ИНТЕРПОЛЯЦИЯ НАД МИНИМАЛЬНОЙ ЛОГИКОЙ И ИНТЕРВАЛЫ ОДИНЦОВА

Л. Л. Максимова, В. Ф. Юн

Аннотация. Исследуется интерполяционное свойство Крейга СІР в расширениях минимальной логики Йохансона. Рассматривается классификация Ј-логик, предложенная С. П. Одинцовым, в соответствии с их интуиционистскими и негативными напарниками. При этом все логики разбиваются на интервалы. Доказано, что нижний конец интервала имеет СІР тогда и только тогда, когда оба его напарника имеют СІР. Также показана узнаваемость нижних и верхних концов, которые имеют СІР, и найдена их семантическая характеризация.

 $DOI\,10.17377/smzh.2015.56.311$

Ключевые слова: минимальная логика Йохансона, интерполяционное свойство Крейга, узнаваемость, интервалы Одинцова.

К юбилею Юрия Леонидовича Ершова

1. Введение

Статья посвящена проблеме интерполяции в расширениях минимальной логики J Йохансона [1].

В [2] доказано, что существует точно семь непротиворечивых суперинтуиционистских логик с интерполяционным свойством Крейга СІР [3]. Там получено описание всех этих логик. Все позитивные логики с интерполяционным свойством описаны в [4], а негативные логики — в [5], где также было начато исследование указанного свойства в паранепротиворечивых расширениях минимальной логики Йохансона J, в частности, описаны все позитивно аксиоматизируемые J-логики с СІР. В [6] найдены критерии для установления или опровержения интерполяционного свойства и проективного свойства Бета РВР в некоторых логиках специального вида, расширяющих J.

Свойства СІР и РВР, а также ограниченное интерполяционное свойство IPR разрешимы на классах суперинтуиционистских, позитивных, негативных и стройных логик [2,7-10].

В [11] доказана разрешимость слабого интерполяционного свойства WIP над логикой J. Однако более сильные свойства CIP, IPR и PBP оказались более сложными и их исследование еще далеко от завершения.

Разрешимость CIP над интуиционистской логикой Int основывалась на двух фактах: существует лишь конечное число суперинтуиционистских логик с CIP,

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 12–01–00168а) и Совета по грантам президента РФ и государственной поддержке ведущих научных школ (код проекта НШ–860.2014.1).

и все они узнаваемы над Int [2]. Мы не знаем, конечно или бесконечно число J-логик с CIP и все ли они узнаваемы над J.

В [9] найдены все стройные логики с СІР, в [12,13] доказано СІР для ряда других важных логик.

С. П. Одинцов [14] предложил классификацию Ј-логик в соответствии с их интуиционистскими и негативными напарниками, при этом все логики разбиваются на интервалы. В [15] доказано, что верхний конец интервала имеет СІР тогда и только тогда, когда оба его напарника имеют СІР. В этой статье мы покажем, что такой же результат верен для нижних концов интервалов. Также покажем узнаваемость всех концов, которые имеют СІР, и найдем их семантическую характеризацию.

Для доказательства CIP используем семантические методы, разработанные в [12], а также предложим новые конструкции. Более подробно рассматриваются логики, удовлетворяющие некоторым условиям линейности.

В разд. 2 приводятся необходимые определения и предварительные сведения, а также доказана узнаваемость над J всех концов интервалов, определяемых суперинтуиционистскими и негативными логиками с СІР (предложение 2.5). В разд. 3 доказана семантическая полнота рассматриваемых логик. В разд. 4 приведены общие теоремы, лежащие в основе доказательства интерполяционного свойства с помощью специально подобранных классов моделей. В разд. 5, 6 и 8 приводятся конструкции, используемые для доказательства СІР в логике так называемых Q-линейных моделей (разд. 7) и тех логиках, интуиционистским напарником которых является известная логика LC (разд. 9). Эти результаты являются частью основного результата, доказанного в последнем разд. 10 (теорема 10.3).

2. Предварительные сведения

Язык логики J содержит в качестве исходных связок &, \vee , \rightarrow , \perp , \top , отрицание определяется как сокращение: $\neg A = A \rightarrow \bot$, $(A \leftrightarrow B) = (A \rightarrow B) \& (B \rightarrow A)$. Формула называется *позитивной*, если она не содержит вхождений константы \bot . Логика J может быть задана исчислением, которое имеет те же самые схемы аксиом, что и позитивное интуиционистское исчисление Int^+ , и единственное правило вывода модус поненс: $A, A \rightarrow B / B$.

Под Ј-*логикой* понимаем любое множество формул, содержащее все аксиомы исчисления Ј и замкнутое относительно модус поненс и правила подстановки. Обозначаем

Int =
$$J + (\bot \rightarrow p)$$
, Neg = $J + \bot$, For = $J + p$.

Логика называется нетривиальной, если она не совпадает с множеством всех формул For. Суперинтуиционистской логикой (с.и.л.) называется Ј-логика, содержащая интуиционистскую логику Int, а негативной — Ј-логика, содержащая логику Neg. Для любой Ј-логики L обозначаем через E(L) семейство всех Ј-логик, содержащих L.

Для любой L определяются ее интуиционистский и негативный напарники [14, 16]:

$$L_{
m int} = L + (ot \rightarrow p), \quad L_{
m neg} = L + ot.$$

Пусть L_1 — с.и.л., L_2 — негативная логика,

$$[L_1; L_2] = \{L \mid L_{\text{int}} = L_1, \ L_{\text{neg}} = L_2\}.$$

$$L_1 * L_2 = J + \{I(A) \mid A \in L_1\} + \{\bot \to B \mid B \in L_2\},\$$

I(A) — результат подстановки в A формулы $p_k \lor \bot$ вместо каждой переменной p_k .

Теорема 2.1 [14]. Для любых с.и.л. L_1 и негативной L_2 множество $[L_1; L_2]$ образует интервал c нижним концом $L_1 * L_2$ и верхним концом $L_1 \cap L_2$.

При этом для аксиоматизации логики L_1*L_2 достаточно использовать лишь аксиомы логик L_1, L_2 . Заметим, что

$$L_1 * For = L_1$$
, $For *L_2 = L_2$

и соответствующие интервалы одноэлементны.

Пусть L — логика, T — множество формул, A — формула. Пишем $T \vdash_L A$, если A выводима из $L \cup T$ с помощью правила модус поненс.

Если \mathbf{p} — список переменных, то через $A(\mathbf{p})$ обозначаем формулу, все переменные которой входят в \mathbf{p} , а через $\mathcal{F}(\mathbf{p})$ — множество всех таких формул. Интерполяционное свойство Крейга СІР определяется следующим образом (где списки \mathbf{p} , \mathbf{q} , \mathbf{r} попарно не пересекаются).

СІР. Если $\vdash_L A(\mathbf{p}, \mathbf{q}) \to B(\mathbf{p}, \mathbf{r})$, то существует такая формула $C(\mathbf{p})$, что $\vdash_L A(\mathbf{p}, \mathbf{q}) \to C(\mathbf{p})$ и $\vdash_L C(\mathbf{p}) \to B(\mathbf{p}, \mathbf{r})$.

Теорема 2.2 [15]. 1. Если Ј-логика имеет СІР, то ее негативный и интуиционистский напарники имеют СІР.

2. Для любых с.и.л. L_1 и негативной L_2 логика $L_1 \cap L_2$ имеет СІР тогда и только тогда, когда обе L_1 и L_2 имеют СІР.

Конечно аксиоматизируемая логика $L_1\supseteq L_0$ узнаваема над L_0 , если и только если существует алгоритм, который по любой формуле A узнает, верно ли равенство $L_0+A=L_1$.

Теорема 2.3 [2]. Существуют точно семь нетривиальных с.и.л. со свойством СІР, и все они узнаваемы над Int:

- 1) Int;
- 2) KC = Int +($\neg p \lor \neg \neg p$);
- 3) LC = Int +($(p \rightarrow q) \lor (q \rightarrow p)$);
- 4) LP₂ = Int +($p \lor (p \rightarrow (q \lor \neg q))$);
- 5) LV = LP₂ + $((p \rightarrow q) \lor (q \rightarrow p) \lor (p \leftrightarrow \neg q));$
- 6) LS = LP₂ + $(\neg p \lor \neg \neg p)$;
- 7) Cl = Int + $(p \lor \neg p)$.

