АВТОУСТОЙЧИВОСТЬ БУЛЕВЫХ АЛГЕБР С ВЫДЕЛЕННЫМИ ИДЕАЛАМИ ОТНОСИТЕЛЬНО СИЛЬНЫХ КОНСТРУКТИВИЗАЦИЙ

Д. Е. Пальчунов, А. В. Трофимов, А. И. Турко

Аннотация. Изучаются булевы алгебры с выделенными идеалами (I-алгебры). Доказано, что локальная I-алгебра автоустойчива относительно сильных конструктивизаций тогда и только тогда, когда она является прямым произведением конечного числа простых моделей. Приведено описание полных формул элементарных теорий локальных булевых алгебр с выделенными идеалами и конечным набором выделенных констант. Показано, что любая счетно-категоричная I-алгебра, конечно аксиоматизируемая I-алгебра, суператомная булева алгебра с одним выделенным идеалом и любая булева алгебра автоустойчивы относительно сильных конструктивизаций тогда и только тогда, когда они являются произведением конечного числа простых моделей.

 $\rm DOI\,10.17377/smzh.2015.56.312$

Ключевые слова: булева алгебра, булева алгебра с выделенными идеалами, *І*-алгебра, автоустойчивость, сильная конструктивизируемость, автоустойчивость относительно сильных конструктивизаций, простая модель.

Посвящается Юрию Леонидовичу Ершову

1. Введение

В работе А. И. Мальцева [1] положено начало систематическому изучению конструктивных моделей. А. И. Мальцев [2] ввел понятия автоэквивалентных конструктивизаций и автоустойчивой модели. Ю. Л. Ершовым [3] для построения теории конструктивных моделей было введено понятие сильно конструктивной модели, эквивалентное понятие разрешимой модели предложено Морли [4].

В теории конструктивных моделей существуют две базисные проблемы: вопервых, проблема существования конструктивных представлений, во-вторых, вопросы автоустойчивости и алгоритмической размерности моделей.

Вопросы автоустойчивости и алгоритмической размерности восходят к работе А. И. Мальцева [1]. Исследованию этих проблем в настоящее время посвящено большое количество работ многих авторов как у нас в стране, так и за рубежом [5].

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 14–07–00903а) и Минобрнауки России (задание № 2014/139 на выполнение государственных работ в сфере научной деятельности в рамках базовой части).

Для случая автоустойчивости относительно сильных конструктивизаций А. Т. Нуртазиным [6] был получен критерий автоустойчивости, который показывает тесную взаимосвязь проблемы автоустойчивости относительно сильных конструктивизаций с простотой модели.

В данной работе изучаются булевы алгебры с выделенными идеалами. В дальнейшем такие алгебры будем называть I-алгебрами. Исследования алгоритмических и теоретико-модельных свойств I-алгебр начаты Ю. Л. Ершовым [7].

 \mathcal{A} . Е. Пальчуновым [8,9] было получено описание счетно-категоричных и конечно аксиоматизируемых булевых алгебр с выделенными идеалами, изучены простые и счетно-насыщенные модели [10,11]. В частности, показано, что счетно-категоричные I-алгебры конечно аксиоматизируемы, а конечно аксиоматизируемые I-алгебры, в свою очередь, локальны. Был получен критерий того, что локальная I-алгебра является простой моделью.

Настоящая работа посвящена описанию I-алгебр, автоустойчивых относительно сильных конструктивизаций. Изучение автоустойчивых моделей в различных классах алгебраических систем является одной из центральных задач теории вычислимости. Автоустойчивые булевы алгебры изучались С. С. Гончаровым, В. Д. Дзгоевым [12] и Ларошем [13]. Описание I-алгебр, автоустойчивых относительно конструктивизаций, для случая одного выделенного идеала было получено Н. Т. Когабаевым [14], а для случая произвольного конечного числа выделенных идеалов — Π . Е. Алаевым [15].

Возникает вполне естественный вопрос описания автоустойчивых I-алгебр относительно сильных конструктивизаций. В настоящей работе показано, что счетная локальная I-алгебра автоустойчива относительно сильных конструктивизаций тогда и только тогда, когда она является прямым произведением конечного числа I-алгебр, являющихся простыми моделями. Приведено описание полных формул элементарных теорий локальных булевых алгебр с выделенными идеалами и конечным набором выделенных констант. Такие формулы являются атомами булевых алгебр формул с n свободными переменными элементарных теорий локальных I-алгебр и локальных I-алгебр с выделенными константами. В качестве следствия доказано, что любая счетно-категоричная I-алгебра, счетная конечно аксиоматизируемая I-алгебра, суператомная булева алгебра с одним выделенным идеалом, счетная булева алгебра автоустойчива относительно сильных конструктивизаций тогда и только тогда, когда она представима в виде прямого произведения конечного числа простых моделей.

2. Предварительные сведения

Определение 1. Формула $\varphi(x_1, ..., x_n)$ называется полной формулой в теории T, если она совместна с T и для любой формулы $\psi(x_1, ..., x_n)$ выполнено $T \vdash (\varphi \to \psi)$ или $T \vdash (\varphi \to \neg \psi)$.

Определение 2. $\mathfrak{A}=\langle A,\cup,\cap,C,0,1\rangle$ называется вычислимой булевой алгеброй, если

- 1) $A \subset \omega$ вычислимое множество,
- 2) $\cap, \cup : \mathbb{N}^2 \to \mathbb{N}$ вычислимые функции,
- 3) $C: \mathbb{N} \to \mathbb{N}$ вычислимая функция.

Определение 3. $\mathfrak A$ называется разрешимой, если множество кортежей $\{\langle s, l_1, l_2, \dots, l_k \rangle \in \mathbb N \mid s$ — номер формулы $\Phi(x_1, \dots, x_k)$ и $\mathfrak A \models \Phi(l_1, \dots, l_k)\}$ вычислимо.

