, гл. III, § 1]), получим

$$\overline{\lim}_{n \to \infty} \frac{1}{n} \left[\ln M_s(f, r_n^{(s)}) - \eta_n^{(s)} \ln r_n^{(s)} + n_s(R_n^{(s)}) \cdot \ln R_n^{(s)} - N_s(R_n^{(s)}) \right] \le 0.$$

$$s = 1, 2, \dots, p + 1,$$

где $r_n^{(s)} > 1$ такое, что f(z) аналитическая в кольце $0 < |z - a_k| \le \frac{1}{r_n^{(k)}}, \ k = 1, 2, \ldots, p$, и аналитическая вне круга $|z| < r_n^{(p+1)}$, если s = p+1, за исключением, быть может, бесконечно удаленной точки.

Полагая

$$r_n^{(s)} = \frac{R_n^{(s)}}{\theta_n^{(s)}}, \quad 0 < \theta_n^{(s)} < 1,$$

последние предельные соотношения перепишем в виде

$$\overline{\lim}_{n \to \infty} \frac{1}{n} \left[\ln M_s \left(f, \frac{R_n^{(s)}}{\theta_n^{(s)}} \right) - \ln \frac{1}{\theta_n^{(s)}} n_s \left(R_n^{(s)} \right) - N_s \left(R_n^{(s)} \right) + \left(\lambda_n^{(s)} - \eta_n^{(s)} \right) \ln \frac{R_n^{(s)}}{\theta_n^{(s)}} \right] \le 0.$$
(3)

Если выполнены условия

$$\lim_{n \to \infty} \theta_n^{(s)} > 0 \quad \text{и} \quad \overline{\lim}_{n \to \infty} \frac{1}{n} \left(\lambda_n^{(s)} - m_n^{(s)} - 1 \right) \ln R_n^{(s)} \le 0,$$

то имеют место неравенства

$$\overline{\lim_{n\to\infty}}\,\frac{\lambda_n^{(s)}-\eta_n^{(s)}}{n}\ln\frac{R_n^{(s)}}{\theta^{(s)}}\leq 0,\quad s=1,2,\ldots,p+1.$$

В самом деле, имеем

$$\begin{split} & \overline{\lim}_{n \to \infty} \frac{\lambda_n^{(s)} - \eta_n^{(s)}}{n} \ln \frac{R_n^{(s)}}{\theta_n^{(s)}} \\ & \leq \overline{\lim}_{n \to \infty} \frac{\lambda_n^{(s)} - m_n^{(s)} - 1}{n} \left(\ln R_n^{(s)} - \ln \theta_n^{(s)} \right) \leq \overline{\lim}_{n \to \infty} \frac{\lambda_n^{(s)} - m_n^{(s)} - 1}{n} \ln R_n^{(s)} \leq 0. \end{split}$$

При таких условиях заключаем, что если выполнены неравенства

$$\overline{\lim_{n \to \infty}} \frac{1}{n} \left[\ln M_s \left(f, \frac{R_n^{(s)}}{\theta_n^{(s)}} \right) - \ln \frac{1}{\theta_n^{(s)}} n_s \left(R_n^{(s)} \right) - N_s \left(R_n^{(s)} \right) \right] < 0, \quad s = 1, 2, \dots, p+1, \quad (4)$$

то неравенства (3) также выполняются. Отсюда следует, что при выполненных соотношениях (4) последовательность (1), построенная для функции $f(z) \in A(a_1,a_2,\ldots,a_{p+1})$ по матрице узлов $\left\{z_j^{(n)}\right\} \in \bigcup_{s=1}^{p+1} a_s$, равномерно сходится к f(z) на любом компакте, не содержащем точек $a_k,\,k=1,2,\ldots,p$.

В [5] (см. [5, теорема 2]) показано, что при интерполировании целых функций с помощью многочленов числа θ берутся из $\left(0,\frac{1}{2}\right)$ и их, вообще говоря, нельзя брать из интервала $\left(\frac{1}{2},1\right)$. Однако в целях отыскания наиболее широкого класса равномерной сходимости интерполяционного процесса при дополнительных условиях, наложенных на узлы интерполяции, числа θ целесообразно выбирать из интервала (0,1).

Теорема 1. Пусть $\{z_j^{(n)}\}\in \bigcup_{s=1}^{p+1}a_s$ — матрица узлов интерполяции, выполнены условия

$$\overline{\lim}_{n \to \infty} \frac{\lambda_n^{(s)} - m_n^{(s)}}{n} = 0, \quad \lim_{n \to \infty} \frac{\lambda_n^{(s)}}{n} = \chi_s > 0, \quad \overline{\lim}_{n \to \infty} \frac{1}{n} \left(\lambda_n^{(s)} - m_n^{(s)} - 1 \right) \ln R_n^{(s)} \le 0,$$

$$s = 1, 2, \dots, p + 1, \tag{5}$$

и около одной или нескольких точек $a_{\tau}, 1 \leq \tau \leq p+1$,

$$u_{n,j}^{(au)}=u_{n,\lambda_n^{(au)}}^{(au)}=A_ auig(\lambda_n^{(au)}ig)^{1/
ho_ au}=R_n^{(au)},\quad j=1,2,\ldots,\lambda_n^{(au)}.$$

Если функция $f(z) \in A(a_1, a_2, \ldots, p+1)$ такова, что около точек $a_s, s=1,2,\ldots, p+1, s \neq \tau$, имеют место достаточные условия (2) или (4), а в окрестностях точек a_τ при всех $n > n_0$ она удовлетворяет неравенствам

$$\ln M_{\tau}\left(f, \frac{R_n^{(\tau)}}{\theta^{(\tau)}}\right) \le \left(\frac{R_n^{(\tau)}}{\theta^{(\tau)}}\right)^{\rho_{\tau}} \sigma_{\tau}(\theta^{(\tau)}),\tag{6}$$

где

$$\sigma_{\tau}(\theta^{(\tau)}) = \left(\frac{\theta^{(\tau)}}{A_{\tau}}\right)^{\rho_{\tau}} \cdot \ln \frac{1}{\theta^{(\tau)}} - \varepsilon, \quad \theta^{(\tau)} = \exp\left\{-\frac{1}{\rho_{\tau}}\right\},$$

 $\varepsilon>0$ как угодно мало, то последовательность (1), построенная для функции f(z) по узлам $\left\{z_{j}^{(n)}\right\}$, равномерно сходится к f(z) на любом компакте, не содержащем точек $a_{k},\,k=1,2,\ldots,p$.

ДОКАЗАТЕЛЬСТВО. По условию теоремы достаточные условия равномерной сходимости рассматриваемого интерполяционного процесса около точек a_s , $s \neq \tau$, выполнены. Покажем, что неравенства (4) около точек a_τ также выполняются. Далее в доказательстве теоремы в целях упрощения записи индекс τ писать не будем.

При заданных узлах интерполяции $N(R_n)=0$. В силу равенства $n(R_n)=(R_nA^{-1})^\rho$ при выполненных условиях теоремы найдем, что выражение под знаком предела в соотношении (4) не превосходит $\frac{1}{n} \left[-\left(\frac{A}{\theta}\right)^\rho n(R_n)\varepsilon \right]$. Поскольку $n(R_n)=\lambda_n$, левая часть неравенства (4) не превосходит

$$\varlimsup_{n\to\infty}\frac{\lambda_n}{n}\biggl[-\biggl(\frac{A}{\theta}\biggr)^{\rho}\varepsilon\biggr]=-\chi\biggl(\frac{A}{\theta}\biggr)^{\rho}\varepsilon=-\chi A^{\rho}e\varepsilon.$$

Так как правая часть последнего равенства при любом $\varepsilon > 0$ отрицательна, неравенства (4) имеют место. Теорема доказана.