Теорема 2.4 [5]. Существуют точно три нетривиальные негативные логики со свойством СІР, и все они узнаваемы над Neg:

- 1) Neg
- 2) NC = Neg+($(p \rightarrow q) \lor (q \rightarrow p)$);
- 3) NE = Neg + $(p \lor (p \rightarrow q))$.

Разумеется, логика For тоже имеет CIP. Ее узнаваемость над J показана в [17]. Из теорем 2.2–2.4 следует, что не более 32 интервалов вида $[L_1, L_2]$ могут содержать логики с CIP, причем верхние концы этих интервалов действительно имеют CIP.

Покажем узнаваемость концов интервалов для логик с CIP.

Предложение 2.5. Для любых с.и.л. L_1 и негативной L_2 с CIP логики $L_1 \cap L_2$ и $L_1 * L_2$ узнаваемы над J.

Доказательство. По теоремам 2.3 и 2.4 все с.и. и негативные логики узнаваемы над Int и Neg соответственно. По теореме 2.2 логики $L_1 \cap L_2$ имеют СІР. Очевидно, что они содержат логику $JX = J + ((\bot \to p) \lor (p \to \bot))$. В [17] показано, что все такие логики узнаваемы над J.

Суперинтуиционистские и негативные логики с СІР аксиоматизируемы формулами без отрицательных вхождений дизъюнкции. Поэтому логики $L_1 * L_2$ финитно аппроксимируемы (см. следствие 4.5 из [9]). Далее, ввиду теоремы 2.1

$$J+A \supseteq L_1 * L_2 \iff (Int +A \supseteq L_1 \text{ и Neg} +A \supseteq L_2).$$

Из узнаваемости L_1 и L_2 следует узнаваемость L_1*L_2 . \square

Рассмотрим нижние концы интервалов, где логики L_1, L_2 имеют СІР. Если одна из логик тривиальна, то L_1*L_2 совпадает с другой логикой, а значит, имеет СІР. Остается 21 интервал, где обе логики нетривиальны. Для некоторых из них СІР уже было установлено.

Предложение 2.6 [6,12]. Следующие логики имеют CIP: J=Int*Neg, JK=KC*Neg, $JE_{Q}^{Q}=Int*NE$, KC*NE, Cl*Neg, Cl*NC, Cl*NE.

В следующих разделах рассмотрим проблему интерполяции в нижних концах остальных интервалов для нетривиальных L_1, L_2 .

3. Семантика

В [18] доказана теорема о полноте логики J и некоторых ее расширений относительно семантики типа Крипке. В [12] была предложена некоторая модификация этой семантики, удобная для наших целей.

Подмножество X частично упорядоченного множества W называем κ ону-cом, если оно удовлетворяет условию

$$x \in X, \ x \le y \Rightarrow y \in X.$$

Под Ј-*шкалой* (или просто *шкалой*) понимаем тройку $\mathbf{W} = (W, \leq, Q)$, где W — непустое множество, частично упорядоченное отношением \leq и имеющее наибольший элемент ∞ , Q — конус множества W, содержащий ∞ .

Моделью языка \mathscr{L} называется четверка $M=(W,\leq,Q,\models)$, где (W,\leq,Q) — шкала, \models — отношение между элементами множества W и формулами языка \mathscr{L} , удовлетворяющее условиям:

- (1) $x \models p, x \leq y \Rightarrow y \models p$ для любой переменной p языка \mathcal{L} ;
- $(2) \infty \models p$ для любой переменной p языка \mathscr{L} ;
- (3) $x \models \bot \iff x \in Q$;
- (4) $x \models (A \& B) \iff (x \models A \bowtie x \models B);$
- $(5) \ x \models (A \lor B) \iff (x \models A$ или $x \models B);$
- (6) $x \models (A \rightarrow B) \iff (\forall y)(x \le y \Rightarrow (y \models A \Rightarrow y \models B)).$

Лемма 3.1. Для любой модели M языка \mathscr{L}

- $(1) \infty \models A$ для любой формулы A языка \mathscr{L} ;
- (2) $x \models A, x \leq y \Rightarrow y \models A$ для любой формулы A языка \mathscr{L} .

Доказательство проводится индукцией по длине формулы.

Модель (или шкала) называется *инициальной*, если имеет наименьший элемент. Если x есть элемент шкалы W, через W^x обозначаем шкалу $\{y \mid x \leq y\}$

с индуцированным порядком; через M^x обозначаем ограничение модели M на шкалу W^x .

Формула A называется ucmunhoй, или oбщезначимой, e modenu M, если $x \models A$ для любого $x \in M$.

Пусть $L \in E(J)$. Модель M языка $\mathscr L$ называется L-моделью, если $x \models A$ для любого $x \in M$ и любой формулы A языка $\mathscr L$, выводимой в L.

Определим понятие канонической модели M_L языка \mathscr{L} . Множество T формул языка \mathscr{L} называется L-теорией языка \mathscr{L} , если оно содержит $L \cap \mathscr{L}$ и замкнуто относительно правила модус поненс; L-теория T называется npocmoй, если удовлетворяет условию: $(A \vee B) \in T \Rightarrow (A \in T \text{ или } B \in T)$ для любых формул A, B. В частности, множество $F(\mathscr{L})$ всех формул языка \mathscr{L} является простой L-теорией языка \mathscr{L} .

В дальнейшем нам потребуется следующая простая

Лемма 3.2. Пусть T — множество формул языка \mathscr{L} . Тогда T является L-теорией языка \mathscr{L} в том и только в том случае, если T содержит $L \cap \mathscr{L}$, замкнуто относительно взятия конъюнкции формул и для всех формул A, B языка \mathscr{L} удовлетворяет условию

$$A \vdash_L B \Rightarrow (A \in T \Rightarrow B \in T).$$

Kаноническая модель M_L языка $\mathscr L$ строится следующим образом. Обозначим через W_L множество всех простых L-теорий языка $\mathscr L$, где \leq_L — отношение теоретико-множественного включения, $Q_L = \{T \in W_L \mid \bot \in T\}$. Полагаем

$$M_L = (W_L, \leq_L, Q_L, \models_L),$$

где для любой $T \in W_L$ и любой переменной p

$$T \models_L p \iff p \in T$$
.

Отметим, что $F(\mathcal{L})$ является наибольшим элементом шкалы W_L .

Определение канонической модели введено Сегербергом [18]. Оно отличается от нашего определения тем, что теория $F(\mathcal{L})$ не включалась в W_L . Следующие теоремы, доказанные Сегербергом [18], справедливы и для моделей, рассматриваемых в этой статье.

Теорема 3.3 (о канонической модели). Для любых Ј-логики L и языка $\mathcal L$ каноническая модель M_L языка $\mathcal L$ является L-моделью. Более того, для любой теории T из M_L и любой формулы A языка $\mathcal L$

$$T \models A \iff A \in T$$
.

Отсюда сразу вытекает

Теорема 3.4 (о полноте). Для любой формулы A языка $\mathcal L$ и любой Ј-логики L следующие условия эквивалентны:

- 1) A выводима в L;
- 2) A общезначима во всех L-моделях языка \mathscr{L} .

Рассмотрим следующие условия на J-модели, точнее, на J-шкалы.

- (КСF) Множество W-Q пусто или имеет наибольший элемент.
- (LCF) Множество W Q линейно упорядочено.
- (LP_2F) Длины цепей в W-Q не превосходят 2.
- (LVF) (LP₂F) и $W^x Q$ содержит не более двух максимальных элементов.
- (LSF) (LP₂F) и (KCF).
- (NCF) Для $x \in Q$ множество Q^x линейно упорядочено.
- (NEF) Все элементы множества $Q \{\infty\}$ попарно не сравнимы.