Определение 4. $\mathfrak A$ называется вычислимо категоричной относительно разрешимых представлений тогда и только тогда, когда для любых разрешимых $\mathfrak B$ и $\mathfrak C$ таких, что $\mathfrak A\cong\mathfrak B\cong\mathfrak C$, существует вычислимый изоморфизм $f:\mathfrak{B}\xrightarrow[\mathrm{Ha}]{1-1}\mathfrak{C}.$

Так как понятия вычислимой и конструктивной булевой алгебры, разрешимой и сильно конструктивной булевой алгебры и соответственно вычислимо категоричной и автоустойчивой (относительно сильных конструктивизаций) булевой алгебры эквивалентны, мы не будем их различать.

Обозначим через $\sigma = (\cup, \cap, C, 0, 1)$ сигнатуру булевых алгебр. Зафиксируем $\lambda \in \mathbb{N}$ и будем рассматривать булевы алгебры с выделенными идеалами (I-алгебры) в сигнатуре $\sigma_{\lambda}=(\cup,\cap,C,0,1,I_1,\ldots,I_{\lambda}),$ где I_1,\ldots,I_{λ} — символы унарных предикатов. Обозначим через T_{λ} теорию класса булевых алгебр с λ выделенными идеалами (I-алгебр). Теория T_{λ} класса I-алгебр порождается аксиомами булевых алгебр и предложениями о том, что предикаты I_1, \dots, I_{λ} выделяют идеалы.

Обозначим через $Th(\mathfrak{A})$ элементарную теорию модели \mathfrak{A} , т. е. множество всех предложений, истинных на \mathfrak{A} . Выражение $\mathfrak{A} \equiv \mathfrak{B}$ означает, что $\mathrm{Th}\,\mathfrak{A} =$ Th 33.

Если $\mathfrak A-I$ -алгебра и $a\in |\mathfrak A|$, то полагаем $\hat a \rightleftharpoons \{b\in \mathfrak A \mid b\le a\}$ и $(a)\rightleftharpoons$ $\langle \hat{a}, \cup, \cap, C^a, 0, 1^a, I_1^a, \dots, I_\lambda^a \rangle$, где $C^a(b) \rightleftharpoons a \backslash b, 1^a \rightleftharpoons a$ и $I_l^a = I_l \cap \hat{a}$ для всех $l \le \lambda$. Несложно заметить, что $\mathfrak{A}\cong(a) imes(C(a))$. Для удобства будем считать, что $\mathfrak{A}=(a) imes (C(a)).$ Если $\mathfrak{A}=\mathfrak{B} imes \mathfrak{L},$ то для удобства полагаем, что $1^{\mathfrak{B}},1^{\mathfrak{L}}\in \mathfrak{A},$ $\mathfrak{B}=(1^{\mathfrak{B}})$ и $\mathfrak{L}=(1^{\mathfrak{L}})$. Для I-алгебры $\mathfrak{A},\ a_1,\ldots,a_n\in\mathfrak{A},\ \varepsilon_1,\ldots,\varepsilon_n\in\{0,1\}$ полагаем $\bar{a}=\langle a_1,\ldots,a_n\rangle,\ \varepsilon=\langle \varepsilon_1,\ldots,\varepsilon_n\rangle\in\{0,1\}^n$ и $\bar{a}^\varepsilon=a_1^{\varepsilon_1}\cap\cdots\cap a_n^{\varepsilon_n}$, где $a_i^1 = a_i$ и $a_i^0 = C(a_i)$.

Формула $\varphi(x_1,...,x_n)$ сигнатуры σ_0 полная в теории T той же сигнатуры, если $T \cup \{\varphi(c_1,\ldots,c_n)\}$ аксиоматизирует полную теорию сигнатуры $\sigma_0 \cup$ $\{c_1, \ldots, c_n\}$, где $c_1, \ldots, c_n \notin \sigma_0$.

В [9] введена последовательность формул $V_n^{\lambda}(x), n \in \mathbb{N}$. Поскольку λ зафиксировано, вместо $V_n^{\lambda}(x)$ будем писать $V_n(x)$.

Пусть даны формулы P(x) и Q(x) с одной свободной переменной сигнатуры σ_{λ} . Следуя [9], пишем

P < Q, если $T_{\lambda} \vdash (\forall x)(Q(x) \rightarrow (\exists y \leq x)P(y));$ $P \not< Q,$ если $T_{\lambda} \vdash (\forall x)(Q(x) \rightarrow (\forall y \leq x) \neg P(y));$

 $P \ll Q$, если для любого натурального числа $l \in \mathbb{N}$ выполнено

$$T_{\lambda} \vdash (\forall x) \Big(Q(x) \to (\exists x_1 \dots \exists x_l) \Big(\Big(\bigwedge_{i \leq l} x_i \leq x \Big) \& \Big(\bigwedge_{i \neq j} x_i \cap x_j = 0 \Big) \& \Big(\bigwedge_{i \leq l} P(x_i) \Big) \Big) \Big).$$

Формула P(x) называется сплошной, если

$$T_{\lambda} \vdash (\forall x)(P(x) \rightarrow (\exists y \leq x)(P(y)\&P(x \setminus y))).$$

Формула P(x) называется точечной, если

$$T_{\lambda} \vdash (\forall x)(P(x) \rightarrow (\forall y \leq x)(P(y) \rightarrow (\forall z \leq x \setminus y) \neg P(z))).$$

Формула P(x) называется неисчезающей, если

$$T_{\lambda} \vdash (\forall x)(P(x) \rightarrow (\forall y \leq x)(P(y) \lor P(x \setminus y))).$$

Предложение [9]. (a) Для каждого $n \in \mathbb{N}$ формула $V_n(x)$ неисчезающая.

(б) Для каждого $n \in \mathbb{N}$ формула $V_n(x)$ либо точечная, либо сплошная.