Следствие 1. Пусть матрица узлов интерполяции $\left\{z_{j}^{(n)}\right\}\in\bigcup_{1}^{1}a,\ a=\infty,$ такова, что имеют место равенства

$$\lim_{n o\infty}rac{\lambda_n^{(0)}}{n}=0$$
 и $u_{n,j}=u_{n,\lambda_n}=A(\lambda_n)^{1/
ho}=R_n.$

Если целая функция f(z) при всех $n > n_0$ удовлетворяет неравенству

$$\ln M\left(f, \frac{R_n}{\theta}\right) \le \left(\frac{R_n}{\theta}\right)^{\rho} \sigma(\theta),$$

где

$$\sigma(heta) = \left(rac{ heta}{A}
ight)^
ho \lnrac{1}{ heta} - arepsilon, \quad heta = \exp\Bigl\{-rac{1}{
ho}\Bigr\},$$

 $\varepsilon > 0$ как угодно мало, то последовательность интерполяционных полиномов, построенная для функции f(z) по узлам $\{z_j^{(n)}\}$, равномерно сходится к f(z) на любом компакте.

Поскольку

$$\lim_{n o\infty}rac{\lambda_n^{(s)}}{n}=0$$
 и $\lambda_n^{(p+1)}\leq m_n^{(p+1)}+1=n,$

условия (5) выполняются.

Справедливость следствия очевидна и вытекает из теоремы 1.

Замечание 1. Числа $\theta^{(\tau)}$ в теореме 1 выбраны таким образом, что $\sigma_{\tau}(\theta^{(\tau)})$ на интервале (0,1) принимают наибольшее значение. Следовательно, какие бы точки $\bar{\theta}^{(\tau)}$ из интервала (0,1), отличные от точек $\theta^{(\tau)}$, мы ни взяли, получим классы равномерной сходимости около точек a_{τ} уже, чем в теореме 1.

Теорему 1 улучшить нельзя в том смысле, что при заданных узлах интерполяции классы равномерной сходимости функций около точек a_{τ} , определяемые неравенствами (6), расширить нельзя.

В неулучшаемости теоремы 1 можно убедиться также с помощью теоремы 5 из [2].

В самом деле, поскольку

$$\sigma_{ au}igg(\expigg\{-rac{1}{
ho_{ au}}igg\}igg) = ig(A_{ au}^{
ho_{ au}}e
ho_{ au}ig)^{-1},$$

неравенство (6) можно записать в виде

$$\ln M_{\tau}\left(f, \frac{R_n^{(\tau)}}{\theta^{(\tau)}}\right) \le \left(\frac{R_n^{(\tau)}}{\theta^{(\tau)}}\right)^{\rho_{\tau}} \left[\left(A_{\tau}^{\rho_{\tau}} \rho_{\tau} e\right)^{-1} - \varepsilon\right].$$

Отсюда следует, что около каждой особой точки a_{τ} функция f(z) имеет порядок ρ_{τ} , а тип не превосходит $\left(A_{\tau}^{\rho_{\tau}}\rho_{\tau}e\right)^{-1}-\varepsilon$. Поскольку $\varepsilon>0$ может быть как угодно малым, заключаем, что $f(z)\in\left[\rho_{\tau},\left(A_{\tau}^{\rho_{\tau}}\rho_{\tau}e\right)^{-1}\right)$ около точек a_{τ} . На основании теоремы 5 из [2] можем утверждать, что теорему 1 улучшить нельзя.

Заметим, что при $\rho_{\tau} \geq \frac{1}{\ln 2}$ точки $\theta^{(\tau)}$ принадлежат промежутку $\left[\frac{1}{2},1\right)$.

Теорема 2. Пусть $\{z_j^{(n)}\}\in\bigcup_{s=1}^{p+1}a_s$ — матрица узлов интерполяции, выполнены условия (5) и около одной или нескольких точек $a_{\tau},\,1\leq \tau\leq p+1,$

$$u_{n,j}^{(\tau)} = A_{\tau}(j)^{1/\rho_{\tau}}, \quad j = 1, 2, \dots, \lambda_n^{(\tau)}.$$

Если функция $f(z) \in A(a_1,a_2,\ldots,a_{p+1})$ такова, что около точек $a_s,\ s=1,2,\ldots,p+1,\ s\neq \tau$, имеют место достаточные условия (2) или (4), а в окрестностях точек a_τ при всех $n>n_0$ она удовлетворяет неравенствам

$$\ln M_{\tau} \left(f, \frac{R_n^{(\tau)}}{\theta_n^{(\tau)}} \right) \le \left(\frac{R_n^{(\tau)}}{\theta_n^{(\tau)}} \right)^{\rho_{\tau}} \sigma_{\tau} \left(\theta_n^{(\tau)} \right), \tag{7}$$

где
$$R_n^{(au)} = A_ auig(\lambda_n^{(au)}ig)^{1/
ho_ au}$$
,
$$\sigma_ auig(heta_n^{(au)}ig) = \left(heta_n^{(au)}ig)^{
ho_ au} \ln heta_n heta + \left(heta_n^{(au)}ig)^{
ho_ au} N_ auig(R_n^{(au)}ig) - arepsilon,$$

$$heta_n^{(au)} = \expigg\{ ig[A_nig(R_n^{(au)}ig)^{-1}ig]^{
ho_ au} N_ auig(R_n^{(au)}ig) - heta_n^ au ig\},$$

 $\varepsilon > 0$ как угодно мало, $N_{\tau}(R_n^{(\tau)})$ — функции Неванлинна, то последовательность (1), построенная для функции f(z) по узлам $\{z_j^{(n)}\}$, равномерно сходится к f(z) на любом компакте, не содержащем точек a_k , $k = 1, 2, \ldots, p$.

Доказательство. В доказательстве индекс τ писать не будем. Покажем сначала, что $\theta_n \in (0,1)$. Применяя формулу (см. [4, гл. III, § 1])

$$N(r) = \sum_{
ho_n \le r} \ln rac{r}{
ho_n}$$

и полагая $r=R_n,\, \rho_n=u_{n,j},\,$ при заданных узлах интерполяции будем иметь

$$N(R_n) = \lambda_n \ln R_n - \sum_{i=1}^{\lambda_n} \ln u_{n,j} = \lambda_n \ln R_n - \lambda_n \ln A - rac{1}{
ho} \ln(\lambda_n!).$$

С помощью формулы Стирлинга (см. [4, гл. II, § 1]), учитывая, что $R_n = A(\lambda_n)^{1/\rho}$, получим

$$N(R_n) = \lambda_n \ln A + rac{1}{
ho} \lambda_n \ln \lambda_n - \lambda_n \ln A \ - rac{1}{
ho} \left(\lambda_n \ln \lambda_n - \lambda_n + rac{1}{2} \ln \lambda_n + rac{1}{2} \ln 2\pi + o(1)
ight) = rac{1}{
ho} \lambda_n - rac{1}{2
ho} \ln \lambda_n - c_n,$$

где $c_n=rac{1}{2}\ln 2\pi+o(1)$. Поскольку $\left(rac{A}{R_n}
ight)^{
ho}=\lambda_n^{-1},$ окончательно найдем

$$\theta_n = \exp\left\{ \left(\frac{A}{R_n} \right)^{\rho} N(R_n) - \frac{1}{\rho} \right\}$$

$$= \exp\left\{ \lambda_n^{-1} \left(\frac{1}{\rho} \lambda_n - \frac{1}{2\rho} \ln \lambda_n - c_n \right) - \frac{1}{\rho} \right\} = \exp\left\{ -\frac{1}{2\rho \lambda_n} \ln \lambda_n - \frac{c_n}{\lambda_n} \right\},$$

откуда следует, что $\theta_n \in (0,1)$, причем $\theta_n \to 1$, когда $\lambda_n \to \infty$.