Лемма 3.5. Для любой Ј-логики L

- 1. Пусть $L_1 \in \{KC, LC, LP_2, LV, LS\}$. Если $L_{int} \supseteq L_1$, то инициальные конусы всех канонических моделей логики L удовлетворяют условию (L_1F) .
- 2. Пусть $L_2 \in \{NC, NE\}$. Если $L_{neg} \supseteq L_2$, то инициальные конусы всех канонических моделей логики L удовлетворяют условию (L_2F) .

Доказательство. Для $L_1=\mathrm{KC}$ и $L_2=\mathrm{NE}$ утверждение доказано в [12] (см. предложение 2.5). Для $L_1=\mathrm{LC}$ и $L_2=\mathrm{NC}$ утверждение доказано Сегербергом [18]. Для остальных логик доказывается аналогично. \square

Пусть (IntF) и (NegF) — тождественно истинные условия. Имеет место

Теорема 3.6. Пусть $L_1 \in \{\text{Int}, \text{KC}, \text{LC}, \text{LP}_2, \text{LV}, \text{LS}\}, L_2 \in \{\text{Neg}, \text{NC}, \text{NE}\}.$ Тогда логика $L_1 * L_2$ полна относительно класса шкал, удовлетворяющих условиям (L_1F) и (L_2F) .

ДОКАЗАТЕЛЬСТВО. Если модель удовлетворяет условиям (L_1F) и (L_2F) , то в ней общезначимы все аксиомы логики L_1*L_2 . С другой стороны, по лемме 3.5 инициальные конусы всех канонических моделей логики L удовлетворяют условиям (L_1F) и (L_2F) . \square

4. Достаточные условия интерполяции

Для доказательства CIP применим метод из [12].

В [12] доказана теорема, дающая достаточное условие для CIP в J-логиках. Сначала приведем определения.

Даны шкалы $W_1, W_0.$ Отображение θ из W_1 на W_0 называется p-морфизмом шкал, если удовлетворяет условиям

- (p1) $x, y \in W_1, x \leq_1 y \Rightarrow \theta(x) \leq_0 \theta(y)$;
- $(\mathbf{p2})\ x \in W_1, y \in W_0, \theta(x) \leq_0 y \Rightarrow (\exists z \in W_1)(x \leq_1 z \land \theta(z) = y);$
- (p3) $x \in Q_1 \iff \theta(x) \in Q_0$.

Из (p1) следует, что для любого p-морфизма θ из W_1 на W_0 выполнены условия: $\theta(\infty_1)=\infty_0$, и если W_1 — инициальная шкала с наименьшим элементом a, то $\theta(a)$ — наименьший элемент в W_0 .

Даны модели M_1 языка \mathcal{L}_1 и M_0 языка \mathcal{L}_0 , содержащегося в языке \mathcal{L}_1 . Отображение θ из W_1 на W_0 называется \mathcal{L}_0 -морфизмом моделей, если удовлетворяет условиям

- $(m1) \theta$ является p-морфизмом шкал;
- (m2) для любого $x \in W_1$ и любой переменной p языка \mathscr{L}_0

$$x \models_1 p \iff \theta(x) \models_0 p$$
.

Индукцией по длине формулы доказывается

Лемма 4.1. Пусть $\theta - \mathcal{L}_0$ -морфизм модели M_1 языка \mathcal{L}_1 на модель M_0 языка \mathcal{L}_0 . Тогда для любого $x \in W_1$ и любой формулы A языка \mathcal{L}_0 :

$$x \models_1 A \iff \theta(x) \models_0 A.$$

Для дальнейшего нам потребуются некоторые естественные морфизмы канонических L-моделей.

Лемма 4.2 (о канонических морфизмах). Пусть даны канонические L-модели M_1 языка \mathcal{L}_1 и M_0 языка \mathcal{L}_0 , содержащегося в языке \mathcal{L}_1 . Тогда отображение

$$\theta(T_1) = T_1 \cap \mathscr{L}_0,$$

где $T_1 \in M_1$, является \mathcal{L}_0 -морфизмом из M_1 на M_0 .

Отображение θ из леммы 4.2 называется каноническим \mathcal{L}_0 -морфизмом из M_1 на M_0 .

Класс моделей K будем называть ycmoйчивым, если для любых инициальных моделей M_1 языка \mathcal{L}_1 , M_2 языка \mathcal{L}_2 и M_0 языка $\mathcal{L}_0 = \mathcal{L}_1 \cap \mathcal{L}_2$ из K и любых \mathcal{L}_0 -морфизмов $\theta_1: M_1 \to M_0$, $\theta_2: M_2 \to M_0$ существуют инициальная модель M языка $\mathcal{L} = \mathcal{L}_1 \cup \mathcal{L}_2$, принадлежащая K, а также \mathcal{L}_1 -морфизм φ из M на M_1 и \mathcal{L}_2 -морфизм ψ из M на M_2 такие, что $\theta_1 \varphi = \theta_2 \psi$.

Такую модель вместе с морфизмами будем называть *амальгамой* для M_0 , M_1 , M_2 .

Теорема 4.3 [12]. Пусть выбранный класс L-моделей содержит все инициальные конусы канонических L-моделей всех языков от различных конечных множеств переменных. Если этот класс является устойчивым, то L имеет CIP.

Нам также потребуется более сильное утверждение, где достаточно существования амальгамы для канонических моделей и морфизмов.

Теорема 4.4. Пусть L — произвольная J-логика. Пусть для любых инициальных конусов M_1 канонической L-модели языка \mathcal{L}_1 , M_2 канонической L-модели языка \mathcal{L}_2 и M_0 канонической L-модели языка $\mathcal{L}_0 = \mathcal{L}_1 \cap \mathcal{L}_2$ и любых канонических \mathcal{L}_0 -морфизмов $\theta_1: M_1 \to M_0$, $\theta_2: M_2 \to M_0$ существуют инициальная L-модель M языка $\mathcal{L} = \mathcal{L}_1 \cup \mathcal{L}_2$, а также \mathcal{L}_1 -морфизм ϕ из M на M_1 и \mathcal{L}_2 -морфизм ψ из M на M_2 такие, что $\theta_1 \phi = \theta_2 \psi$. Тогда L имеет CIP.

Доказательство дословно повторяет доказательство теоремы 4.3.

В следующих разделах приведем конструкции, которые потребуются в доказательствах.

5. Согласованные произведения

В [12] определено понятие согласованного произведения моделей. Пусть даны две модели M_1 языка \mathcal{L}_1 и M_2 языка \mathcal{L}_2 , имеющие общий \mathcal{L}_0 -морфный образ M_0 , где $\mathcal{L}_0 = \mathcal{L}_1 \cap \mathcal{L}_2$, относительно \mathcal{L}_0 -морфизмов θ_1, θ_2 соответственно. Рассмотрим следующую модель

$$M = (W, \leq, Q, \models)$$

языка $\mathscr{L}=\mathscr{L}_1\cup\mathscr{L}_2$. Положим

$$\begin{split} W &= \{(a,b) \mid a \in W_1, \ b \in W_2, \ \theta_1(a) = \theta_2(b)\}, \\ (a,b) &\leq (a',b') \iff (a \leq_1 a' \text{ и } b \leq b'), \\ Q &= \{(a,b) \in W \mid a \in Q_1, \ b \in Q_2\}, \\ (a,b) &\models p \iff ((p \in \mathcal{L}_1 \text{ и } a \models_1 p) \text{ или } (p \in \mathcal{L}_2 \text{ и } b \models_2 p)). \end{split}$$

Заметим, что $\theta_1(\infty_1) = \theta_2(\infty_2)$ ввиду монотонности p-морфизмов, поэтому пара $\infty = (\infty_1, \infty_2)$ принадлежит W и является наибольшим элементом в этом множестве. Кроме того, если M_1 и M_2 — инициальные модели, порожденные элементами a_1 и a_2 соответственно, то $\theta_1(a_1) = \theta_2(a_2)$ есть наименьший элемент модели M_0 , пара (a_1, a_2) принадлежит W и является наименьшим элементом в модели M, а значит, M — инициальная модель.

Модель M называем согласованным произведением M_1 и M_2 над M_0 .