Предложение [9]. Для любых натуральных чисел m < n выполнены следующие условия:

- (a) $V_n \not< V_m$,
- (б) $V_m \ll V_n$ либо $V_m \not < V_n$,
- (в) $V_m \ll V_n$ тогда и только тогда, когда $V_m < V_n$.

Для каждой I-алгебры $\mathfrak A$ и элемента $a\in\mathfrak A$ в [9] определена характеристика $r_a:\mathbb N\to\{0\}\cup\mathbb N\cup\{\infty\}$ элемента a следующим образом:

- $r_a(n) \rightleftharpoons 0$, если $\mathfrak{A} \models (\forall x \leq a) \neg V_n(x)$;
- $r_a(n) \rightleftharpoons 1$, если V_n сплошная формула и $\mathfrak{A} \models (\exists x \leq a) V_n(x)$;
- $r_a(n) \rightleftharpoons m$, если V_n точечная формула и m наибольшее число такое, что $\mathfrak{A} \models \Psi_m(a)$, где $\Psi_m(a) \rightleftharpoons (\exists x_1 \ldots \exists x_m \leq a) ig(\underbrace{\&}_{i \neq j} (x_i \cap x_j = 0) \& \underbrace{\&}_{i \leq m} V_n(x_i) ig);$
 - $r_a(n)=\infty,$ если V_n точечная и $\mathfrak{A}\models \Psi_m(a)$ для любого $m\in \mathbb{N}.$

Для I-алгебры $\mathfrak A$ введем следующие обозначения: $r_{\mathfrak A} \rightleftharpoons r_{\mathfrak A}$; $M(a) \rightleftharpoons \{k \in \mathbb N \mid \mathfrak A \models (\exists x \leq a) V_k(x)\}$; $M(r_a) \rightleftharpoons M(a)$; $M(\mathfrak A) \rightleftharpoons M(r_{\mathfrak A}) \rightleftharpoons M(\mathfrak A)$; $N(a) \rightleftharpoons \{n \in M(a) \mid V_n \not< V_m$ для любого $m \in M(a)$, $m \neq n\}$; $N(r_a) \rightleftharpoons N(a)$ $N(\mathfrak A) \rightleftharpoons N(r_{\mathfrak A}) \rightleftharpoons N(\mathfrak A)$.

Определение 5. Функция $r:\mathbb{N}\to\mathbb{N}\cup\{\infty\}$ называется естественной, если выполнены следующие условия:

- а) если V_n сплошная формула, то $r(n) \le 1$;
- б) если $V_m < V_n$ и $r(n) \neq 0$, то $r(m) \neq 0$, причем если формула $V_m(x)$ точечная, то $r(m) = \infty$.

Теорема [9]. Функция r естественна тогда и только тогда, когда $r=r_{\mathfrak{A}}$ для некоторой I-алгебры \mathfrak{A} .

Определение 6 [9]. I-алгебра $\mathfrak A$ называется локальной, если множество $M(\mathfrak A)$ конечно. Элемент $a \in \mathfrak A$ называется локальным, если M(a) конечно.

Естественная функция $r: \mathbb{N} \to \mathbb{N} \cup \{\infty\}$ называется локальной, если множество $M(r) \rightleftharpoons \{l \in \mathbb{N} \mid r(l) \neq 0\}$ конечно. Обозначим $N(r) \rightleftharpoons \{n \in M(r) \mid V_n \not< V_m$ для любого $m \in M(r), m \neq n\}$.

Предложение [9]. Утверждение $r_x(k) = l$ записывается одной формулой от свободной переменной x.

Предложение [9]. Пусть r — локальная естественная функция.

- (а) Если для любого $n \in N(r)$ выполнено $r(n) < \infty$, то утверждение $r_x = r$ записывается одной формулой $\varphi(x)$.
- (б) Утверждение $r_x = r$ записывается перечислимым множеством формул $\{\varphi_n(x) \mid n \in \mathbb{N}\}.$
 - (в) Утверждение N(x) = N(r) записывается одной формулой $\psi(x)$.

Теорема [9]. Если $\mathfrak A$ и $\mathfrak B$ — произвольные локальные I-алгебры, то $\mathfrak A \equiv \mathfrak B$ тогда и только тогда, когда $r_{\mathfrak A} = r_{\mathfrak B}$.

В [10] получено достаточное условие простоты модели теории I-алгебр.

Теорема [10]. Пусть для любого элемента $b \in \mathfrak{A}$ счетной I-алгебры \mathfrak{A} выполнены следующие условия:

(a) если b локальный, то для любого $l \in N(b)$ равенство $r_b(l) = \infty$ влечет $r_{C(b)}(l) < \infty;$

(б) если b нелокальный, то его дополнение C(b) локально. Тогда $\mathfrak A$ — простая модель.

Замечание [10]. Условие (а) теоремы является необходимым условием, а именно если I-алгебра $\mathfrak A$ — простая модель, $b\in \mathfrak A,\ l\in N(b),\ r_b(l)=\infty$ и b локальный, то $r_{C(b)}(l)<\infty$.

Следствие. Пусть $\mathfrak A$ — локальная счетная I-алгебра. Тогда $\mathfrak A$ — простая модель в том и только том случае, когда для каждого $b \in \mathfrak A$ и любого $l \in N(b)$ если $r_b(l) = \infty$, то $r_{C(b)}(l) < \infty$.

Теорема [10]. Теория $Th(\mathfrak{A})$ произвольной локальной I-алгебры \mathfrak{A} имеет простую модель.

Следующее утверждение дает необходимые и достаточные условия существования неавтоэквивалентных сильных конструктивизаций данной модели \mathfrak{A} .