Покажем далее, что при выполненных неравенствах (7) условия (4) имеют место. В самом деле, если максимум модуля функции в окрестностях рассматриваемых особых точек подчинен условиям (7), то выражение под знаком предела в соотношении (4) не превосходит

$$\frac{1}{n} \left[\left(\frac{R_n}{\theta_n} \right)^{\rho} \left(\ln \frac{1}{\theta_n} \cdot \left(\frac{\theta_n}{A} \right)^{\rho} + \left(\frac{\theta_n}{R_n} \right)^{\rho} N(R_n) - \varepsilon \right) - \ln \frac{1}{\theta_n} n(R_n) - N(R_n) \right] \\
= \frac{1}{n} \left[\left(\frac{R_n}{A} \right)^{\rho} \ln \frac{1}{\theta_n} - \varepsilon \left(\frac{R_n}{\theta_n} \right)^{\rho} - n(R_n) \ln \frac{1}{\theta_n} \right].$$

Поскольку $n(R_n) = \left(\frac{R_n}{A}\right)^{\rho}$, имеем

$$\overline{\lim}_{n \to \infty} \frac{1}{n} \left[\ln M \left(f, \frac{R_n}{\theta_n} \right) - \ln \frac{1}{\theta_n} n(R_n) - N(R_n) \right] \\
\leq \overline{\lim}_{n \to \infty} \frac{1}{n} \left[-\varepsilon \left(\frac{R_n}{\theta_n} \right)^{\rho} \right] = -\varepsilon \chi A^{\rho} < 0.$$

Отсюда на основании условий теоремы можем утверждать, что достаточные условия равномерной сходимости последовательности (1) выполняются около всех особых точек функции. Теорема доказана.

Следствие 2. Пусть матрица узлов интерполяции $\left\{z_{j}^{(n)}\right\}\in\bigcup_{1}^{1}a,\ a=\infty,$ такова, что выполняются равенства

$$\lim_{n \to \infty} rac{\lambda_n^{(0)}}{n} = 0$$
 и $u_{n,j} = A(j)^{1/
ho}, \quad j = 1, 2, \dots, \lambda_n.$

Если целая функция f(z) при всех $n > n_0$ удовлетворяет неравенству

$$\ln M\left(f, \frac{R_n}{\theta_n}\right) \le \left(\frac{R_n}{\theta_n}\right)^{\rho} \sigma(\theta_n),$$

где $R_n = A(\lambda_n)^{1/\rho}$

$$\sigma(\theta_n) = \left(\frac{\theta_n}{A}\right)^\rho \ln \frac{1}{\theta_n} + \left(\frac{\theta_n}{R_n}\right)^\rho N(R_n) - \varepsilon, \quad \theta_n = \exp\left\{\left(\frac{A}{R_n}\right)^\rho N(R_n) - \frac{1}{\rho}\right\},$$

 $\varepsilon > 0$ как угодно мало, $N(R_n)$ — функции Неванлинна, то последовательность интерполяционных многочленов, построенная для функции f(z) по узлам $\{z_j^{(n)}\}$, равномерно сходится к f(z) на любом компакте.

Справедливость следствия вытекает из теоремы 2.

Замечание 2. Замечание 1 имеет силу для теоремы 2 и следствий.

В том, что теорема 2 неулучшаема, можно убедиться также с помощью теоремы 4 из [2]. Индекс τ в следующем равенстве писать не будем.

Заметим, что имеет место равенство

$$\lim_{n \to \infty} \sigma(\theta_n) = \lim_{n \to \infty} \left[\left(\frac{\theta_n}{A} \right)^{\rho} \ln \frac{1}{\theta_n} + \left(\frac{\theta_n}{R_n} \right)^{\rho} N(R_n) - \varepsilon \right]$$

$$= \lim_{n \to \infty} \left[R_n^{-\rho} N(R_n) - \varepsilon \right] = \lim_{n \to \infty} \left[(A^{\rho} \lambda_n)^{-1} \left(\frac{1}{\rho} \lambda_n - \frac{1}{2\rho} \ln \lambda_n - c_n \right) \right] - \varepsilon = (A^{\rho} \rho)^{-1} - \varepsilon.$$
(8)

В силу того, что ε как угодно мало, из неравенства (7) и последнего равенства следует принадлежность функции f(z) около точек a_{τ} классу $\left[\rho_{\tau},\left(A_{\tau}^{\rho}\rho_{\tau}\right)^{-1}\right)$, значит, с помощью теоремы 4 из [2] можно утверждать, что теорему 2 улучшить нельзя.

Поскольку следствия 1 и 2 являются следствиями неулучшаемых теорем 1 и 2 соответственно, они также неулучшаемы.

Так как $\varepsilon>0$ в равенстве (8) как угодно мало, из следствия 2 и равенства (8) заключаем, что если целая функция f(z) принадлежит $\lfloor \rho, (A^{\rho}\rho)^{-1} \rfloor$, то последовательность интерполяционных полиномов, построенная для функции f(z) по узлам $\left\{z_j^{(n)}\right\} \in \bigcup_{1}^{1} a, \ a=\infty, \ \lim_{n\to\infty} \frac{\lambda_n^{(0)}}{n} = 0$ и $u_{n,j} = A(j)^{1/\rho}$, равномерно сходится к f(z) на любом компакте.

Следствие 2 улучшает теорему VII из [4] (см. [4, гл. II, § 3, с. 182]). В самом деле, пусть матрица узлов интерполяции $\{z_j^{(n)}\}\in\bigcup_1^1 a,\,a=\infty,\,\lambda_n^{(0)}=0,\,$ такова, что $z_j^{(n)}=j^2$. Тогда $|z_{j-1}^{(n)}|<|z_j^{(n)}|<\dots<|z_n^{(n)}|<\lambda\cdot n^2,\,$ где $\lambda=1+\varepsilon_1,\,\varepsilon_1>0,\,$ откуда следует, что для таких узлов неравенство (157) из [4] выполняется при любом $\varepsilon_1>0$. На основании следствия 2 и равенства (8) можем утверждать, что если целая функция f(z) принадлежит классу $\left[\frac{1}{2},2\right)$, то интерполяционные полиномы, построенные для функции f(z) по узлам $|z_j^{(n)}|=j^2,\,$ равномерно