По следующей лемме M с проекциями π_i является амальгамой для $M_0,\,M_1,\,M_2.$

Лемма 5.1 [12]. Если даны две модели M_1 языка \mathcal{L}_1 и M_2 языка \mathcal{L}_2 , имеющие общий \mathcal{L}_0 -морфный образ M_0 , где $\mathcal{L}_0 = \mathcal{L}_1 \cap \mathcal{L}_2$, относительно \mathcal{L}_0 -морфизмов θ_1, θ_2 соответственно и M — их согласованное произведение над M_0 , то проекция π_1 является \mathcal{L}_1 -морфизмом из M на M_1 , а проекция π_2 — \mathcal{L}_2 -морфизмом из M на M_2 , причем $\theta_1\pi_1 = \theta_2\pi_2$.

Из этой леммы и теоремы 4.3 вытекает

Следствие 5.2. Если логика полна относительно класса моделей, замкнутого относительно согласованных произведений, то она имеет СІР.

6. Композиции шкал и моделей

Следствие 5.2 использовалось в [12,13] для доказательства СІР в ряде Јлогик. Однако во многих случаях требуются более сложные конструкции.

Для построения моделей, удовлетворяющих тем или иным условиям, определим понятие композиции шкал и моделей.

Пусть $W=(W,\leq,Q),\,W_1=(W_1,\leq_1,Q_1)$ — шкалы, $\theta-p$ -морфизм из W на $W_1,\,B$ — некоторое множество элементов из W. Для всех $b\in B$ даны шкалы $Y_b=(Y_b,\leq_b,Q_b)$, где $Y_b\cap W=\{b,\infty\},\,Y_b\cap Y_{b'}=\{\infty\}$ при $b\neq b',\,b$ — наименьший, а ∞ — наибольший элементы в Y_b относительно $\leq_b,\,\alpha_b-p$ -морфизм из Y_b на $W_1^{\theta(b)}$.

Ясно, что $\alpha_b(b) = \theta(b), \, \alpha_b(\infty) = \infty_1.$

Следующую шкалу $W^* = (W^*, \leq^*, Q^*)$ будем называть композицией над W. Положим

$$W^* = W \cup \bigcup_{b \in B} Y_b = (W - B) \cup \bigcup_{b \in B} Y_b, \quad Q^* = Q \cup \bigcup_{b \in B} Q_b, \quad \infty^* = \infty.$$

Для $x, y \in W^*$

$$x\leq^* y\iff [(x,y\in W,x\not\in B,x\leq y)$$
 или $(\exists b\in B)(x,y\in Y_b$ и $x\leq_b y)$ или $(x\in (W-B)$ и $(\exists b\in B)(y\in Y_b$ и $x\leq b))].$

Для $x \in W^*$ положим

$$eta(x) = \left\{ egin{array}{ll} heta(x), & ext{если } x \in W, \ lpha_b(x), & ext{если } x \in Y_b \ ext{для } b \in B. \end{array}
ight.$$

Отметим, что для $b \in B$ выполняется $\theta(b) = \alpha_b(b)$, $\theta(\infty) = \alpha_b(\infty) = \infty_1$. Поэтому β определено корректно.

Отметим простые свойства введенного отношения.

Лемма 6.1. Пусть $x <^* y$.

- 1. Если $x \in Y_b$ для некоторого $b \in B$, то $y \in Y_b$ и $x \leq_b y$.
- 2. Если $y \in W \{\infty\}$, то $x \in W B \{\infty\}$.

ДОКАЗАТЕЛЬСТВО. (1) Пусть $x<^*y$ и $x\in Y_b$. Из $Y_b\cap W=\{b,\infty\}$ следует, что $x\not\in (W-B)$. Поэтому существует $b'\in B$ такой, что $x,y\in Y_{b'}$ и $x\leq_{b'}y$. Получаем $x\in Y_b\cap Y_{b'}$, поэтому b=b'.

(2) Следует сразу из (1). □

Построенную в следующей лемме модель M^* будем называть композицией над M.

Лемма 6.2 (о композиции). 1. Отношение \leq^* является частичным порядком на W^* , причем $x \leq^* \infty$ для всех $x \in W^*$.

- 2. Отображение β есть *p*-морфизм из W^* на W_1 .
- 3. Пусть $M=(W,\leq,Q,\models)$ и все $M_b=(Y_b,\leq_b,Q_b,\models_b)$ модели языка \mathcal{L} , $M_1=(W_1,\leq_1,Q_1,\models_1)$ модель языка $\mathcal{L}_1\subseteq\mathcal{L}$ и все α_b и θ являются \mathcal{L}_1 -морфизмами. Тогда β является \mathcal{L}_1 -морфизмом модели $M^*=(W^*,\leq^*,Q^*,\models^*)$ на M_1 , где для $x\in W^*$, $p\in\mathcal{L}_1$

$$x \models^* p \iff ((x \in W \text{ и } x \models p) \text{ или } (\exists b \in B)(x \in Y_b \text{ и } x \models_b p)).$$

Доказательство. (1) Если $x \in Y_b$ для некоторого $b \in B$, то $x \leq_b x$ и $x \leq_b \infty$. Если $x \in W - B$, то $x \leq x$ и $x \leq \infty$. Таким образом, \leq^* рефлексивно и $x <^* \infty$.

Антисимметричность легко проверяется.

Докажем транзитивность. Достаточно проверить случай

$$x <^* y, \quad y <^* z <^* \infty.$$

Пусть $z \in W - \{\infty\}$. Тогда по лемме 6.1 $y \in W - B$, $x \in W - B$, x < y < z, поэтому x < z и $x <^* z$.

Пусть $z \in (Y_b - \{\infty\})$ для некоторого $b \in B$.

Если $y \in W-B$, то $x \in W-B$. Кроме того, $y \leq b, \ x < y$. Тогда $x \leq b$ и $x <^* z$.

Рассмотрим случай $y \in Y_{b'}$ для некоторого $b' \in B$. Тогда по лемме $6.1 \ b = b'$ и $b \leq_b y \leq_b z$. Если $x \in W - B$, то $x \leq b$ и $x \leq^* z$. Если $x \in \bigcup_{b'' \in B} Y_{b''}$, то $x \in Y_b$, $x \leq_b y \leq_b z$ и $x \leq^* z$.

(2) (p1) Пусть $x, y \in W^*, x \leq^* y$. Рассмотрим возможные случаи.

Если $x,y \in Y_b, \ x \leq_b y$ для некоторого $b \in B$, то $\alpha_b(x) \leq_1 \alpha_b(y)$, т. е. $\beta(x) \leq_1 \beta(y)$.

Если $x, y \in W$, то $x \leq y$, $\theta(x) \leq_1 \theta(y)$, т. е. $\beta(x) \leq_1 \beta(y)$.

Если $x \in (W - B)$, $y \in Y_b$, $x \le b$ для некоторого $b \in B$, то $b \le_b y$. Поэтому

$$\beta(x) = \theta(x) <_1 \theta(b) = \alpha_b(b) <_1 \alpha_b(y) = \beta(y).$$

(p2) Пусть $x\in W^*$, $\beta(x)<_1y$, $y\in W_1$. Найдем $z>^*x$ такой, что $\beta(z)=y$. Если $x\in Y_b$ для некоторого $b\in B$, то $\alpha_b(x)<_1y$. Поэтому существует $z\in Y_b$ такой, что $x\leq_bz$ и $\alpha_b(z)=y$. Отсюда $x<^*z$ и $\beta(z)=y$.

Пусть $x\in (W-B)$. Тогда $\theta(x)<_1 y$, поэтому $y=\theta(z)$ для некоторого $z\in W$. Так как $x\not\in B$, получаем $x<^*z$. Кроме того, $\beta(z)=y$.