Теорема (критерий Нуртазина) [6]. Пусть (\mathfrak{A}, μ) — сильно конструктивная модель полной теории T. Тогда эквивалентны следующие условия:

- (1) $\mathfrak A$ не автоустойчива относительно сильных конструктивизаций;
- (2) не существует конечной последовательности \bar{a} элементов модели \mathfrak{A} такой, что \mathfrak{A} простая модель теории T(a) и семейство множеств атомов булевых алгебр $F_n(T(\bar{a}))$ вычислимо;
- (3) существует сильно вычислимое семейство моделей $(\mathfrak{A}, \mu_0), \dots, (\mathfrak{A}, \mu_s), \dots$, члены которого попарно элементарно конструктивно не вложимы друг в друга;
- (4) не существует сильно вычислимого семейства моделей сигнатуры Σ , содержащего все сильные конструктивизации модели \mathfrak{A} .

В дальнейшем потребуется эквивалентность пп. (1) и (2). Приведем более подходящую для наших целей формулировку этого утверждения.

Теорема [16]. Разрешимая модель $\mathfrak A$ автоустойчива относительно сильных конструктивизаций тогда и только тогда, когда для некоторого набора констант c_1, \ldots, c_l модель $(\mathfrak A, c_1, \ldots, c_l)$ простая и множества $\{\varphi(x_1, \ldots, x_n) \mid \varphi(x_1, \ldots, x_n) -$ полная формула теории $\mathrm{Th}(\mathfrak A, c_1, \ldots, c_l)\}$ вычислимо перечислимы равномерно по $n \in \omega$.

3. Автоустойчивость булевых алгебр с выделенными идеалами относительно сильных конструктивизаций

Определение 7. Пусть $\mathfrak A$ — произвольная I-алгебра и $a\in \mathfrak A$. Элементы a_1,\dots,a_n называются pas buehuem элемента a, если $a=a_1\cup\dots\cup a_n,$ $a_i\cap a_j=0$ при $i\neq j$ и $a_i\neq 0$ для всех $i\leq n$.

Замечание 1. Пусть \mathfrak{A} и \mathfrak{C} — произвольные I-алгебры, $a_1, \ldots, a_n \in \mathfrak{A}$, $c_1, \ldots, c_n \in \mathfrak{C}, \ k = 2^n, \ \{\varepsilon_1, \ldots, \varepsilon_k\} = \{0,1\}^n, \ b_i = \bar{a}^{\varepsilon_i}, \ d_i = \bar{c}^{\varepsilon_i}, \ i \leq k$. При этих условиях $f: (\mathfrak{A}, \bar{a}) \to (\mathfrak{C}, \bar{c})$ — элементарное вложение тогда и только тогда, когда $f: (\mathfrak{A}, \bar{b}) \to (\mathfrak{C}, \bar{d})$ — элементарное вложение.

Доказательство. (\Rightarrow) Пусть $f:(\mathfrak{A},\bar{a})\to(\mathfrak{C},\bar{c})$ — элементарное вложение. Рассмотрим формулу $\varphi(x_1,\ldots,x_m)$ и $u_1,\ldots,u_m\in\mathfrak{A}$. Предположим, что $(\mathfrak{A},\bar{b})\models\varphi(\bar{u})$. Рассмотрим формулу φ^1 , полученную из φ заменой всех вхождений констант b_i соответствующим термом \bar{a}^{ε_i} . Индукцией по длине формулы непосредственно доказывается, что $(\mathfrak{A},\bar{b})\models\varphi(\bar{u})\Leftrightarrow(\mathfrak{A},\bar{a})\models\varphi^1(\bar{u})$.

Обозначим $f(\bar{u}) = (f(u_1), \dots, f(u_m))$. Так как f — элементарное вложение, $(\mathfrak{C}, \bar{c}) \models \varphi^1(f(\bar{u}))$. Следовательно, $(\mathfrak{C}, \bar{d}) \models \varphi(f(\bar{u}))$.

 (\Leftarrow) Доказательство аналогично, поскольку константы $a_i, i \leq n$, тоже термально выражаются через b_1, \ldots, b_k .

Замечание 1 доказано.

Следствие 1. Пусть $\mathfrak A$ — произвольная I-алгебра, $a_1,\dots,a_n\in \mathfrak A$ и $b_i=\bar a^{\varepsilon_i},$ $i\leq 2^n.$

 (\mathfrak{A}, \bar{a}) — простая модель тогда и только тогда, когда (\mathfrak{A}, b) — простая модель.

Доказательство. (\Rightarrow) Предположим, что (\mathfrak{A}, \bar{a}) — простая модель. Докажем, что (\mathfrak{A}, \bar{b}) — простая модель. В самом деле, пусть $(\mathfrak{C}, \bar{d}) \equiv (\mathfrak{A}, \bar{b})$. Рассмотрим $c_1, \ldots, c_n \in \mathfrak{C}$ такие, что $d_i = \bar{c}^{\varepsilon_i}$ для $\varepsilon_i \in \{0,1\}^n$, а именно пусть элементы c_1, \ldots, c_n термально выражаются через d_1, \ldots, d_{2^n} точно так же, как элементы a_1, \ldots, a_n через b_1, \ldots, b_{2^n} . Индукцией по длине формул доказывается, что в модели (\mathfrak{A}, \bar{a}) истинны те же самые предложения, что и в модели (\mathfrak{C}, \bar{c}) . Следовательно, $(\mathfrak{A}, \bar{a}) \equiv (\mathfrak{C}, \bar{c})$. Тогда существует элементарное вложение $f: (\mathfrak{A}, \bar{a}) \to (\mathfrak{C}, \bar{c})$. В силу доказанного замечания $f: (\mathfrak{A}, \bar{b}) \to (\mathfrak{C}, \bar{d})$ также элементарное вложение. Следовательно, (\mathfrak{A}, \bar{b}) — простая модель.

(⇐) Доказывается аналогично.

Следствие 1 доказано.