сходятся к f(z) на любом компакте. Из теоремы VII в [4] следует, что при тех же узлах классом равномерной сходимости интерполяционного процесса является класс целых функций $\left|\frac{1}{2},\sigma+\varepsilon\right|$, где $\varepsilon>0$ может быть как угодно малым, σ удовлетворяет неравенству

$$\sigma < \frac{2}{(2\lambda)^{1/2}} \int\limits_0^1 \frac{t^{\frac{1}{2}-1}}{2-t} \, dt = \frac{2}{\sqrt{1+\varepsilon_1}} \ln(\sqrt{2}+1) \approx \frac{2}{\sqrt{1+\varepsilon_1}} \ln(2,41) \approx 2 \cdot \frac{0,8796}{\sqrt{1+\varepsilon_1}}.$$

Поскольку при достаточно малом $\varepsilon>0$ имеет место неравенство

$$\sigma + \varepsilon < 2 \cdot \frac{0,8796}{\sqrt{1+\varepsilon_1}} + \varepsilon < 2 - \varepsilon,$$

приходим к выводу, что класс равномерной сходимости функций при узлах интерполяции $\left|z_{j}^{(n)}\right|=j^{2},$ определяемый следствием 2, шире, чем при тех же узлах в теореме VII из [4].

Отметим также, что если $z_i^{(n)} = j$, то класс равномерной сходимости интерполяционного процесса, определяемый теоремой VII из [4], есть класс целых функций $\left[1,\frac{\ln 2}{1+\varepsilon_1}+\varepsilon\right)$, где ε как угодно мало, а класс равномерной сходимости, определяемой следствием 2, составляют целые функции класса [1,1). В силу того, что при любом положительном ε_1 и ε , удовлетворяющем неравенству $0<\varepsilon<\frac{\varepsilon_1}{1+\varepsilon_1}\ln 2$, имеет место соотношение $\frac{\ln 2}{1+\varepsilon_1}+\varepsilon<\ln 2$, можем утверждать, что класс равномерной сходимости интерполяционного процесса, указанный в теореме VII из [4] при узлах $z_j^{(n)}=j$, не шире класса целых функций [1, $\ln 2$). Значит, класс равномерной сходимости при узлах $z_i^{(n)} = j$ в следствии 2 шире, чем в теореме VII из [4]. Отсюда заключаем также, что следствие 2 улучшает теорему Фабера (см. [6, гл. II, §5, теорема 2.5.1]) в том же смысле, что и теорему VII из [4].

Кроме того, следствие 2 обобщает теорему VII из [4] на случай треугольной матрицы узлов интерполяции при более слабых ограничениях, в частности, узлы интерполяции могут иметь предельные точки не только в бесконечности, но и в конечной части плоскости.

Следуя М. К. Гончаровой [7], введем обозначения для повторных показательных функций

$$e_0(x)=x, \quad e_1(x)=e^x, \quad e_l(x)=e_{l-1}(e(x))=e(e_{l-1}(x)), \quad l=1,2,\ldots,$$
и повторных логарифмов

$$\ln_0(x)$$
, $\ln_1 x = \ln x$, $\ln_l(x) = \ln_{l-1}(\ln x)$, $(E_l < x < \infty)$, $E_l = e_l(0)$.

Будем говорить, что функция f(z) около особой точки $a_s, s = 1, 2, \ldots, p+1$, ступени l_s , если

$$\varlimsup_{r\to\infty}\frac{\ln_{l_s}M_s(f,r)}{\ln r}=\infty,\quad \varlimsup_{r\to\infty}\frac{\ln_{l+1}M_s(f,r)}{\ln r}=\rho_s<\infty,$$

где ρ_s — порядок функции f(z) ступени l_s около особой точки a_s .

Если $\rho_s>0$, то тип функции f(z) ступени l_s порядка ρ_s около точки a_s определим равенством

$$\overline{\lim_{r o \infty}} \, rac{\ln_{l_s} M_s(f,r)}{r
ho_s} = \sigma_s.$$

 $\varlimsup_{r\to\infty}\frac{\ln_{l_s}M_s(f,r)}{r^{\rho_s}}=\sigma_s.$ Класс функций $f(z)\in A(a_1,a_2,\dots,a_{p+1}),$ у которых около особой точки a_s ступень меньше l_s , либо равна l_s , но порядок меньше ρ_s , либо порядок равен ρ_s , а тип около этой точки меньше σ_s , обозначим через $[l_s, \rho_s, \sigma_s), \, \sigma_s > 0$, а если при тех же ступени и порядке около особой точки a_s тип не превосходит σ_s , то — через $[l_s, \rho_s, \sigma_s]$.

Теорема 3. Пусть $\{z_j^{(n)}\}\in\bigcup_{s=1}^{p+1}a_s$ — матрица узлов интерполяции, выполнены условия (5) и около одной или нескольких точек $a_{\tau},\,1\leq \tau\leq p+1,$

$$u_{n,j}^{ au} = u_{n,\lambda_n^{(au)}}^{(au)} = A_{ au} \ln_{l_{ au}}^{1/
ho_{ au}} \lambda_n^{(au)} = R_n^{(au)}, \quad l_{ au} \geq 1, \ j = 1,2,\dots,\lambda_n^{(au)}.$$

Если функция $f(z) \in A(a_1, a_2, \ldots, a_{p+1})$ такова, что в окрестностях точек $a_s, s = 1, 2, \ldots, p+1, s \neq \tau$, выполнены достаточные условия (2) или (4), а около точек a_τ она принадлежит классам $\lfloor l_\tau + 1, \rho_\tau, A_\tau^{-\rho_\tau} \rfloor$, то последовательность (1), построенная для функции f(z) по узлам $\{z_j^{(n)}\}$, равномерно сходится к f(z) на любом компакте, не содержащем точек $a_k, k = 1, 2, \ldots, p$.

Доказательство. По условию теоремы достаточные условия равномерной сходимости последовательности (1) около точек $a_s, s \neq \tau$, выполнены. Покажем, что при выполненных условиях теоремы около точек a_τ неравенства (4) также имеют место.

Пусть функция f(z) около точки a_{τ} принадлежит классу $\lfloor l_{\tau}+1, \rho_{\tau}, \sigma_{\tau}^{\rho_{\tau}} \rfloor$, тогда для максимума модуля этой функции около точки a_{τ} выполняется неравенство

$$M_{\tau}(f,r) \le e_{l_{\tau}+1}\{(r\sigma_{\tau}')^{\rho_{\tau}}\}, \quad \sigma_{\tau}' = \sigma_{\tau} + \varepsilon, \ \varepsilon > 0.$$

В целях упрощения записи далее в доказательстве индекс τ писать не будем. Полагая $r=\frac{R_n}{\theta},\ 0<\theta<1,\$ найдем $\ln M\big(f,\frac{R_n}{\theta}\big)\leq e_l\big\{\big(\frac{R_n\sigma'}{\theta}\big)^\rho\big\}.$ Учитывая последнее соотношение и равенства

$$n(R_n) = \lambda_n = e_l iggl\{ \left(rac{R_n}{A}
ight)^
ho iggr\}, \quad N(R_n) = 0,$$