(р3) Пусть $x \in W^*$. Если $x \in (W - B)$, то

$$x \in Q^* \iff x \in Q \iff \theta(x) \in Q_1 \iff \beta(x) \in Q_1.$$

Пусть $x \in (Y_b - \{\infty\})$ для некоторого $b \in B$. Тогда

$$x \in Q^* \iff x \in Q_b \iff \alpha_b(x) \in Q_1 \iff \beta(x) \in Q_1.$$

(3) Легко следует из (2). Пусть p — переменная языка $\mathcal{L}_1, x \in W^*$. Если $x \in B$, то

$$x \models p \iff \theta(x) \models_1 p \iff \alpha_x(x) \models_1 p \iff \beta(x) \models_1 (p).$$

Поэтому $x\models^* p\iff \beta(x)\models_1 p.$ При $x\in W^*-B$ такое же соотношение очевидно. \square

7. CIP B Int * NC

Напомним, что

$$\operatorname{Int} * \operatorname{NC} = \operatorname{J} + (\bot \to (p \to q) \lor (q \to p)).$$

Модель называем *Q-линейной*, если выполнено условие

$$(NCF) \ x \in Q, \ x \le y, \ x \le z \Rightarrow (y \le z \ или \ z \le y).$$

По лемме 3.5 и теореме 3.6 все канонические модели логики Int*NC являются Q-линейными, а сама логика полна относительно класса Q-линейных моделей.

Лемма 7.1 (о линейности). Пусть W_0,W_1,W_2 — линейно упорядоченные шкалы, θ_i — p-морфизмы из W_i на W_0 (i=1,2), a и b — инициальные элементы шкал W_1 и W_2 соответственно, $\theta_1(a)=\theta_2(b)$, для любого $z\in W_0$ множества $\theta_1^{-1}(z)$ и $\theta_2^{-1}(z)$ имеют наименьший и наибольший элементы. Тогда существуют линейно упорядоченная инициальная шкала $W=(W,\leq,Q)$ и p-морфизмы α и β из W на W_1 и W_2 соответственно такие, что $\theta_1\alpha=\theta_2\beta$.

ДОКАЗАТЕЛЬСТВО. Пусть $z \in W_0$. Обозначим через a_{1z} наименьший элемент в множестве $\theta_1^{-1}(z)$, а через b_{2z} — наибольший элемент в множестве $\theta_2^{-1}(z)$.

Положим

$$S_z = \{(a_{1z}, v) \mid v \in \theta_2^{-1}(z)\} \cup \{(u, b_{2z}) \mid u \in \theta_1^{-1}(z)\},$$

$$W = \bigcup \{S_z \mid z \in W_0\}, \quad Q = \bigcup \{S_z \mid z \in Q_0\},$$

$$\infty = (\infty_1, \infty_2).$$

Для $(u, v), (u', v') \in W$

$$(u,v) \le (u',v') \iff (u \le_1 u' \bowtie v \le_2 v').$$

Заметим, что S_z непусто для любого z, так как содержит пару (a_{1z},b_{2z}) . Кроме того, $(a,b)\in W$.

Очевидно, \leq — частичный порядок на W. Покажем, что \leq — линейный порядок. Пусть $(u,v),(u',v')\in W$. Тогда $(u,v)\in S_z,\ (u',v')\in S_{z'},\$ где $z=\theta_1(u)=\theta_2(v),\ z'=\theta_1(u')=\theta_2(v').$ Имеем $z\leq_0 z'$ или $z'\leq_0 z$.

Пусть z=z'. Допустим, что $(u,v) \not\leq (u',v')$. Тогда $u \not\leq_1 u'$ или $v \not\leq_2 v'$. В первом случае $u' <_1 u$, $u \neq a_{1z}$, а значит, $v=b_{2z}$. Поэтому $(u',v') \leq (u,v)$. Во втором случае $v' <_2 v$, $v' \neq b_{2z}$, а значит, $u'=a_{1z}$. Тем самым $(u',v') \leq (u,v)$.

Пусть $z<_0z'$. Поскольку множества W_1 и W_2 линейно упорядочены, получаем $u<_1u'$ и $v<_2v'$, т. е. $(u,v)\leq (u',v')$. Аналогично если $z'<_0z$, то $(u',v')\leq (u,v)$. Итак, \leq — линейный порядок.

Для $(u,v) \in W$ положим

$$\alpha(u, v) = u, \quad \beta(u, v) = v.$$

Покажем, что $\alpha-p$ -морфизм из W на W_1 . Условие (p1) очевидно, докажем (p2).

Пусть $(u,v)\in W,\,u\leq_1 u'.$ Тогда $z=\theta_1(u)=\theta_2(v)\leq_0 \theta_1(u')=z'.$ Получаем $(u',b_{2z'})\in S_{z'}\subseteq W$ и $(u,v)\leq (u',b_{2z'}),\,\alpha(u',b_{2z'})=u'.$

Покажем, что $\beta-p$ -морфизм из W на W_2 . Достаточно проверить условие (p2).

Пусть $(u,v)\in W,\ v<_2 v'.$ Тогда $z=\theta_1(u)=\theta_2(v)\leq_0 \theta_2(v')=z'.$ Кроме того, $(a_{1z'},v')\in S_{z'}\subseteq W.$ Если $z<_0 z',$ то $(u,v)<(a_{1z'},v').$

Рассмотрим случай z'=z. Имеем $v\neq b_{1z}$, поэтому $u=a_{1z}$. Кроме того, $(a_{1z},v')\in S_z,\,(u,v)<(a_{1z},v')$ и $\beta(a_{1z},v')=v'$.

Ясно, что $\theta_1 \alpha = \theta_2 \beta$. \square

Лемма 7.2. Пусть M, M_0 — инициальные конусы канонических моделей логики L языков $\mathcal{L}, \mathcal{L}_0$, где $\mathcal{L}_0 \subseteq \mathcal{L}$, и θ — канонический \mathcal{L}_0 -морфизм из M на M_0 . Пусть $x \in W$, W^x линейно упорядочено и $\theta(x) = x_0$. Тогда $W_0^{x_0}$ линейно упорядочено и для любого $z \geq_0 x_0$ множество $W^x \cap \theta^{-1}(z)$ имеет наименьший элемент a_z и наибольший элемент b_z .

ДОКАЗАТЕЛЬСТВО. Линейная упорядоченность следует из (p1). Далее, вспомним, что $\theta(x) = x \cap \mathcal{L}_0$. Пересечение цепи простых теорий и объединение цепи простых теорий из $W^x \cap \theta^{-1}(z)$ снова являются простыми теориями и принадлежат тому же множеству. \square

Предложение 7.3. Пусть L содержит ($\bot \to (p \to q) \lor (q \to p)$). Пусть $M_0, M_1, M_2 \to H$ инициальные конусы канонических моделей логики L языков $\mathcal{L}_0, \mathcal{L}_1, \mathcal{L}_2$, где $\mathcal{L}_0 = \mathcal{L}_1 \cap \mathcal{L}_2$, и $\theta_1, \theta_2 \to H$ канонические \mathcal{L}_0 -морфизмы из M_1, M_2 на M_0 . Тогда существуют модель M^* , удовлетворяющая условию (NCF), а также \mathcal{L}_1 -морфизм α из M^* на M_1 и \mathcal{L}_2 -морфизм β из M^* на M_2 такие, что $\theta_1 \alpha = \theta_2 \beta$.

Доказательство. Пусть $\mathcal{L}_0 = \mathcal{L}_1 \cap \mathcal{L}_2$ и M_0 , M_1 , M_2 — инициальные конусы канонических моделей логики L языков \mathcal{L}_0 , \mathcal{L}_1 , \mathcal{L}_2 соответственно. Пусть $M_i = (W_i, \leq_i, Q_i)$ для i = 0, 1, 2 и θ_1, θ_2 — канонические \mathcal{L}_0 -морфизмы из M_1 , M_2 на M_0 . Надо построить Q-линейную амальгаму.

Обозначим через $M=(W,\leq,Q,\models)$ согласованное произведение моделей M_1 и M_2 над M_0 .

По лемме 5.1 проекции π_i являются \mathcal{L}_i -морфизмами из M на M_i , причем $\theta_1\pi_1(x,y)=\theta_2\pi_2(x,y)$ для любой пары $(x,y)\in W$.

Построим композицию M^* над M. Положим B = Q.