ОПРЕДЕЛЕНИЕ 8. Пусть $f: (\mathfrak{A}, \bar{a}) \to (\mathfrak{B}, \bar{b})$ — изоморфное вложение, $c \in \mathfrak{A}$ и d = f(c). Тогда отображение $f^c: (c) \to (d)$ такое, что $f^c(e) = f(e)$ для всех $e \in (c)$, назовем *отображением*, индуцированным f на алгебре (c).

Предложение 1. Пусть \mathfrak{A} и \mathfrak{B} — произвольные I-алгебры, a_1, \ldots, a_n — разбиение $1^{\mathfrak{A}}$ и b_1, \ldots, b_n — разбиение $1^{\mathfrak{B}}$. Тогда $f: (\mathfrak{A}, \bar{a}) \to (\mathfrak{B}, \bar{b})$ — элементарное вложение в том и только том случае, когда для каждого $i \leq n$ отображение $f^{a_i}: (a_i) \to (b_i)$ — элементарное вложение I-алгебр.

Доказательство. (\Rightarrow) Пусть $f:(\mathfrak{A},\bar{a})\to(\mathfrak{B},\bar{b})$ — элементарное вложение. Для $d_1,\ldots,d_k\in\mathfrak{A}$ обозначим $f(\bar{d})=(f(d_1),\ldots,f(d_k))$. Зафиксируем $i\leq n$. Докажем, что $(a_i)\models\varphi(\bar{d})\Leftrightarrow(b_i)\models\varphi(f(\bar{d}))$ для любой формулы φ сигнатуры I-алгебр σ_λ и любых $d_1,\ldots,d_n\in(a_i)$. Рассмотрим формулу φ_1 сигнатуры $\sigma_\lambda\cup\{c_1,\ldots,c_n\}$, полученную из формулы φ заменой всех подформул вида $\forall y\psi$ и $\exists y\psi$ формулами $\forall y((y\leq c_i)\to\psi)$ и $\exists y((y\leq c_i)\&\psi)$ соответственно. Тогда для формулы

$$\varphi^*(\bar{x}) = \varphi_1(\bar{x}) \underbrace{\&}_{x_j \in FV(\varphi_1)} (x_j \le c_i),$$

где $FV(\varphi)$ — множество свободных переменных формулы φ , выполнено

 $(a_i) \models \varphi(\bar{d}) \Leftrightarrow (\mathfrak{A}, \bar{a}) \models \varphi^*(\bar{d}) \Leftrightarrow (\mathfrak{B}, \bar{b}) \models \varphi^*(f(\bar{d})) \Leftrightarrow (b_i) \models \varphi(f(\bar{d})).$ Таким образом, $(a_i) \models \varphi(\bar{d}) \Leftrightarrow (b_i) \models \varphi(f(\bar{d}))$. Следовательно, f^{a_i} — элементарное вложение.

 (\Leftarrow) Пусть $f^{a_i}:(a_i)\to (b_i)$ — элементарное вложение. Заметим, что для отображения $f:(\mathfrak{A},\bar{a})\to (\mathfrak{B},\bar{b})$ и произвольного $d\in\mathfrak{A}$ выполнено $f(d)=f^{a_1}(d\cap a_1)\cup\cdots\cup f^{a_n}(d\cap a_n)$. Константы c_1,\ldots,c_n на прямых сомножителях $(a_1),\ldots,(a_n)$ алгебраической системы (\mathfrak{A},\bar{a}) и на прямых сомножителях $(b_1),\ldots,(b_n)$ алгебраической системы (\mathfrak{B},\bar{b}) означиваются следующим образом:

на (a_i) $c_i = 1$ и $c_j = 0$ при $i \neq j$;

на (b_i) $c_i = 1$ и $c_j = 0$ при $i \neq j$.

При таком означивании $(\mathfrak{A}, \bar{a}) = ((a_1), \bar{c}) \times \cdots \times ((a_n), \bar{c})$ и $(\mathfrak{B}, \bar{b}) = ((b_1), \bar{c}) \times \cdots \times ((b_n), \bar{c})$. Поскольку f^{a_i} осуществляет элементарное вложение $(a_i) \to (b_i)$, очевидно, f^{a_i} осуществляет элементарное вложение $((a_i), \bar{c}) \to ((b_i), \bar{c})$. Можно считать, что $f = f^{a_1} \times \cdots \times f^{a_n} : ((a_1), \bar{c}) \times \cdots \times ((a_n), \bar{c}) \to ((b_1), \bar{c}) \times \cdots \times ((b_n), \bar{c})$. Тогда f является элементарным вложением $((a_1), \bar{c}) \times \cdots \times ((a_n), \bar{c}) \to ((b_1), \bar{c}) \times \cdots \times ((b_n), \bar{c})$, т. е. f — элементарное вложение $(\mathfrak{A}, \bar{a}) \to (\mathfrak{B}, \bar{b})$. Предложение 1 доказано.

Определение 9. Модель \mathfrak{A} называется *почти простой*, если для некоторых $a_1, \ldots, a_n \in \mathfrak{A}$ модель (\mathfrak{A}, \bar{a}) — простая модель в обогащенной константами сигнатуре.

Предложение 2. Пусть $\mathfrak A$ — произвольная счетная I-алгебра. Тогда $\mathfrak A$ — почти простая модель в том и только том случае, когда $\mathfrak A$ разлагается в конечное прямое произведение простых моделей.