получим, что выражение в квадратных скобках (4) не превосходит

$$\begin{split} e_{l} & \left\{ \left(\frac{R_{n} \sigma'}{\theta} \right)^{\rho} \right\} - e_{l} \left\{ \left(\frac{R_{n}}{A} \right)^{\rho} \right\} \cdot \ln \frac{1}{\theta} = e_{l} \left\{ \left(\frac{R_{n}}{A} \right)^{\rho} \cdot \left(\frac{A \sigma'}{\theta} \right)^{\rho} \right\} - e_{l} \left\{ \left(\frac{R_{n}}{A} \right)^{\rho} \right\} \cdot \ln \frac{1}{\theta} \\ & = e_{l} \left\{ \left(\frac{R_{n}}{A} \right)^{\rho} \right\} \left[\exp \left\{ e_{l-1} \left(\frac{R_{n}}{A} \right)^{\rho} \cdot \left(\frac{A \sigma'}{\theta} \right)^{\rho} \right\} - e_{l-1} \left\{ \left(\frac{R_{n}}{A} \right)^{\rho} \right\} \right\} - \ln \frac{1}{\theta} \right]. \end{split}$$

Поскольку при любых x_1 и x_2 таких, что $0 < x_1 < x_2$, имеет место неравенство

$$x_1 - x_2 > e_1(x_1) - e_1(x_2) > \dots > e_{l-1}(x_1) - e_{l-1}(x_2),$$
 (9)

при $\frac{A\sigma'}{\theta} < 1$ можно утверждать, что правая часть последнего равенства не превосходит

$$\lambda_n \left[\exp \left\{ \left(\frac{R_n}{A} \right)^{\rho} \left[\left(\frac{A\sigma'}{\theta} \right)^{\rho} - 1 \right] \right\} - \ln \frac{1}{\theta} \right].$$

Следовательно, если $\frac{A\sigma'}{\theta} < 1$, то в силу того, что $R_n \to \infty$ при $n \to \infty$, имеем

$$\frac{\overline{\lim}}{n \to \infty} \frac{1}{n} \left[\ln M \left(f, \frac{R_n}{\theta} \right) - n(R_n) \ln \frac{1}{\theta} - N(R_n) \right] \\
\leq \lim_{n \to \infty} \frac{\lambda_n}{n} \left[\exp \left\{ \left(\frac{R_n}{A} \right)^{\rho} - \left[\left(\frac{A\sigma'}{\theta} \right)^{\rho} - 1 \right] \right\} - \ln \frac{1}{\theta} \right] = -\chi \ln \frac{1}{\theta} < 0,$$

т. е. условие равномерной сходимости (4) около рассматриваемой особой точки функции f(z) выполнено.

Из неравенства $\frac{A\sigma'}{\theta} < 1$ следует неравенство $\sigma^{\rho} < \left(\frac{\theta - A\varepsilon}{A}\right)^{\rho}$ для типа σ^{ρ} интерполируемой функции f(z). Поскольку правая часть последнего неравенства возрастает с возрастанием θ , чем больше число $\theta \in (0,1)$, тем шире класс равномерной сходимости рассматриваемого интерполяционного процесса. Заметим, что $\sigma^{\rho} \to A^{-\rho}$ при $\theta \to 1$ и $\varepsilon \to 0$, следовательно, при достаточно больших значениях $\theta < 1$ и малом $\varepsilon > 0$ разность $\left(\frac{1}{A}\right)^{\rho} - (\sigma)^{\rho}$ может быть сделана как угодно малой. Отсюда следует, что функция f(z) около рассматриваемой особой точки принадлежит классу $\lfloor l+1, \rho, A^{-\rho} \rangle$.

Итак, если функция f(z) около рассматриваемой особой точки принадлежит классу $\lfloor l+1, \rho, A^{-\rho} \rangle$, то условия равномерной сходимости (4) около этой точки выполняются. Теорема доказана.

Следствие 3. Пусть матрица узлов интерполяции $\left\{z_{j}^{(n)}\right\}\in\bigcup_{1}^{1}a,\ a=\infty,$ такова, что выполняются равенства

$$\lim_{n \to \infty} rac{\lambda_n^{(0)}}{n} = 0$$
 и $u_{n,j} = A \ln_l^{1/
ho} \lambda_n = R_n, \ j = 1, 2, \dots, \lambda_n.$

Если целая функция f(z) принадлежит классу $\lfloor l+1, \rho, A^{-\rho} \rangle$, то последовательность интерполяционных многочленов, построенная для функции f(z) по узлам $\{z_i^{(n)}\}$, равномерно сходится к f(z) на любом компакте.

Справедливость следствия очевидна и вытекает из теоремы 3.

Теорема 4. Пусть даны две матрицы узлов интерполяции $\{z_j^{(n)}\}$ и $\{z_j^{(n)}\}$, которые принадлежат классу $\bigcup_{s=1}^{p+1} a_s$, являются тождественными, за исключением одного или нескольких $s=\tau,\ 1\leq\tau\leq p+1$, и для которых выполнены условия (5). Пусть последовательность (1), построенная для функции $f(z)\in A(a_1,a_2,\ldots,a_{p+1})$ по узлам $\{z_j^{(n)}\}$, равномерно сходится к f(z) на любом компакте, не содержащем точек $a_k,\ k=1,2,\ldots,p$. Если для всех $\tau,\ 1\leq\tau\leq p+1$, выполнены неравенства

$$\overline{\lim}_{n \to \infty} \left[\prod_{j=1}^{\lambda_n'^{(\tau)}} u_{n,j}'^{(\tau)} \right]^{1/n} \cdot \left[\prod_{j=1}^{\lambda_n^{(\tau)}} u_{n,j}^{(\tau)} \right]^{-1/n} < 1,$$
(10)

где $u_{n,j}^{\prime(\tau)}=\left|a_{\tau}-z_{\tau,j}^{\prime(n)}\right|^{-1},\,1\leq\tau\leq p,$ и $u_{n,j}^{\prime(\tau)}=\left|z_{\tau,j}^{\prime(n)}\right|,\,\tau=p+1,$ то последовательность (1), построенная для функции f(z) по узлам $\left\{z_{j}^{\prime(n)}\right\}$, также равномерно сходится к f(z) на любом компакте, не содержащем точек $a_{k},\,k=1,2,\ldots,p.$

Доказательство. В силу того, что последовательность (1), построенная для функции f(z) по узлам $\{z_j^{(n)}\}$, равномерно сходится к f(z) на любом компакте, не содержащем точек a_k , для всех a_s , $s=1,2,\ldots,p+1$, выполнены условия (2). Покажем теперь, что достаточные условия (2) выполняются для всех s и в случае, когда последовательность (1) построена для функции f(z) по узлам $\{z_j'^{(n)}\}$.

Поскольку матрицы $\{z_j^{(n)}\}$ и $\{z_j'^{(n)}\}$ тождественны для всех $s \neq \tau$, в случае последовательности (1), построенной по матрице узлов $\{z_j'^{(n)}\}$ для функции f(z), условия (2) также выполняются для всех $s \neq \tau$.

Пусть теперь s= au. Далее в доказательстве теоремы индекс au писать не будем. На основании неравенства (10) можем записать

$$\overline{\lim}_{n \to \infty} \left[|b_{\eta_n}| \cdot \prod_{j=1}^{\lambda'_n} u'_{n,j} \right]^{1/n} = \overline{\lim}_{n \to \infty} \left[|b_{\eta_n}| \cdot \prod_{j=1}^{\lambda_n} u_{n,j} \cdot \left(\prod_{j=1}^{\lambda'_n} u'_{n,j} : \prod_{j=1}^{\lambda_n} u_{n,j} \right) \right]^{1/n} \\
< \overline{\lim}_{n \to \infty} \left[|b_{\eta_n}| \prod_{j=1}^{\lambda_n} u_{n,j} \right]^{1/n} \le 1.$$

Отсюда следует, что достаточные условия равномерной сходимости последовательности (1), построенной для функции f(z) по матрице узлов $\{z_j^{\prime(n)}\}$, в окрестности рассматриваемой точки выполняются. Теорема доказана.