Пусть $(a,b) \in B$, т. е. $a \in Q_1$, $b \in Q_2$ и $\theta_1(a) = \theta_2(b)$. Так как M_1 и M_2 удовлетворяют условию (NCF) по лемме 3.5, множества W_1^a и W_2^b линейно упорядочены. По лемме 7.2 для любого $z \ge_0 \theta_1(a)$ множества $W_1^a \cap \theta_1^{-1}(z)$ и $W_2^b \cap \theta_2^{-1}(z)$ имеют наименьшие и наибольшие элементы. Тогда по лемме 7.1 существуют линейно упорядоченная инициальная шкала $Y_{ab} = (Y_{ab}, \le_{ab}, Q_{ab})$ и p-морфизмы α_{ab} и β_{ab} из Y_{ab} на W_1^a и W_2^b такие, что $\theta_1\alpha_{ab} = \theta_2\beta_{ab}$. Заменяя в случае необходимости множества их изоморфными копиями, можно считать, что $Y_{ab} \cap W = \{(a,b),\infty\}, Y_{ab} \cap Y_{a'b'} = \{\infty\}$ при $(a,b) \neq (a',b'), Q_{ab} = Y_{ab}, (a,b)$ — наименьший, а $\infty = (\infty_1,\infty_2)$ — наибольший элементы в Y_{ab} . В частности, $Y_{\infty_1\infty_2} = \{\infty\}$.

Определим модель $M_{ab}=(Y_{ab},\leq_{ab},Q_{ab},\models_{ab}),$ полагая для $x\in Y_{ab}$ и переменной $p\in\mathscr{L}_1\cup\mathscr{L}_2$

$$x \models_{ab} p \iff [(p \in \mathcal{L}_1 \text{ и } \alpha_{ab}(x) \models_1 p) \text{ или } (p \in \mathcal{L}_2 \text{ и } \beta_{ab}(x) \models_2 p)].$$

Учитывая условие $\theta_1 \alpha_{ab} = \theta_2 \beta_{ab}$, нетрудно проверить, что тогда α_{ab} является \mathcal{L}_1 -морфизмом из M_{ab} на M_1^a , а $\beta_{ab} - \mathcal{L}_2$ -морфизмом из M_{ab} на M_2^b .

Строим композицию W^* над W. Получаем

$$W^* = W \cup igcup_{(a,b) \in Q} Y_{ab}, \quad Q^* = igcup_{(a,b) \in Q} Q_{ab}, \quad \infty^* = \infty.$$

Заметим, что $W^* - Q^* = W - Q$.

Для $x, y \in W^*$ определим

$$x \leq^* y \iff [(x,y \in W, x \not\in Q, x \leq y)$$
 или $(\exists (a,b) \in Q)(x,y \in Y_{ab}$ и $x \leq_{ab} y)$ или $(x \in (W-Q)$ и $(\exists (a,b) \in Q)(y \in Y_{ab}$ и $x \leq (a,b))].$

По лемме 6.2 W^* частично упорядочено отношением \leq^* . Для $x \in W^*$ положим

$$lpha(x)=\left\{egin{array}{ll} \pi_1(x), & \mbox{если } x\in W, \\ lpha_{ab}(x), & \mbox{если } x\in Y_{ab} \mbox{ для } (a,b)\in B; \end{array}
ight.$$

$$eta(x) = \left\{egin{array}{ll} \pi_2(x), & ext{ если } x \in W, \ eta_{ab}(x), & ext{ если } x \in Y_{ab} \ ext{для } (a,b) \in B. \end{array}
ight.$$

Определим $M^*=(W^*,\leq^*,Q^*,\models^*)$, где для $x\in W^*$ и переменной $p\in\mathscr{L}_1\cup\mathscr{L}_2$

$$x\models^* p\iff [(p\in\mathscr{L}_1$$
 и $\alpha(x)\models_1 p)$ или $(p\in\mathscr{L}_2$ и $\beta(x)\models_2 p)].$

Тогда по лемме 6.2 α является \mathcal{L}_1 -морфизмом из M^* на M_1 , а $\beta-\mathcal{L}_2$ -морфизмом из M^* на M_2 . Очевидно, $\theta_1\alpha=\theta_2\beta$.

Покажем, что M^* удовлетворяет условию (NCF). Пусть $y \in Q^*$. Тогда $y \in Y_{ab}$ для некоторых a, b.

Допустим, что $y <^* z$ и $y <^* t$. По лемме 6.1 заключаем, что $z, t \in Y_{ab}$. Поскольку Y_{ab} линейно упорядочено, элементы z и t сравнимы по \leq_{ab} , а значит, и по \leq^* . Условие (NCF), а вместе с ним и лемма доказаны. \square

Из предложения 7.3 и теоремы 4.4 сразу следует

Теорема 7.4. Логика Int * NC имеет CIP.

8. Корректные подмодели

Шкала (W',\leq',Q') называется nodumкалой шкалы $(W,\leq,Q),$ если $W'\subseteq W,$ отношение \leq' является ограничением \leq на W' и $Q'=Q\cap W'.$

Модель $M=(W',\leq',Q',\models')$ языка $\mathscr L$ называется nodmodeлью модели $M=(W,\leq,Q,\models)$ языка $\mathscr L$, если (W',\leq',Q') является подшкалой шкалы (W,\leq,Q) и для любых $x\in W'$ и переменной p языка $\mathscr L$

$$x \models' p \iff x \models p.$$

Пусть W, W_1 — шкалы, $\theta - p$ -морфизм из W на W_1 . Подшкалу W' шкалы W называем корректной относительно θ , если ограничение θ' p-морфизма θ на W' снова является p-морфизмом на W_1 .

Пусть $\theta - \mathcal{L}_1$ -морфизм модели M языка $\mathcal{L} \supseteq \mathcal{L}_1$ на модель M_1 языка \mathcal{L}_1 . Подмодель M' модели M называется корректной относительно θ , если ограничение θ' \mathcal{L}_1 -морфизма θ на M' снова является \mathcal{L}_1 -морфизмом на M_1 .

Ясно, что если $\theta - \mathcal{L}_1$ -морфизм модели $M = (W, \leq, Q, \models)$ языка $\mathcal{L} \supseteq \mathcal{L}_1$ на модель $M_1 = (W_1, \leq_1, Q_1, \models_1)$ языка \mathcal{L}_1 и $M' = (W', \leq', Q', \models')$ — подмодель M, причем подшкала W' корректна относительно θ , то подмодель M' корректна относительно θ .

Следующая лемма дает достаточное условие корректности.

Лемма 8.1 (об ограничении). Пусть W, W_1 — шкалы, θ — p-морфизм из W на $W_1, D \subseteq W - Q$, причем $\theta(D) = W_1 - Q_1$ и выполнено условие

$$x \in D$$
, $\theta(x) <_1 y$, $y \in W_1 - Q_1 \Rightarrow (\exists z \in D)(x < z \ \text{if } \theta(z) = y)$.

Определим подшкалу $W' = D \cup Q$ шкалы W, где Q' = Q, порядок на W' индуцирован порядком на W. Тогда подшкала W' корректна относительно θ .

Доказательство. Условия (p1) и (p3) очевидны. Проверим (p2). Пусть $x\in W',\, \theta'(x)<_1y,\, y\in W_1.$ Найдем $z\in W'$ такой, что x<'z и $\theta'(z)=y.$

Если $x\in Q'$, то $y\in Q_1$, а значит, существует $z\in Q$ такой, что z>x и $\theta(z)=y.$ Тогда $z\in W',$ x<'z и $\theta'(z)=y.$

Пусть $x \notin Q'$, т. е. $x \in D$. Если $y \in Q_1$, то, как и в предыдущем случае, существует $z \in W'$ такой, что x <' z и $\theta'(z) = y$. Допустим, что $y \in W_1 - Q_1$. Тогда требуемый z существует по условию леммы. \square

Следующая лемма доказывает устойчивость класса моделей, удовлетворяющих условию (NEF), что позволяет доказать CIP в логике Int*NE.