Доказательство. (\Rightarrow) Пусть \mathfrak{A} — почти простая модель. Тогда найдутся $d_1,\ldots,d_n\in\mathfrak{A}$ такие, что (\mathfrak{A},\bar{d}) — простая модель. Пусть $a_i=\bar{d}^{\varepsilon_i},\ \varepsilon_i\in\{0,1\}^n,$ $i\leq 2^n$. Тогда в силу следствия $1\ (\mathfrak{A},\bar{a})$ — простая модель. Обозначим $k=2^n$. Будем считать, что $(\mathfrak{A},\bar{a})=((a_1),\bar{c_1})\times\cdots\times((a_k),\bar{c_k}),\ \mathrm{rge}\ \bar{c_i}=\langle c_{i1},\ldots,c_{ik}\rangle,$ $k=2^n$ и $c_{ij}=a_i$ при i=j и $c_{ij}=0$ иначе. Следовательно, $\mathfrak{A}=(a_1)\times\cdots\times(a_k)$. Докажем, что (a_i) — простая модель. Пусть счетные модели $\mathfrak{B}_1,\ldots,\mathfrak{B}_k$ таковы, что $(\mathfrak{B}_1)\equiv(a_1),\ldots,\mathfrak{B}_k\equiv(a_k)$. Тогда $(\mathfrak{B}_1\times\cdots\times\mathfrak{B}_k,c_1,\ldots,c_k)\equiv(\mathfrak{A},\bar{a}),\ \mathrm{rge}$ константа c_i интерпретируется как $1^{\mathfrak{B}_i}$. Так как (\mathfrak{A},\bar{a}) — простая модель, существует элементарное вложение $f:(\mathfrak{A},\bar{a})\to(\mathfrak{B}_1\times\cdots\times\mathfrak{B}_k,\bar{c})$. Стало быть, в силу предложения 1 существуют элементарные вложения $f_i:(a_i)\to\mathfrak{B}_i$. Следовательно, (a_i) — простая модель для любого $i\leq k$.

 (\Leftarrow) Пусть $\mathfrak{A}=\mathfrak{A}_1\times\cdots\times\mathfrak{A}_n$, причем \mathfrak{A}_i — простая модель для любого $i\leq n$. Докажем, что (\mathfrak{A},\bar{a}) — простая модель, где $a_i=1^{a_i}$ — единица алгебры \mathfrak{A}_i . В самом деле, пусть счетная модель (\mathfrak{B},\bar{b}) элементарно эквивалентна (\mathfrak{A},\bar{a}) . Тогда $(\mathfrak{B},\bar{b})=((b_1),\bar{c_1})\times\cdots\times((b_k),\bar{c_k})$, где $c_{ij}=b_i$ при i=j и $c_{ij}=0$ иначе. Следовательно, $(\mathfrak{B})\equiv(b_1)\times\cdots\times(b_k)$ и $(b_i)\equiv(a_i)$. Так как (a_i) простая, существует отображение $f^{a_i}:(a_i)\to(b_i)$, которое является элементарным вложением. Стало быть, существует элементарное вложение $f:(\mathfrak{A},\bar{a})\to(\mathfrak{B},\bar{b})$, определенное, как в пункте (\Leftarrow) доказательства предложения 1. Предложение 2 доказано.

Следствие 2. Теория $\operatorname{Th}(\mathfrak{A}, \bar{a})$ произвольной локальной I-алгебры \mathfrak{A} c выделенными константами a_1, \ldots, a_n имеет простую модель.

Доказательство. Теория любой локальной I-алгебры $(\bar{a}^{\varepsilon_i})$ имеет простую модель; произведение простых моделей теорий $\mathrm{Th}(\bar{a}^{\varepsilon_i})$ является почти простой моделью в сигнатуре σ_λ без констант и, следовательно, простой в сигнатуре, обогащенной константами a_1,\ldots,a_n .

Теорема 1. Пусть \mathfrak{A} — локальная I-алгебра и $a_1, \ldots, a_n \in \mathfrak{A}$. Тогда $(\mathfrak{A}, \bar{a}) \equiv (\mathfrak{B}, \bar{b})$ в том и только том случае, когда $r_{\bar{a}^{\varepsilon}} = r_{\bar{b}^{\varepsilon}}$ для всех $\varepsilon \in \{0, 1\}^n$.

ДОКАЗАТЕЛЬСТВО. (\Rightarrow) Утверждение $r_{\bar{a}^{\varepsilon_i}}(k) = l$, где $k \in \mathbb{N}$ и $l \in \mathbb{N} \cup \{\infty\}$, записывается некоторым семейством формул. Значит, из элементарной эквивалентности $(\mathfrak{A}, \bar{a}) \equiv (\mathfrak{B}, \bar{b})$ следует $r_{\bar{a}^{\varepsilon}} = r_{\bar{b}^{\varepsilon}}$.

(\Leftarrow) Пусть $r_{\bar{a}^{\varepsilon}} = r_{\bar{b}^{\varepsilon}}$ для всех $\varepsilon \in \{0,1\}^n$. Пусть $\{0,1\}^n = \{\varepsilon_1,\ldots,\varepsilon_{2^n}\}$. Обозначим $\bar{a}^{\bar{\varepsilon}} = \langle \bar{a}^{\varepsilon_1},\ldots,\bar{a}^{\varepsilon_{2^n}} \rangle$. Заметим, что $(\mathfrak{A},\bar{a}) \equiv (\mathfrak{B},\bar{b}) \Leftrightarrow (\mathfrak{A},\bar{a}^{\bar{\varepsilon}}) \equiv (\mathfrak{B},\bar{b}^{\bar{\varepsilon}})$. Будем считать, что $(\mathfrak{A},\bar{a}^{\bar{\varepsilon}}) = ((\bar{a}^{\varepsilon_1}),\bar{c_1}) \times \cdots \times ((\bar{a}^{\varepsilon_n}),\bar{c_n})$, где $\bar{c_i} = \langle c_{i1},\ldots,c_{i2^n} \rangle$, $c_{ij} = \langle c_{i1},\ldots,c_{i2^n} \rangle$