Следствие 4. Если последовательность интерполяционных полиномов, построенная для целой функции f(z) по матрице узлов $\left\{z_{j}^{(n)}\right\}\in\bigcup_{1}^{1}a,\ a=\infty,\ y$ которой $\lim_{n\to\infty}\frac{\lambda_{n}^{(0)}}{n}=0$, равномерно сходится к f(z) на любом компакте, то, какова бы ни была матрица узлов $\left\{z_{j}^{\prime(n)}\right\}$, удовлетворяющая условиям

$$\lim_{n\to\infty}\frac{\lambda_n'^{(0)}}{n}=0,\quad \overline{\lim}_{n\to\infty}\left[\prod_{j=1}^{\lambda_n'}u_{n,j}'\right]^{1/n}\cdot\left[\prod_{j=1}^{\lambda_n}u_{n,j}\right]^{-1/n}<1,$$

последовательность интерполяционных полиномов, построенная для функции f(z) по узлам $\left\{z_j^{\prime(n)}\right\}$, также равномерно сходится к f(z) на любом компакте.

Справедливость следствия вытекает из теоремы 4.

Если функция плотности узлов интерполяции $n_s(r)$ ступени $l_s=0$, то плотность последовательности узлов v_s и нижний тип A_s определяются так (см. [4, гл. II, § 1, с. 131]):

$$v_s = \lim_{r o \infty} rac{\ln n_s(r)}{\ln r}, \,\, v_s = 0, \quad A_s = \lim_{r o \infty} rac{n_s(r)}{r^{v_s}}.$$

Для функций плотности узлов интерполяции $n_s(r)$ ступени $l_s \geq 1$ плотность v_s и нижний тип A_s последовательности определим формулами

$$v_s = \lim_{r o \infty} rac{\ln_{l_s+1} n_s(r)}{\ln r}, \,\, v_s = 0, \quad A_s = \lim_{r o \infty} rac{\ln_{l_s} n_s(r)}{r^{v_s}}.$$

Класс последовательностей $\{z_{s,j}^{(n)}\}$ узлов интерполяции, у которых ступень около точки a_s либо больше l_s , либо равна l_s , а плотность больше v_s , либо плотность равна v_s , но нижний тип не меньше A_s , обозначим через $[l_s, v_s, A_s]$.

Теорема 5. Пусть $\{z_j^{(n)}\}\in\bigcup_{s=1}^{p+1}a_s$ — матрица узлов интерполяции, выполнены условия (5) и $\{z_{\tau,j}^{(n)}\}\in[l_{\tau},v_{\tau},A_{\tau}]$ около одной или нескольких точек a_{τ} , $1\leq\tau\leq p+1$. Если функция $f(z)\in A(a_1,a_2,\ldots,a_{p+1})$ такова, что в окрестностях точек a_s , $s\neq\tau$, выполнены достаточные условия равномерной сходимости (2) или (4), а около точек a_{τ} она принадлежит классам $[1,v_{\tau},A_{\tau}(ev_{\tau})^{-1})$ при

 $l_{\tau}=0$ или классам $[l_{\tau}+1,v_{\tau},A_{\tau})$ при $l_{\tau}\geq 1$, то последовательность (1), построенная для функции f(z) по матрице узлов $\{z_{j}^{(n)}\}$, равномерно сходится к f(z) на любом компакте, не содержащем точек $a_{k},\,k=1,2,\ldots,p$.

Доказательство. По условию теоремы достаточные условия равномерной сходимости последовательности (1) около точек a_s $s \neq \tau$, выполнены. Покажем, что условия (4) около точек a_{τ} также выполняются.

Действительно, пусть $s=\tau$. В целях упрощения записи индекс τ в доказательстве теоремы писать не будем. Возьмем $r=u_{n,\lambda_n}$. На основании определения класса [l,v,A] последовательности узлов интерполяции в окрестности рассматриваемой точки для любого $\varepsilon>0$ существует N_1 такое, что при всех $n>N_1$ выполняется неравенство

$$n(u_{n,\lambda_n}) = \lambda_n \ge e_l\{(A - \varepsilon)(u_{n,\lambda_n})^v\}. \tag{11}$$

Пусть l=0. В силу принадлежности функции f(z) классу $\left[1,v,\frac{A}{ev}\right)$ на основании определения этого класса можем утверждать, что $f(z)\in\left[1,v,\frac{A'}{ev}\right)$ при любом положительном A'< A. Следовательно, для того же ε при всех достаточно больших n будет выполняться неравенство

$$\ln M\left(f, \frac{u_{n,\lambda_n}}{\theta}\right) \le \left(\frac{u_{n,\lambda_n}}{\theta}\right)^v \frac{A' + \varepsilon}{ev}, \quad 0 < \theta < 1.$$

Поскольку $N(u_{n,\lambda_n}) \geq 0$, при $\theta = e^{-(1/v)}$ с помощью (11) и последнего неравенства получим, что в окрестности рассматриваемой особой точки a выражение под знаком предела в условии (4) не превосходит

$$\frac{1}{n} \left[\left(\frac{u_{n,\lambda_n}}{\theta} \right)^v \frac{A' + \varepsilon}{ev} - \lambda_n \ln \frac{1}{\theta} \right] = \frac{\lambda_n}{n} \left[\left(\frac{u_{n,\lambda_n}}{\theta} \right)^v \frac{A' + \varepsilon}{ev\lambda_n} - \ln \frac{1}{\theta} \right] \le \frac{\lambda_n}{nv} \left[\frac{A' + \varepsilon}{A - \varepsilon} - 1 \right]. \tag{12}$$

Выберем $\varepsilon < \frac{A-A'}{2}$, тогда $\frac{A'+\varepsilon}{A-\varepsilon} < 1$. Так как $\lim_{n\to\infty} \frac{\lambda_n}{n} = \chi > 0$, предел правой части соотношения (12) при $n\to\infty$ отрицателен. Отсюда следует, что условие равномерной сходимости (4) около рассматриваемой особой точки a выполняелея

Пусть $l \geq 1$. Поскольку $f(z) \in [l+1,v,A)$, по определению этого класса можно утверждать, что $f(z) \in [l+1,v,A']$, где 0 < A' < A. Следовательно, для того же $\varepsilon > 0$, что в соотношении (11), существует N_2 такое, что для всех $n > N_2$ в окрестности точки a имеет место неравенство

$$Migg(f,rac{u_{n,\lambda_n}}{ heta}igg) \leq e_{l+1}igg\{(A'+arepsilon)igg(rac{u_{n,\lambda_n}}{ heta}igg)^vigg\}, \quad 0< heta<1.$$