Лемма 8.2. Пусть даны две модели M_1 языка \mathcal{L}_1 и M_2 языка \mathcal{L}_2 , удовлетворяющие условию (NEF), и \mathcal{L}_0 -морфизмы θ_1, θ_2 моделей M_1 , M_2 на модель M_0 языка $\mathcal{L}_0 = \mathcal{L}_1 \cap \mathcal{L}_2$. Тогда существует подмодель

$$M^* = (W^*, \leq^*, Q^*, \models^*)$$

согласованного произведения моделей M_1 и M_2 над M_0 , где

$$W^* - Q^* = \{(a, b) \mid a \in W_1 - Q_1, b \in W_2 - Q_2, \theta_1(a) = \theta_2(b)\},\$$

удовлетворяющая условию (NEF), причем ограничения π_i^* (i=1,2) проекций π_i на M^* являются \mathcal{L}_i -морфизмами из M^* на M_i и $\theta_1\pi_1^*=\theta_2\pi_2^*$.

Доказательство. По существу, лемма доказана в [12]. Доказательство СІР для логики $\mathrm{JE}_1^Q = \mathrm{Int} * \mathrm{NE}$ основано на устойчивости класса моделей, удовлетворяющих условию (NEF), которая устанавливается с помощью следующей конструкции. По данным моделям строится подмодель

$$M^* = (W^*, \leq^*, Q^*, \models^*)$$

согласованного произведения моделей M_1 и M_2 над M_0 , где

$$W^* = \{(a,b) \mid a \in W_1 - Q_1, b \in W_2 - Q_2, \theta_1(a) = \theta_2(b)\} \cup Q^*,$$

$$Q^* = \{(a,b) \mid a \in Q_1, \ b \in Q_2, \ \theta_1(a) = \theta_2(b) \neq \infty_0\}$$
$$\cup \{(a,\infty_2) \mid a \in Q_1, \ \theta_1(a) = \infty_0\} \cup \{(\infty_1,b) \mid b \in Q_2, \ \theta_2(b) = \infty_0\}.$$

Тогда M^* удовлетворяет требованиям леммы. \square

9. CIP в LC*Neg, LC*NC и LC*NE

Лемма 9.1. Пусть $L_{\text{int}} \supseteq \text{LC}$, $M, M_0 -$ инициальные конусы канонических моделей логики L языков $\mathcal{L}, \mathcal{L}_0$, где $\mathcal{L}_0 \subseteq \mathcal{L}$, и θ — канонический \mathcal{L}_0 -морфизм из M на M_0 . Тогда для любого $z \in (W_0 - Q_0)$ множество $\theta^{-1}(z)$ имеет наименьший элемент a_z и наибольший элемент b_z .

Доказательство. По лемме 3.5 множество W-Q линейно упорядочено. Следовательно, $\theta^{-1}(z)$ линейно упорядочено. Утверждение легко вытекает из определения канонического морфизма. \square

Теорема 9.2. Логики LC * Neg, LC * NC, LC * NE имеют CIP.

Доказательство. Сначала докажем CIP в LC * NC. Используем доказательство для $\mathrm{Int}*\mathrm{NC}.$

Пусть M_0 , M_1 , M_2 — инициальные конусы канонических моделей логики LC*NC, $\theta_i:M_i\to M_0-\mathscr{L}_0$ -морфизмы для i=1,2.

В соответствии с доказательством предложения 7.3 обозначаем через $M=(W,\leq,Q,\models)$ согласованное произведение моделей M_1 и M_2 над M_0 . Затем строим модель $M^*=(W^*,\leq^*,Q^*,\models^*)$ и \mathscr{L}_i -морфизмы α , β из M^* на M_1 и M_2 соответственно такие, что $\theta_1\alpha=\theta_2\beta$. При этом

$$W^* - Q^* = W - Q = \{(x, y) \mid x \in W_1 - Q_1, y \in W_2 - Q_2, \theta_1(x) = \theta_2(y)\},\$$

для $(x,y),(x',y')\in (W^*-Q^*)$ выполняется

$$(x,y) \le^* (x',y') \iff (x,y) \le (x',y') \iff (x \le_1 x' \text{ if } y \le_2 y'),$$
$$\alpha(x,y) = x, \quad \beta(x,y) = y.$$

По предложению 7.3 модель M^* удовлетворяет условию (NCF).

Вспомним, что исходные модели удовлетворяли $I((p \to q) \lor (q \to p))$. Тогда $W_i - Q_i$ линейно упорядочены по лемме 3.5. Кроме того, по лемме 9.1 для любого $x_0 \in W_0 - Q_0$ в множестве $\theta_i^{-1}(x_0)$ существуют наименьший элемент $l_i(x_0)$ и наибольший элемент $u_i(x_0)$.

Применим лемму 8.1. Определим подмодель M' модели M^* , полагая

$$D=\{(x_1,x_2)\mid heta_1(x_1)= heta_2(x_2)=x_0\in W_0-Q_0,\; (x_1=l_1(x_0)\; ext{или}\; x_2=u_2(x_0))\},$$
 $W'=D\cup Q^*,\quad Q'=Q^*.$

Тогда W'-Q' линейно упорядочено. Покажем, что α и β удовлетворяют условиям леммы 8.1.

Пусть $x \in D$. Тогда

$$x = (x_1, x_2), \quad x_i \in (W_i - Q_i), \quad \theta_1(x_1) = \theta_2(x_2).$$

Допустим $\alpha(x) <_1 y_1, \ y_1 \in (W_1 - Q_1)$. Найдем $z \in D$ такой, что $x <^* z$ и $\alpha(z) = y_1$.

Имеем

$$x_1 <_1 y_1$$
, $\theta_2(x_2) = \theta_1(x_1) \le_0 \theta_1(y_1) = x_0$, $x_0 \in (W_0 - Q_0)$.

Отсюда $z = (y_1, u_2(x_0)) \in D$ и $x <^* z$.

Допустим $\beta(x)<_2 y_2,\ y_2\in (W_2-Q_2)$. Найдем $z\in D$ такой, что $x<^*z$ и $\beta(z)=y_2$.

Пусть $\theta_2(y_2)=y_0$. Если $\theta_1(x_1)<_0y_0$, то $x_1<_1l_1(y_0)$. При $z=(l_1(y_0),y_2)$ получаем $z\in D,$ $x<^*z$ и $\beta(z)=y_2$.

Рассмотрим случай $\theta_1(x_1)=y_0$. Поскольку $(x_1,x_2)\in D$, получаем $x_1=l_1(y_0)$ или $x_2=u_2(y_0)$. Второй вариант невозможен, так как $\theta_2(y_2)=y_0$, а значит, $y_2\leq_2 u_2(y_0)$ в противоречие с $x_2<_2 y_2$. Поэтому $x_1=l_1(y_0),\ z=(x_1,y_2)\in D,\ x<^*z$ и $\beta(z)=y_2$.

По лемме 8.1 ограничения α' и β' отображений α и β на множество W' являются p-морфизмами из W' на W_1 и W_2 соответственно. Ясно, что они являются и \mathcal{L}_i -морфизмами и $\theta_1\alpha'=\theta_2\beta'$.

По теореме 4.4 LC * NC имеет CIP.

Доказательство для LC * Neg аналогично. Достаточно вместо амальгамы M^* и морфизмов α и β взять согласованное произведение M и проекции π_i . Для LC*NE вместо амальгамы M^* и морфизмов α и β достаточно взять амальгаму M^* , π_1^* , π_2^* из леммы 8.2. \square

10. Основной результат

Докажем основной результат — теорему 10.3.

Будем говорить, что модель $M=(W,\leq,Q,\models)$ удовлетворяет условию максимальности, если для любого $x\in W-Q$ существует $y\geq x$, максимальный в W-Q.

В [13] доказана

Лемма 10.1. Пусть $M=(W,\leq,Q,\models)-$ согласованное произведение моделей с условием максимальности. Тогда

- $(1) \ M$ также удовлетворяет условию максимальности;
- (2) для любого x, максимального в W_1-Q_1 , существует y, максимальный в W_2-Q_2 и такой, что $(x,y)\in W$;
- (3) для любого y, максимального в W_2-Q_2 , существует x, максимальный в W_1-Q_1 и такой, что $(x,y)\in W$;
- (4) если $(x_1,x_2)\in W$, то элемент (x_1,x_2) является максимальным в W-Q тогда и только тогда, когда x_1 и x_2 максимальны в W_1-Q_1 и W_2-Q_2 соответственно.