 $ar{a}^{arepsilon_i}$ при i=j и $c_{ij}=0$ иначе. Аналогично $(\mathfrak{B}, ar{b}^{ar{arepsilon}})=((ar{b}^{arepsilon_1}), ar{d}_1) imes \cdots imes ((ar{b}^{arepsilon_n}), ar{d}_n)$, где $ar{d}_i=\langle d_{i1},\ldots,d_{i2^n}\rangle,\ d_{ij}=ar{b}^{arepsilon_i}$ при i=j и $d_{ij}=0$ при $i\neq j$. В силу критерия элементарной эквивалентности локальных I-алгебр, приведенного ранее, из $r_{ar{a}^{arepsilon_i}}$ следует $(ar{a}^{arepsilon_i})\equiv (ar{b}^{arepsilon_i})$. Легко видеть, что тогда $((a^{arepsilon_i}), ar{c}_i)\equiv ((b^{arepsilon_i}), ar{d}_i)$ для любого $i\leq 2^n$. Из этого вытекает $(\mathfrak{A}, ar{a}^{ar{arepsilon}})\equiv (\mathfrak{B}, ar{b}^{ar{arepsilon}})$. Поэтому $(\mathfrak{A}, ar{a})\equiv (\mathfrak{B}, ar{b})$. Теорема 1 доказана.

Следствие 3. Теория $\mathrm{Th}(\mathfrak{A},\bar{a})$ произвольной локальной I-алгебры \mathfrak{A} c выделенными константами a_1,\ldots,a_n разрешима.

ДОКАЗАТЕЛЬСТВО. Теория ${\rm Th}(\mathfrak{A},\bar{a})$ имеет перечислимую систему аксиом, и она полна. Следовательно, ${\rm Th}(\mathfrak{A},\bar{a})$ разрешима.

Теорема 2. Пусть \mathfrak{A} — произвольная I-алгебра. Тогда если \mathfrak{A} автоустойчива относительно сильных конструктивизаций, то она разлагается в конечное прямое произведение простых моделей.

Доказательство. Пусть $\mathfrak A$ автоустойчива относительно сильных конструктивизаций. Тогда в силу критерия Нуртазина [6] она почти простая модель. Следовательно, в силу предложения 2 $\mathfrak A$ разлагается в прямое произведение конечного числа простых моделей.

Теорема 2 доказана.

Рассмотрим множество формул

$$AT_n = \left\{ \varphi(x_1, \dots, x_n) = \underbrace{\&}_{i \le 2^n} \left(\underbrace{\&}_{\substack{k \in N(r_i), \\ r_i(k) < \infty}} (r_{t_i(\bar{x})}(k) = r_i(k)) \& (N(t_i(\bar{x})) = N(r_i)) \right) \right\}$$

 $|r_1,\ldots,r_{2^n}|$ — локальные естественные функции, причем

$$\forall k \in \mathbb{N} \ \forall i \leq 2^n \ \mathrm{ec}$$
ли $k \in N(r_i)$ и $r_i(k) = \infty$, то $\forall j \neq i, \ j \leq 2^n, \ r_j(k) < \infty$

где
$$n \in \mathbb{N}, \, \{0,1\}^n = \{\varepsilon_1,\ldots,\varepsilon_{2^n}\}$$
 и $t_i(\bar{x}) \rightleftharpoons \bar{x}^{\varepsilon_i}, \, i \leq 2^n.$

Из [9] вытекает

Замечание 2. Множества формул AT_n перечислимы равномерно по n.

Напомним, что каждая элементарная теория локальной I-алгебры имеет простую модель.

Предложение 3. Множество AT_n является множеством всех атомов булевых алгебр $F_n(\operatorname{Th}(\mathfrak{A}))$ локальных I-алгебр \mathfrak{A} , а именно

- (а) для любой локальной I-алгебры \mathfrak{A} , являющейся простой моделью, любого $n \in \mathbb{N}$ и любых $a_1, \ldots, a_n \in \mathfrak{A}$ найдется формула $\varphi(x_1, \ldots, x_n) \in AT_n$ такая, что $\mathfrak{A} \models \varphi(a_1, \ldots, a_n)$ и $\varphi(x_1, \ldots, x_n)$ полная формула в теории $\operatorname{Th}(\mathfrak{A})$;
- (б) для любой $\varphi(x_1,\ldots,x_n)\in AT_n$ найдутся локальная I-алгебра \mathfrak{A} , являющаяся простой моделью, и элементы $a_1,\ldots,a_n\in \mathfrak{A}$ такие, что $\mathfrak{A}\models \varphi(a_1,\ldots,a_n)$ и $\varphi(x_1,\ldots,x_n)$ полная формула в теории $\mathrm{Th}(\mathfrak{A})$.

Доказательство. (а) Пусть $n \in \mathbb{N}$, $a_1, \ldots, a_n \in \mathfrak{A}$ и \mathfrak{A} — локальная I-алгебра, являющаяся простой моделью. Пусть $b_i = \bar{a}^{\varepsilon_i}$, $\varepsilon_i \in \{0,1\}^n$. Обозначим $r_i = r_{b_i}$. Тогда r_1, \ldots, r_{2^n} — локальные естественные функции, причем, так как \mathfrak{A} является простой моделью, в силу критерия простоты модели для любых $k \in \mathbb{N}$ и $i \leq 2^n$ если $k \in N(r_i)$ и $r_i(k) = \infty$, то для любого $j \neq i, j \leq 2^n$,

выполнено $r_j(k) < \infty$. Стало быть,

$$\varphi(\bar{x}) = \underbrace{\&}_{i \leq 2^n} \left(\underbrace{\&}_{\substack{k \in N(r_i), \\ r_i(k) < \infty}} (r_{t_i(\bar{x})}(k) = r_i(k)) \& (N(t_i(\bar{x})) = N(r_i)) \right) \in AT_n.$$