Используя последнее неравенство, неравенства (11) и $N(u_{n,\lambda_n}) \geq 0$, найдем, что выражение под знаком предела в (4) для всех $n > \max\{N_1,N_2\}$ не превосходит

$$\frac{1}{n} \left[e_l \left\{ \left(\frac{u_{n,\lambda_n}}{\theta} \right)^v (A' + \varepsilon) \right\} - \lambda_n \ln \frac{1}{\theta} \right] = \frac{\lambda_n}{n} \left[e_l \left\{ \left(\frac{u_{n,\lambda_n}}{\theta} \right)^v (A' + \varepsilon) \right\} : \lambda_n - \ln \frac{1}{\theta} \right] \\
= \frac{\lambda_n}{n} \left[\exp \left\{ e_{l-1} \left\{ \left(\frac{u_{n,\lambda_n}}{\theta} \right)^v (A' + \varepsilon) \right\} - e_{l-1} \left\{ (u_{n,\lambda_n})^v (A - \varepsilon) \right\} \right\} - \ln \frac{1}{\theta} \right].$$

Воспользовавшись неравенством (9), заключаем, что правая часть последнего соотношения при $\frac{A'+\varepsilon}{\theta^v(A-\varepsilon)} < 1$ не превосходит

$$\begin{split} \frac{\lambda_n}{n} \left[\exp \left\{ \left(\frac{u_{n,\lambda_n}}{\theta} \right)^v (A' + \varepsilon) - (u_{n,\lambda_n})^v (A - \varepsilon) \right\} - \ln \frac{1}{\theta} \right] \\ &= \frac{\lambda_n}{n} \left[\exp \left\{ (u_{n,\lambda_n})^v (A - \varepsilon) \left[\frac{A' + \varepsilon}{\theta^v (A - \varepsilon)} - 1 \right] \right\} - \ln \frac{1}{\theta} \right]. \end{split}$$

Таким образом, если $\frac{A'+\varepsilon}{\theta^v(A-\varepsilon)} < 1$, то в силу неограниченного возрастания u_{n,λ_n} при $n \to \infty$ предел правой части последнего равенства равен $-\chi \ln \frac{1}{\theta}$, откуда следует, что предел левой части неравенства (4) не превосходит $-\chi \ln \frac{1}{\theta}$.

Неравенство $\frac{A'+\varepsilon}{\theta^v(A-\varepsilon)}<1$ будет выполняться, если, например, положить $\varepsilon\leq \frac{A-A'}{4}$, а $\theta<1$ взять удовлетворяющим неравенству $\frac{3A'+A}{3A+A'}<\theta^v$. Итак, каково бы ни было положительное число A'<A, число θ можно выбрать таким, чтобы в окрестности рассматриваемой особой точки неравенство (4) выполнялось. Поскольку разность A-A' может быть как угодно малой, по определению класса [l+1,v,A) можем утверждать, что если $f(z)\in [l+1,v,A)$, то в окрестности точки a достаточное условие равномерной сходимости (4) выполняется. В первой части доказательства показано, что это утверждение верно при l=0.

Таким образом, достаточные условия (4) равномерной сходимости последовательности (1) к функции f(z) выполняются в окрестностях всех особых точек при любом неотрицательном целом l. Теорема доказана.

Следствие 5. Пусть матрица узлов интерполяции $\left\{z_{j}^{(n)}\right\} \in \bigcup_{s=1}^{p+1} a, \ a=\infty,$ такова, что $\lim_{n \to \infty} \frac{\lambda_{n}^{(0)}}{n} = 0$ и $\left\{z_{j}^{(n)}\right\} \in [l,v,A]$. Если $f(z) \in \left[1,v,\frac{A}{ev}\right)$ при l=0 или $f(z) \in [l+1,v,A)$ при $l \geq 1$, то последовательность интерполяционных полиномов, построенная для функции f(z) по узлам $\left\{z_{j}^{(n)}\right\}$, также равномерно сходится к f(z) на любом компакте.

Справедливость следствия вытекает из теоремы 5.

Заметим, что функции плотности $n_{\tau}(R_n^{(\tau)})$ последовательностей узлов интерполяции из теоремы 1:

$$u_{n,j}^{(\tau)} = u_{n,\lambda^{(\tau)}}^{(\tau)} = A_{\tau} \left(\lambda_n^{(\tau)} \right)^{1/\rho_{\tau}} = R_n^{(\tau)}, \quad j = 1, 2, \dots, \lambda_n^{(\tau)}, \tag{13}$$

около точек a_{τ} равны $\left(R_n^{(\tau)}A_{\tau}^{-1}\right)^{\rho_{\tau}}$.

Плотности последовательностей узлов интерполяции около точек a_{τ} определяются равенствами

$$v_{\tau} = \lim_{R_n^{(\tau)} \to \infty} \frac{\ln n_{\tau} \left(R_n^{(\tau)} \right)}{\ln R_n^{(\tau)}} = \lim_{R_n^{(\tau)} \to \infty} \frac{\rho_{\tau} \ln R_n^{(\tau)} - \rho_{\tau} \ln A_{\tau}}{\ln R_n^{(\tau)}} = \rho_{\tau}.$$

Отсюда следует, что функции плотности $n_{\tau}(R_n^{(\tau)})$ ступени 0. Нижние типы функций плотности последовательностей (13) равны A_{τ}^{-1} , значит, $n_{\tau}(R_n^{(\tau)}) \in [0, \rho_{\tau}, A_{\tau}^{-1}]$ около точки a_{τ} .

Из теоремы 1 вытекает, что интерполяционный процесс равномерно сходится к f(z) на любом компакте, не содержащем точек $a_s, s=1,2,\ldots,p$, если

функция f(z) около точек a_{τ} принадлежит классам $\left[\rho_{\tau}, \left(A_{\tau}^{\rho_{t}} \rho_{\tau} e\right)^{-1}\right)$. По теореме 5 для равномерной сходимости интерполяционного процесса, построенного по узлам (13) около точек a_{τ} , достаточно, чтобы $f(z) \in \left[1, \rho_{\tau}, \left(A_{\tau}^{\rho_{\tau}} \rho_{\tau} e\right)^{-1}\right)$ около точек a_{τ} .

Поскольку определения порядка ρ_s и типа σ_s , данные в начале статьи, совпадают с определениями порядка и типа функции первой ступени, классы равномерной сходимости в теоремах 1 и 5 при указанных узлах интерполяции тождественны. В силу неулучшаемости теоремы 1 теорему 5 при l=0 без дополнительных условий на узлы интерполяции улучшить нельзя.

Так как при любых положительных A_1 и A_2 класс целых функций $[\rho_1, A_1)$ содержится в классе $[\rho_2, A_2)$, где $\rho_1 < \rho_2$, из следствия 5 вытекает вторая часть теоремы IV из [4] (см. [4, гл. II, § 3]).

В самом деле, если порядок целой функции f(z) ступени 1 $\rho < v$, то $[\rho,A_1) \subset [1,v,\frac{A}{ev})$, каково бы ни было число $A_1>0$, значит, последовательность интерполяционных полиномов, построенная по матрице узлов $\{z_j^{(n)}\}\in [0,v,A]$ для функции f(z), равномерно сходится к f(z) в любом конечном круге.

Таким образом, следствие 5 обобщает вторую часть теоремы IV из [4] (см. [4, гл. II, § 3]) на случай треугольной матрицы узлов при более слабых ограничениях, поскольку узлы интерполяции в следствии 5 могут иметь предельные точки в конечной плоскости. Кроме того, следствие 5 обобщает вторую часть теоремы IV из [4] на целые функции любой конечной ступени.

