О ГРУППАХ ПЕРИОДА 12

Д. В. Лыткина, В. Д. Мазуров

Аннотация. Доказывается, что группа периода 12 локально конечна, если конечна любая ее подгруппа, порожденная тремя элементами порядка 3.

 $DOI\,10.17377/smzh.2015.56.310$

Ключевые слова: периодическая группа, период, проблема Бернсайда, локально конечная группа.

К 75-летию Ю. Л. Ершова

В работе рассматриваются группы периода 12. В частности, дается критерий локальной конечности таких групп.

Хорошо известно, что группы периода 4 и группы периода 6 локально конечны [1-4]. Локальная конечность групп периода 12 была доказана при некоторых дополнительных условиях в [1,5-7].

В настоящей работе вопрос о локальной конечности групп периода 12 сводится к вопросу о конечности их подгрупп, порожденных тремя элементами порядка 3. Основным результатом работы является доказательство следующего факта.

Теорема. Группа периода 12 локально конечна тогда и только тогда, когда конечна любая ее подгруппа H, удовлетворяющая одному из следующих условий.

- 1. H порождается элементом a порядка 3 и элементами b и c порядка 2, для которых $(ab)^3 = (bc)^3 = 1$.
- 2. H порождается элементами a и b порядка 3 и элементом c порядка 2, для которых $(ac)^2=1$.

B частности, группа периода 12 локально конечна, если конечна любая ее подгруппа, порожденная тремя элементами порядка 3.

§ 1. Используемые результаты

Лемма 1.1. Пусть A — абелева нормальная подгруппа конечной группы G и $A \leq B \leq G$, где (|A|, |G:B|) = 1. Если B обладает дополнением к A, то G обладает дополнением к A.

Доказательство. Утверждение является частным случаем теоремы Гашютца (см. [8, теорема I.17.4]).

Лемма 1.2. Пусть G — группа c тождественным соотношением $x^{12}=1$ и $a\in G$. Если для любого $g\in G$ подгруппа $\langle a,a^g\rangle$ нильпотентна, то $\langle a^G\rangle$ локально нильпотентна.

Доказательство см. в [7].

Работа первого автора выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 13–01–00505). Работа второго автора выполнена при финансовой поддержке Российского научного фонда (проект № 14–21–00065).

§ 2. Конечные группы

В этом параграфе G означает конечную группу периода 12.

Лемма 2.1. Если $p \in \{2,3\}$, то p-длина G не превосходит двух и эта граница точная.

Доказательство. Указанная оценка 3-длины получена в [9], а 2-длины — в [10].

Естественное полупрямое произведение двумерного векторного пространства V над полем порядка 3 на SL(V) и симметрическая группа степени 4 демонстрируют точность этих оценок.

Лемма 2.2. Пусть 2-длина группы G равна двум. Если 2-длина любой собственной подгруппы группы G меньше двух, то G изоморфна либо S_4 , либо полупрямому произведению нециклической группы порядка A на группу $B = \langle a, x \mid a^3 = x^4 = 1, a^x = a^{-1} \rangle$. B частности, G содержит подгруппу, изоморфную A_4 .

Доказательство проведем от противного. Пусть G — минимальный противоречащий пример. Ясно, что $G=O_{2',2,2',2}(G), |G|>24$ и $|G/O_{2',2,2'}(G)|=2$. Пусть \bar{x} — инволюция из $\bar{G}=G/O_{2',2}(G), \ \bar{u}$ — 3-элемент из \bar{G} , не перестановочный с \bar{x} . Тогда $\bar{a}=\bar{u}^{-1}\bar{u}^{\bar{x}}\neq 1$ и $\bar{a}^{\bar{x}}=\bar{a}^{-1}$. Поскольку $\langle \bar{a},\bar{x}\rangle$ — группа диэдра, в $\langle \bar{a}\rangle$ найдется элемент \bar{b} порядка 3, для которого $\bar{b}^{\bar{x}}=\bar{b}^{-1}$. Не нарушая общности, можно считать, что $\bar{b}=\bar{a}$. В силу минимальности $\bar{G}=\langle \bar{a},\bar{x}\rangle$ и \bar{G} изоморфна S_3 — симметрической группе степени 3.