Лемма 10.2. Классы инициальных моделей, удовлетворяющих любому из условий (KCF), (LP_2F) , (LVF), (LSF), являются устойчивыми.

Доказательство. Пусть даны две инициальные модели M_1 языка \mathcal{L}_1 и M_2 языка \mathcal{L}_2 , удовлетворяющие одному из указанных условий, и \mathcal{L}_0 -морфизмы θ_1, θ_2 моделей M_1, M_2 на модель M_0 языка $\mathcal{L}_0 = \mathcal{L}_1 \cap \mathcal{L}_2$. По предложению 5.1 согласованное произведение $M = (W, \leq, Q, \models)$ моделей M_1 и M_2 над M_0 вместе с проекциями π_i является амальгамой для M_0, M_1, M_2 . Построим подмодель

$$M^* = (W^*, \leq^*, Q^*, \models^*)$$

согласованного произведения M, удовлетворяющую тому же условию и корректную относительно обоих \mathcal{L}_{i} -морфизмов π_{i} .

(KCF) Само M удовлетворяет этому условию.

 (LP_2F) В множестве W-Q оставляем лишь наименьший и максимальные элементы.

(LVF) В множестве W-Q оставляем лишь наименьший и максимальные элементы. При этом число максимальных элементов равно 1, 2 или 4. В первых двух случаях M удовлетворяет (LVF). В последнем случае каждое из множеств W_i-Q_i состоит из двух различных элементов a_i,b_i и мы оставляем в W^*-Q^* лишь две пары (a_1,b_1) и (a_2,b_2) .

(LSF) В множестве W-Q оставляем лишь наименьший и наибольший элементы.

Корректность легко следует из леммы 8.1. Таким образом, ограничения π_i^* (i=1,2) проекций π_i на M^* являются \mathcal{L}_i -морфизмами из M^* на M_i и $\theta_1\pi_1^*=\theta_2\pi_2^*$. \square

Теорема 10.3. Логика $L_1 * L_2$ имеет СІР тогда и только тогда, когда L_1 и L_2 имеют СІР.

Доказательство. Если L_1*L_2 имеет СІР, то L_1 и L_2 имеют СІР по теореме 2.2. Докажем обратное.

Если одна из логик есть For, то логика L_1*L_2 совпадает с другой логикой и доказывать нечего. Для случая $L_1=\operatorname{Cl}$ утверждение уже доказано (предложение 2.6). Там же установлено CIP для логик Int * Neg и Int * NE, а в тео-

реме 7.4 — для Int * NC. Случай $L_1 = LC$ рассмотрен в теореме 9.2. Остается рассмотреть случаи $L_2 \in \{\text{Neg}, \text{NC}, \text{NE}\}$ и $L_1 \in \{\text{KC}, \text{LP}_2, \text{LV}, \text{LS}\}$.

Если $L_2 \in \{\text{Neg}, \text{NE}\}$, то CIP вытекает из теоремы 4.3. Устойчивость класса инициальных моделей для $L_1 * \text{Neg}$ следует из теоремы 3.6 и лемм 3.5 и 10.2.

Класс моделей для $L_1 * NE$ должен удовлетворять (L_1F) и дополнительному условию (NEF). Устойчивость этого класса доказывается аналогично лемме 10.2. Надо лишь в качестве амальгамы для данных моделей M_0, M_1, M_2 вместо их согласованного произведения взять модель M^* с морфизмами π_i^* из леммы 8.2.

Пусть $L_2 = NC$. Используем теорему 4.4. Докажем, что $L = L_1 * NC$ удовлетворяет условию этой теоремы.

Пусть даны инициальные конусы M_1 и M_2 канонических L-моделей языков \mathcal{L}_1 и \mathcal{L}_2 соответственно и канонические \mathcal{L}_0 -морфизмы θ_1, θ_2 моделей M_1, M_2 на модель M_0 языка $\mathcal{L}_0 = \mathcal{L}_1 \cap \mathcal{L}_2$. По лемме 3.5 все модели удовлетворяют условиям (L_1F) и (NCF). Сначала применяем предложение 7.3 и строим модель M^* , удовлетворяющую условию (NCF), и морфизмы α и β . Затем аналогично конструкции из леммы 10.2 строим подмодель модели M^* , обладающую свойством (L_1F) и корректную относительно α и β . Построенная подмодель является амальгамой для M_0, M_1, M_2 и удовлетворяет условиям (L_1F) и (NCF). По теореме $4.4\ L$ имеет CIP. \square

ЛИТЕРАТУРА

- Johansson I. Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus // Compos. Math. 1937. V. 4. P. 119–136.
- Максимова Л. Л. Теорема Крейга в суперинтуиционистских логиках и амальгамируемые многообразия псевдобулевых алгебр // Алгебра и логика. 1977. Т. 16, № 6. С. 643–681.
- Craig W. Three uses of Herbrand-Gentzen theorem in relating model theory and proof theory // J. Symb. Log. 1957. V. 22. P. 269–285.
- Максимова Л. Л. Интерполяционная теорема Крейга и амальгамируемые многообразия // Докл. АН СССР. 1977. Т. 237, № 6. С. 1281–1284.
- Максимова Л. Л. Неявная определимость в позитивных логиках // Алгебра и логика. 2003. Т. 42, № 1. С. 65–93.
- Максимова Л. Л. Интерполяция и определимость в расширениях минимальной логики // Алгебра и логика. 2005. Т. 44, № 6. С. 726–750.
- Максимова Л. Л. Разрешимость проективного свойства Бета в многообразиях гейтинговых алгебр // Алгебра и логика. 2001. Т. 40, № 3. С. 290–301.
- Gabbay D. M., Maksimova L. Interpolation and definability: Modal and intuitionistic logics. Oxford: Clarendon Press, 2005.
- Максимова Л. Л. Разрешимость интерполяционного свойства Крейга в стройных Ј-логиках // Сиб. мат. журн. 2012. Т. 53, № 5. С. 1048–1064.
- 10. *Максимова Л. Л.* Проективное свойство Бета в стройных логиках // Алгебра и логика. 2013. Т. 52, № 2. С. 172–202.
- 11. $\it Maксимова \it Л. \it Л.$ Разрешимость слабого интерполяционного свойства над минимальной логикой $\it //$ Алгебра и логика. 2011. Т. 50, № 2. С. 152–188.
- Максимова Л. Л. Метод доказательства интерполяции в паранепротиворечивых расширениях минимальной логики // Алгебра и логика. 2007. Т. 46, № 5. С. 627–648.
- 13. $\it Makcumoba$ $\it J.$ $\it J.$ Негативная эквивалентность над минимальной логикой и интерполяция $\it II$ Сиб. электрон. мат. изв. 2014. Т. 11. С. 1–17.
- Odintsov S. Logic of classic refutability and class of extensions of minimal logic // Log. Log. Philos. 2001. V. 9. P. 91–107.
- 15. Максимова Л. Л. Неявная определимость в расширениях минимальной логики // Логические исследования. 2001. Т. 8. С. 72–81.
- Odintsov S. Constructive negations and paraconsistency. Dordrecht: Springer-Verl., 2008. (Ser. Trends in Logic; V. 26).
- **17.** Максимова Л. Л., Юн В. Ф. Узнаваемые логики // Алгебра и логика (в печати).

18. Segerberg K. Propositional logics related to Heyting's and Johansson's // Theoria. 1968. V. 34. P. 26–61.

Статья поступила 8 сентября 2014 г.

Максимова Лариса Львовна Институт математики им. С. Л. Соболева СО РАН, пр. Академика Коптюга, 4, Новосибирск 630090 lmaksi@math.nsc.ru

Юн Вета Федоровна Институт математики им. С. Л. Соболева СО РАН, пр. Академика Коптюга, 4, Новосибирск 630090; Новосибирский гос. университет, ул. Пирогова, 2, Новосибирск 630090 veta_v@mail.ru