Теорема 5 обобщает вторую часть теоремы IV из [4] на случай треугольной матрицы узлов интерполяции и функции любой конечной ступени с конечным числом особых точек.

Из доказанных теорем можно сделать следующий вывод. Если выполнены условия (5), то чем медленнее узлы интерполяции стремятся к особым точкам функции, тем шире классы равномерной сходимости интерполяционного процесса с помощью дробей (1).

Замечание 3. Пусть для матрицы узлов интерполяции $\{z_j^{(n)}\}$ $\in \bigcup_{s=1}^{p+1} a_s$ выполняются условия (5), $f(z) \in A(a_1, a_2, \ldots, a_{p+1})$. При выполненных условиях каждой из теорем 1–3, 5 верны условия (4) равномерной сходимости последовательности (1) к функции f(z) на любом компакте, не содержащем точек a_k , $k=1,2,\ldots,p$. Может случиться так, что около точек a_s выполняются условия каких-либо двух, трех или всех четырех из указанных выше теорем. Если при этом условия каждой теоремы имеют место около некоторого множества точек из a_s , не имеющего общих элементов с другими множествами, и объединение всех множеств равно a_s , $s=1,2,\ldots,p+1$, то условия (4) будут выполнены около всех особых точек функции f(z). Следовательно, в таком случае можем утверждать, что последовательность (1), построенная для функции f(z) по узлам $\{z_j^{(n)}\}$, равномерно сходится к f(z) на любом компакте, не содержащем точек a_k , $k=1,2,\ldots,p$.

Теорема 6. Пусть $\{z_j^{(n)}\}\in \bigcup_{s=1}^{p+1}a_s$ — матрица узлов интерполяции, выполнены условия (5) и $f(z)\in A(a_1,a_2,\dots,a_{p+1})$. Если существуют последователь-

ности $\{\theta_n^{(s)}\},\ 0<\theta_n^{(s)}<1,\ \varliminf_{n\to\infty}\theta_n^{(s)}>0,\$ такие, что выполняются неравенства

$$\overline{\lim}_{n \to \infty} \left[\left(\ln M_s \left(f, \frac{R_n^{(s)}}{\theta_n^{(s)}} \right) - N_s \left(R_n^{(s)} \right) \right) \left(n_s \left(R_n^{(s)} \right) \right)^{-1} - \ln \frac{1}{\theta_n^{(s)}} \right] < 0, \ s = 1, 2, \dots, p + 1, \tag{14}$$

где $R_n^{(s)}=u_{n,\lambda_n^{(s)}}^{(s)},\ n_s\big(R_n^{(s)}\big)$ — функции плотности узлов интерполяции около точек $a_s,\ N_s\big(R_n^{(s)}\big)$ — функции Неванлинна, то последовательность (1), построенная для функции f(z) по узлам $\{z_j^{(n)}\}$, равномерно сходится к f(z) на любом компакте, не содержащем точек $a_k,\ k=1,2,\ldots,p$.

Доказательство. Поскольку из условий (5) и выбора $R_n^{(s)}$ следует соотношение

$$\lim_{n \to \infty} \frac{\lambda_n^{(s)}}{n} = \lim_{n \to \infty} \frac{n(R_n^{(s)})}{n} = \chi_s > 0,$$

неравенства (14) непосредственно вытекают из условий (4) равномерной сходимости последовательности (1) к функции f(z) на любом компакте, не содержащем точек a_k , $k=1,2,\ldots,p$. Теорема доказана.

Следствие 6. Пусть $\left\{z_{j}^{(n)}\right\}\in\bigcup_{1}^{1}a, a=\infty, -$ матрица узлов интерполяции,

 $\lim_{n \to \infty} \frac{\lambda_n^{(0)}}{n} = 0$. Если существует последовательность $\{\theta_n\}, \, 0 < \theta_n < 1$, такая, что выполняется неравенство

$$\overline{\lim}_{n\to\infty} \left[\left(\ln M \left(f, \frac{R_n}{\theta_n} \right) - N(R_n) \right) (n(R_n))^{-1} - \ln \frac{1}{\theta_n} \right] < 0,$$

где $R_n=u_{n,\lambda_n},\ n(R_n)$ — функция плотности узлов интерполяции, $N(R_n)$ — функция Неванлинна, то последовательность интерполяционных полиномов, построенная для функции f(z) по узлам $\{z_j^{(n)}\}$, равномерно сходится к f(z) на любом компакте.

Доказательство. Из равенства $\lim_{n\to\infty}\frac{\lambda_n^{(0)}}{n}=0$ следует, что

$$\lim_{n\to\infty}\frac{\lambda_n}{n}=\lim_{n\to\infty}\frac{n(R_n)}{n}=1=\chi.$$

В силу того, что $\lambda_n \leq m_n+1$, неравенство (4) имеет место без ограничения $\varliminf_{n\to\infty} \theta_s>0$. Справедливость следствия вытекает из теоремы 6. Следствие доказано.

Ввиду того, что в теореме 6 $\theta_n^{(s)} \in (0,1)$, она улучшает теорему 7 из [2], а следствие 6 улучшает следствие 6 из [2], теорему 1 из [5] (см. также [4, гл. II, § 3, теорема III]), теорему из [8] и теорему V из [4] (см. также [4, гл. II, § 3]), поскольку во всех этих теоремах $\theta \in (0,\frac{1}{2})$. Кроме того, в теореме 1 из [5] и теореме из [8] положено $N(R_n)=0$ независимо от узлов интерполяции. Следствие 6 обобщает указанные выше теоремы на случай треугольной матрицы узлов интерполяции с более слабыми ограничениями на их расположение, так как в следствии 6 узлы могут иметь предельные точки в конечной части плоскости.

ЛИТЕРАТУРА

- Гончаров В. Л. Об интерполировании функций с конечным числом особенностей с помощью рациональных функций // Изв. АН СССР. Сер. мат. 1937. № 2. С. 171–189.
- Липчинский А. Г. Интерполирование аналитических функций с конечным числом особенностей // Сиб. мат. журн. 2012. Т. 53, № 5. С. 1027–1047.
- **3.** Полиа Γ ., Сеге Γ . Задачи и теоремы из анализа: В 2 т. М.: Гостехиздат, 1956. Т. 1.
- **4.** Гельфонд А. О. Исчисление конечных разностей. М.: Наука, 1967.
- **5.** *Ибрагимов И. И., Келдыш М. В.* Об интерполировании целых функций // Мат. сб. 1947. Т. 20. С. 283–292.
- Ибрагимов И. И. Методы интерполяции функций и некоторые их применения. М.: Наука, 1971.
- Гончарова М. К. О некоторых интерполяционных рядах, являющихся обобщением рядов Ньютона и Стирлинга // Уч. зап. Моск. ун-та. 1939. Т. 30. С. 17–48.
- 8. Дворкин Б. С. Интерполяционная проблема Ньютона для целой функции со специальными узлами интерполяции // Тр. Ставроп. пед. ин-та. 1958. № 10. С. 67–75.

Статья поступила 15 апреля 2014 г.

Липчинский Александр Григорьевич Ишимский гос. педагогический институт им. П. П. Ершова, ул. Ленина, 1, Ишим 627750 Тюменской обл.