Если T — силовская 2-подгруппа в $O_{2',2}(G)$, то $G=O_{2'}(G)\cdot N_G(T)$ и 2-длина $N_G(T)$ равна двум. Поэтому $N_G(T)=G$, откуда $O_{2',2}(G)=T\times R$, где R-3-группа. Из минимальности G следует, что R абелева. Поскольку экспонента силовской 3-подгруппы S из G равна трем, R дополняема в S. По лемме 1.1 в G существует дополнение к R и 2-длина этого дополнения равна двум. По условию R=1, т. е. $O_{2',2}(G)=O_2(G)=T$. В частности, силовская 3-подгруппа группы G порождается элементом G0 порядка 3 и G1. Если теперь G1. Нетривиальный 2-элемент из G3, то G4, то G7 и G8 и G7.

Пусть N — минимальная нормальная в G подгруппа, лежащая в T.

Если a не централизует N, то 2-длина $N\langle x,a\rangle$ равна двум и поэтому $G=N\langle x,a\rangle$, т. е. T=N- элементарная абелева 2-группа. Пусть v- нетривиальный элемент в $C_P(x)$, где $P=[N,\langle a\rangle]$. Тогда $u=v\cdot v^a\cdot v^{a^2}$ содержится в $C_P(a)=1$, поэтому $v^{a^2}=(vv^a)^{-1}$. Таким образом, 2-длина $\langle v,v^a\rangle\langle x,a\rangle$ равна двум и $G=\langle v,v^a\rangle\langle x,a\rangle$. Очевидно, x^2 централизует $\langle v,v^a\rangle$, т. е. G изоморфна одной из групп заключения леммы.

Стало быть, a централизует N, и, следовательно, N — подгруппа порядка 2 из центра G. Очевидно, $\overline{G} = G/N$ удовлетворяет условию леммы, поэтому \overline{G} удовлетворяет заключению леммы и, следовательно, $|[T,\langle a\rangle]|\leqslant 8$. Так как $\langle a\rangle$ действует нетривиально на $S=[T,\langle a\rangle]$, либо |S|=4, $G=S\cdot\langle a,x\rangle$ и верно заключение леммы, либо S — группа кватернионов порядка 8. Покажем, что последний случай невозможен.

Действительно, в этом случае существует элемент $t \in S$ порядка 4, для которого $t^x N \neq t N$. Теперь $(xt)^2 = x^2 t^x t$. Элемент $t^x t$ принадлежит $S \setminus \Phi(S)$, тем самым его порядок равен четырем. Так как $\langle a \rangle$ действует неприводимо на $S/\Phi(S)$ и $x^2 \in C_G(a)$, то x^2 централизует S, поэтому $(xt)^4 = (x^2 t^x t)^2 = (t^x t)^2 \neq 1$, что противоречит условию. Лемма доказана.

§ 3. Локально конечные группы

В этом параграфе G означает локально конечную группу периода 12, p — элемент из $\{2,3\}$.

Лемма 3.1. Пусть G обладает нормальным рядом c примарными факторами.

- (1) Если $O_{p'}(G) = 1$, то $C_G(O_p(G)) \le O_p(G)$.
- (2) $C_G(O_{p',p}(G)/O_{p'}(G)) \leq O_{p',p}(G)$.

Доказательство. П. (2) вытекает из п. (1), поэтому пусть $O_{p'}(G)=1$. Положим $K=O_p(G)C_G(O_p(G))$. Тогда K — характеристическая подгруппа в G и $O_p(G)=O_p(K)$. Очевидно, $O_{p'}(K)\leq O_{p'}(G)=1$. Предположим, что $K\neq O_p(G)$. Тогда $M=O_{p,p'}(K)\neq O_p(K)=O_p(G)$. Покажем, что все p'-элементы из M образуют нормальную в G подгруппу, которая по условию обязана быть тривиальной. Понятно, что все p'-элементы из M содержатся в $C_G(O_p(G))$. Пусть x,y-p'-элементы из M и $R=\langle x,y\rangle$. Ясно, что R конечна и $R/(R\cap O_p(G))\simeq RO_p(G)/O_p(G)-p'$ -группа. По теореме Шура $R\cap O_p(G)=1$, т. е. R-p'-группа и xy-p'-элемент. Лемма доказана.

Лемма 3.2. Если $G = O_{p',p}(G)$ и $C_G(O_{p'}(G)) \leq O_{p'}(G)$, то для любого рэлемента $a \in G \setminus O_{p'}(G)$ найдется такой нетривиальный элемент $b \in O_{p'}(G)$, что $\langle a,b \rangle = B\langle a \rangle$, где $B = \langle b^x \mid x \in \langle a \rangle \rangle$ и $\langle a \rangle$ действует нетривиально и неприводимо на B. В частности, $b \in [B, \langle a \rangle]$.

Доказательство. По условию в $O_{p'}(G)$ найдется элемент b, для которого $[a,b] \neq 1$. Выберем его так, чтобы подгруппа $\langle a,b \rangle$ имела наименьший возможный порядок. Понятно, что $B = \langle b^x \mid x \in \langle a \rangle \rangle$ является примарной группой, на которой $\langle a \rangle$ действует нетривиально. Если $\langle a \rangle$ действует приводимо на $B/\Phi(B)$, то по теореме Машке в $B/\Phi(B)$ есть $\langle a \rangle$ -инвариантная собственная подгруппа $B_1/\Phi(B)$, на которой $\langle a \rangle$ действует нетривиально. Если b_1 — элемент из B_1 , не перестановочный с a, то $|\langle a,b_1 \rangle| < |\langle a,b \rangle|$, что противоречит выбору b. Поэтому $B\langle a \rangle$ — искомая подгруппа.

Лемма 3.3. Если G обладает нормальным рядом, факторы которого примарны, то $G = O_{p',p,p',p,p'}(G)$.

Доказательство. Предположим противное. Обозначим

$$N_0 = O_{p'}(G), \quad P_1 = O_{p',p}(G), \quad N_1 = O_{p',p,p'}(G),$$

$$P_2 = O_{p',p,p',p}(G), \quad N_2 = O_{p',p,p',p,p'}(G), \quad P_3 = O_{p',p,p',p,p',p}(G).$$

По условию $P_1 \neq N_1 \neq P_2 \neq N_2 \neq P_3$. По лемме 3.1 $C_{P_3}(N_2/P_2) \leq N_2$. Пусть \bar{a}_3 — нетривиальный p-элемент из P_3/N_2 . По лемме 3.2 существует такой p'-элемент \bar{b}_2 в N_2/P_2 , что $\langle \bar{a}_3 \rangle$ действует нетривиально и неприводимо на $\overline{B}_2/\Phi(\overline{B}_2)$, где $\overline{B}_2 = \langle \bar{b}_2^x \mid x \in \langle \bar{a}_3 \rangle \rangle$. Пусть $b_2 - p'$ -элемент из N_2 , для которого $b_2P_2 = \bar{b}_2$.

Поскольку по лемме 3.1 $C_{N_2}(P_2/N_1) \leq P_2$, найдется такой p-элемент \bar{a}_2 в P_2/N_1 , что b_2N_1 действует нетривиально и неприводимо на $\overline{A}_2/\Phi(\overline{A}_2)$, где $\overline{A}_2 = \langle \bar{a}_2^x \mid x \in \langle b_2N_1 \rangle \rangle$. Пусть $a_2 - p$ -элемент из P_2 , для которого $a_2N_1 = \bar{a}_2$.

Пусть b_1 и a_1 — примарные элементы из $N_1 \setminus P_1$ и $P_1 \setminus N_0$ с аналогичными свойствами, $F = \langle a_1, b_1, a_2, b_2, a_3 \rangle$. Подгруппа F конечна и поэтому разрешима. Так как $N_1 \cap F \leq O_{p',p}(F)$, то $a_1 \in O_{p',p}(F)$. Аналогично $b_1 \in O_{p',p,p'}(F)$, ..., $a_3 \in O_{p',p,p',p,p',p}(F)$.

По определению элементов a_1 и b_1 имеем $a_1 \in \left[\left\langle a_1^x \mid x \in \left\langle b_1 \right\rangle\right\rangle, \left\langle b_1 \right\rangle\right] N_0$. Если $b_1 \in O_{p'}(F)$, то $a_1 \in O_{p'}(F)N_0$. Поскольку $a_1 - p$ -элемент, $a_1 = 1$, что неверно. Поэтому $b_1 \notin O_{p'}(F)$. Так как $b_1 - p'$ -элемент, то $b_1 \notin O_{p',p}(F)$. Если $a_2 \in O_{p',p,p'}(F)$, то $a_2 \in O_{p',p}(F)$ и $b_1 \in \left[\left\langle b_1^x \mid x \in \left\langle a_2 \right\rangle\right\rangle, \left\langle a_2 \right\rangle\right] P_1$, откуда $b_1 \in O_{p',p}(F)(P_1 \cap F) \leq O_{p',p}(F)$, что неверно. Поэтому $a_2 \notin O_{p',p,p'}(F)$. Точно так же $b_2 \notin O_{p',p,p',p}(F)$ и $a_3 \notin O_{p',p,p',p,p'}(F)$. По лемме 2.1 это невозможно. Лемма доказана.

Лемма 3.4. Если в G любая нетривиальная нормальная подгруппа непримарна, то для любого p-элемента $a \in G$ существует конечная подгруппа $F \leq G$, обладающая следующими свойствами:

- (1) $F = \langle a^x \mid x \in F \rangle$;
- (2) $O_{p',p}(F) \neq F$.

Доказательство. По лемме 1.2 существует такой $x \in G$, что $K = \langle a, a^x \rangle$ не является p-группой. Выберем x так, чтобы порядок K был наименьшим. Если $\langle a, a^k \rangle$ является p-группой для любого $k \in K$, то по лемме 1.2 $N = \langle a^k \mid k \in K \rangle$ — нормальная в K p-подгруппа. Но тогда $K = N \langle a^x \rangle - p$ -подгруппа вопреки выбору x. Поэтому можно считать, что $x \in K$. Если $O_{p',p}(K) \neq K$, то F = K удовлетворяет заключению леммы.

Пусть $O_{p',p}(K)=K$. Тогда a не централизует $Q=O_{p'}(K)$ и в силу минимальности порядка $K=Q\cdot\langle a\rangle$. Кроме того, $\langle a\rangle$ действует неприводимо на $Q/\Phi(Q)$, и $Q=\langle b^y\mid y\in\langle a\rangle\rangle$ для некоторого p'-элемента b. По лемме 1.2 существует $x\in G$, для которого $U=\langle b,b^z\rangle$ не является p'-группой. Так же, как и выше, можно считать, что $z\in U$. Пусть $F=\langle U,K\rangle$. Покажем, что F — искомая подгруппа.

Так как $b^z \in K^z$, то F порождается p-элементами a, a^x, a^z, a^{xz} , где $x, z, xz \in F$. Предположим, что $O_{p',p}(F) = F$. Тогда $b, b^z \in O_{p'}(F)$, т. е. $\langle b, b^z \rangle - p'$ -группа; противоречие. Лемма доказана.

Теорема 1. Если G — локально конечная группа периода 12, то

$$G = O_{2,3,2,3,2}(G) = O_{3,2,3,2,3}(G).$$

Доказательство. Предположим противное. По лемме 3.3 группа

$$G/(O_{2,3,2,3,2}(G) \cdot O_{3,2,3,2,3}(G))$$

не содержит примарных нормальных подгрупп, поэтому, не нарушая общности, можно считать, что сама G не содержит таких подгрупп. По предположению $G \neq 1$ и G не примарна.

Пусть $p \in \{2,3\}$. Если H — конечная подгруппа из G, то положим $N_0(H)=O_{p'}(H),\ P_1(H)=O_{p',p}(H),\ N_1(H)=O_{p',p,p'}(H),\ P_2(H)=O_{p',p,p',p}(H).$

Пусть a_2 — нетривиальный p-элемент из G. По лемме 3.4 существует конечная подгруппа K, для которой $K = \left\langle a_2^K \right\rangle$ и $a_2 \not\in P_1(K)$. Пусть при этом порядок K наименьший. По лемме 2.1 $K = P_2(K)$. По лемме 3.1 $C_{\overline{K}}(O_{p'}(\overline{K})) \leq O_{p'}(\overline{K})$, где $\overline{K} = K/P_1(K)$. По лемме 3.2 найдется такой p'-элемент $b_1 \in N_1(K) \setminus P_1(K)$, что $b_1 \in \left[\left\langle b_1^x \mid x \in \langle a_2 \rangle \right\rangle, \langle a_2 \rangle\right] P_1(K)$, и аналогично найдется такой p-элемент $a_1 \in P_1(K)$, что $a_1 \in \left[\left\langle a_1^y \mid y \in \langle b_1 \rangle \right\rangle, \langle b_1 \rangle\right] N_0(K)$.

Пусть P — силовская p-подгруппа из K, содержащая a_2 , и $P_0 = N_1(K) \cap P$. Тогда P_0 — силовская p-подгруппа в $P_1(K)$ и по замечанию Фраттини $K = N_0(K)N_K(P_0)$. В силу выбора K выполняется равенство $K = N_K(P_0)$, поэтому

 $P_1(K)=N_0(K) imes P$, т. е. все p-элементы из $P_1(K)$ содержатся в P_0 и $P_0 \triangleleft K$. Отсюда

$$a_1 \in \left[\left\langle a_1^y \mid y \in \left\langle b_1 \right\rangle \right\rangle, \left\langle b_1 \right\rangle \right].$$
 (1)

По лемме 3.4 существует конечная подгруппа L, для которой $L = \langle a_1^L \rangle$ и $a_1 \not\in P_1(L)$. Если $H = \langle K, L \rangle$, то $P_1(H) \cap L \leq P_1(L)$, поэтому $a_1 \not\in P_1(H)$. Поскольку K, L порождаются p-элементами, $H = P_2(H)$, то $b_1 \in N_1(H)$. По (1) $a_1 \in N_1(H)$. Так как $a_1 - p$ -элемент, $a_1 \in P_1(H)$; противоречие. Теорема доказана.

§ 4. Критерий локальной конечности

Теорема 2. Пусть G — группа периода 12.

- 1. G локально конечна тогда и только тогда, когда конечна каждая ее подгруппа H, для которой выполнено любое из следующих условий:
- (a) H порождается элементом a порядка 3 и элементами b, c порядка 2, для которых $(ab)^3 = (bc)^3 = 1$;
- (b) H порождается элементами a и b порядка 3 и элементом c порядка 2, для которых $(ac)^2=1$.
- 2. Группа G локально конечна, если конечна любая ее подгруппа, порожденная тремя элементами порядка 3.

Доказательство. 1. Необходимость очевидна. Докажем достаточность от противного. Поскольку $N = O_{3,2,3,2,3}(G) \cdot O_{2,3,2,3,2}(G)$ — локально конечная группа, по теореме $1 \ G/N$ не содержит нетривиальных примарных нормальных подгрупп, поэтому, не нарушая общности, можно предполагать, что сама G не содержит таких подгрупп.

Предположим вначале, что G содержит подгруппу A, изоморфную A_4 . Тогда $A=\langle a,b\rangle$, где a— элемент порядка 3,b— элемент порядка 2 и $(ab)^3=1$. Так как $b\not\in O_2(G)$, по лемме 1.2 существует сопряженная c b инволюция c, для которой $\langle b,c\rangle$ не является 2-группой, иными словами, порядок bc делится на 3. Не нарушая общности, c можно выбрать так, чтобы порядок bc был равен трем. По условию $H=\langle a,b,c\rangle$ — конечная подгруппа. По лемме 1.2 $b\in O_2(H)$. Так как c сопряжена c b, то $c\in O_2(H)$ и $bc\in O_2(H)$, что невозможно. Таким образом, G не содержит подгрупп, изоморфных A_4 .

Пусть c — инволюция в G. По лемме 1.2 существует такой $g \in G$, что $\langle c, c^g \rangle$ не является 2-группой. Поэтому можно считать, что порядок элемента $a = cc^g$ равен трем. По лемме 2.1 найдется такой $x \in G$, что $\langle a, a^x \rangle$ не является 3-группой. Положим $b = a^x$.

Так как $a^c=a^{-1}$, подгруппа $U=\langle a,b,b^c\rangle$ c-инвариантна. По условию она конечна. Если 2-длина U равна 2, то по лемме 2.2 U содержит подгруппу, изоморфную A_4 , что по условию неверно. Поэтому 2-длина U равна единице. Поскольку $\langle a,b\rangle$ не является 3-группой, $a\not\in O_3(U)$. Так как [a,c]=a, то $c\not\in O_{3,2}(U)$, тем самым 2-длина $U\langle c\rangle$ равна двум, что, как и выше, невозможно.

2. Если H — подгруппа из G типа (a), то она, очевидно, порождается тремя элементами порядка 3 и поэтому конечна. Пусть $H = \langle a,b,c \rangle$ — подгруппа типа (b). Тогда $\langle a,b,b^c \rangle$ — конечная c-инвариантная подгруппа, поэтому $H = \langle a,b,b^c \rangle \langle c \rangle$ также конечна. Теперь п. 2 вытекает из п. 1. Теорема доказана.

§ 5. Заключительное замечание

Если группа периода 12 содержит подгруппу, изоморфную A_4 , то она содержит и подгруппу типа (а) из условия теоремы 2. В общем случае ее строение

описывается следующим образом.

Теорема 3. Пусть G — группа периода 12, порожденная элементом a порядка 3 и инволюциями b, c, для которых $(ab)^3 = (bc)^3 = 1$. Тогда G — полупрямое произведение подгруппы $H = \langle (bc)^G \rangle$, совпадающей со своим коммутантом, и группы $A = \langle a, b \rangle$, изоморфной A_4 . Подгруппа H порождается элементами $x_1 = bc$, $x_2 = x_1^a$, $x_3 = x_2^a$, $x_4 = x_2^b$, $x_5 = x_3^b$, $x_6 = x_5^a$, и действие A на H определяется следующими равенствами:

$$x_1^a = x_2, \quad x_2^a = x_3, \quad x_3^a = x_1, \quad x_4^a = x_5^{-1}, \quad x_5^a = x_6, \quad x_6^a = x_4;$$
 (2)

$$x_1^b = x_1^{-1}, \quad x_2^b = x_4, \quad x_3^b = x_5, \quad x_4^b = x_2, \quad x_5^b = x_3, \quad x_6^b = x_6^{-1}.$$
 (3)

Доказательство. Вычисления в GAP [11] показывают, что в группе

$$K = \langle a, b, c \mid 1 = a^3 = b^2 = c^2 = (ab)^3 = (bc)^3 = (ac)^{12} = (abc)^{12} \rangle$$

подгруппа $H = \langle (bc)^K \rangle$ совпадает со своим коммутантом и $K/H \simeq A_4$. Очевидно, группа G является гомоморфным образом группы K, и ядро соответствующего гомоморфизма содержится в H. Равенство $x_1^b = x_1^{-1}$ вытекает из того, что b и c — инволюции и $x_1 = bc$. Остальные равенства из (2) и (3) вытекают из определения элементов x_i , $i = 1, \ldots, 6$, и определяющих соотношений группы A.

ЛИТЕРАТУРА

- Санов И. Н. Решение проблемы Бернсайда для показателя 4 // Уч. зап. Ленингр. гос. ун-та. Сер. мат. 1940. Т. 55. С. 166–170.
- Hall M. Solution of the Burnside problem for exponent six // Illinois J. Math. 1958. V. 2, N 4. P. 764-786.
- Newman M. F. Groups of exponent six // Computational group theory (Durham, 1982). London: Acad. Press, 1984. P. 39–41.
- **4.** Лысёнок И. Г. Доказательство теоремы М. Холла о конечности групп B(m,6) // Мат. заметки. 1987. Т. 41, № 3. С. 422–428.
- Мамонтов А. С. Группы периода 12 без элементов порядка 12 // Сиб. мат. журн. 2013. Т. 54, № 1. С. 150–156.
- Лыткина Д. В., Мазуров В. Д., Мамонтов А. С. Локальная конечность некоторых групп периода 12 // Сиб. мат. журн. 2012. Т. 53, № 6. С. 1373–1378.
- Мазуров В. Д., Мамонтов А. С. Инволюции в группах периода 12 // Алгебра и логика. 2013. Т. 52, № 1. С. 92–98.
- 8. Huppert B. Endliche Gruppen. I. Berlin, Heidelberg, New York: Springer Verl., 1979.
- 9. Hall P., Higman G. On the p-length of p-soluble groups and reduction theorems for Burnside's problem // Proc. London Math. Soc. 1956. V. 6, N 3. P. 1–42.
- **10.** *Брюханова Е.* Г. О 2-длине и 2-периоде конечной разрешимой группы // Алгебра и логика. 1979. Т. 18, № 1. С. 5–20.
- 11. GAP: Groups, algorithms, and programming. http://www/gap-system.org.

Cтатья поступила 9 февраля 2015 г.

Лыткина Дарья Викторовна

Сибирский гос. университет телекоммуникаций и информатики,

ул. Кирова, 86, Новосибирск 630102;

Новосибирский гос. университет,

ул. Пирогова, 2, Новосибирск 630090

daria.lytkin@gmail.com

Мазуров Виктор Данилович

Институт математики им. С. Л. Соболева СО РАН,

пр. Академика Коптюга, 4, Новосибирск 630090;

Новосибирский гос. университет,

ул. Пирогова, 2, Новосибирск 630090

mazurov@math.nsc.ru