Из построения формулы $\varphi(\bar{x})$ следует, что $\mathfrak{A}\models\varphi(\bar{a})$. Докажем, что $\varphi(\bar{x})$ является полной формулой в теории $\mathrm{Th}(\mathfrak{A})$. Пусть $\psi(\bar{x})$ — произвольная формула. Докажем, что $\mathrm{Th}(\mathfrak{A})\vdash(\varphi(\bar{x})\to\psi(\bar{x}))$ или $\mathrm{Th}(\mathfrak{A})\vdash(\varphi(\bar{x})\to\neg\psi(\bar{x}))$. Без ограничения общности можно считать, что $\mathfrak{A}\models\psi(\bar{a})$. Выберем произвольную $\mathfrak{B}\equiv\mathfrak{A}$ и $u_1,\ldots,u_n\in\mathfrak{B}$ такие, что $\mathfrak{B}\models\varphi(\bar{u})$. Обозначим, $v_i=\bar{u}^{\varepsilon_i},\varepsilon_i\in\{0,1\}^n$. Докажем, что $(b_i)\equiv(v_i)$ для всех $i\leq 2^n$. Так как \mathfrak{A} — локальная I-алгебра, \mathfrak{B} и (v_i) также являются локальными I-алгебрами. Следовательно, в силу критерия элементарной эквивалентности локальных I-алгебр [9] достаточно доказать, что элементарные характеристики (b_i) и (v_i) равны. В самом деле, если $r_{b_i}(k)<\infty$, то ввиду $\mathfrak{B}\models\varphi(\bar{u})$ заключаем, что $v_{v_i}(k)=r_{b_i}(k)$.

Если $r_{b_i}(k)=\infty$ и $k\in N(b_i)$, то в силу того, что $\mathfrak A$ — простая модель, получаем $r_{b_j}(k)<\infty$ для всех $j\neq i$. Следовательно, $r_{v_j}(k)=r_{b_j}(k)$ при $j\neq i$ и $r_{\mathfrak A}(k)=\infty$. Так как $\mathfrak A\equiv \mathfrak B$, то $r_{\mathfrak B}(k)=\infty$. Учитывая то, что $r_{v_j}(k)<\infty$ при $j\neq i$, заключаем, что $r_{v_i}(k)=\infty$. Аналогично доказывается, что если $r_{v_i}(k)=\infty$ и $k\in N(v_i)$, то $r_{b_i}(k)=\infty$. Таким образом, характеристики равны, т. е. $r_{v_i}=r_{b_i}$. Значит, $(v_i)\equiv (b_i)$ для всех $i\leq 2^n$. Отсюда следует, что $(\mathfrak A,\bar b)\equiv (\mathfrak B,\bar v)$. Стало быть, поскольку $\mathfrak A\models \psi(\bar a)$, $\mathfrak B\models \psi(\bar u)$. Так как модель $\mathfrak B\equiv \mathfrak A$ и элементы $u_1,\ldots,u_n\in \mathfrak B$ выбраны произвольно, $\mathrm{Th}(\mathfrak A)\vdash (\varphi(\bar x)\to\psi(\bar x))$. Следовательно, $\varphi(\bar x)$ — полная формула относительно $\mathrm{Th}(\mathfrak A)$, поэтому класс эквивалентности $[\varphi(\bar x)]$ является атомом в булевой алгебре $F_n(\mathrm{Th}(\mathfrak A))$.

(б) Пусть $\varphi(\bar{x}) \in AT_n$ и r_1, \ldots, r_{2^n} — естественные локальные функции из определения формулы $\varphi(\bar{x})$, удовлетворяющие условию: $\forall k \in \mathbb{N} \ \forall i \leq 2^n$ если $k \in N(r_i)$ и $r_i(k) = \infty$, то $r_j(k) < \infty$ для всех $j \neq i, j \leq 2^n$.

Обозначим через \mathfrak{A}_i локальную I-алгебру, являющуюся простой моделью, для которой $r_{\mathfrak{A}_i} = r_i$. Докажем, что алгебра $\mathfrak{A} = \mathfrak{A}_1 \times \cdots \times \mathfrak{A}_{2^n}$ — простая модель. Для каждого числа $i \leq 2^n$ через a_i обозначим единицу алгебры \mathfrak{A}_i , т. е. кортеж, у которого на i-м месте стоит 1, а на остальных местах — 0. Рассмотрим элемент $b \in \mathfrak{A}$ и число l такие, что $r_b(l) = \infty$ и $l \in N(b)$. Пусть $b_i = b \cap a_i$ для всех $i \leq 2^n$. Тогда для некоторого числа $j \leq 2^n$ выполнено, что $r_{b_j}(l) = \infty$, значит, $l \in N(b_j)$. Так как \mathfrak{A}_j — простая модель, то $r_{a_j \setminus b_j}(l) < \infty$. Следовательно, $l \in N(a_j)$. Последнее влечет $r_{a_i}(l) < \infty$ при $i \neq j, i \leq 2^n$. Легко видеть, что тогда $r_{c(b)}(l) < \infty$. Стало быть, \mathfrak{A} — простая модель. Кроме того, формула $\varphi(\bar{x})$ реализуется на \mathfrak{A} . Аналогично п. (а) доказывается, что $\varphi(\bar{x})$ полная в $Th(\mathfrak{A})$.

Предложение 3 доказано.

Пусть $\sigma_{\lambda}^c = \langle \cup, \cap, C, 0, 1, I_1, \dots, I_{\lambda}, c_1, \dots, c_l \rangle$ и $n \in \mathbb{N}$. Определим следующее множество формул сигнатуры σ_{λ}^c :

$$AT_n^l = \Big\{ \psi(x_1, \dots, x_n) = \bigotimes_{i < 2^l} \varphi_i^*(x_1 \cap \bar{c}^{\varepsilon_i}, \dots, x_n \cap \bar{c}^{\varepsilon_i}) \mid \varphi_i(x_1, \dots, x_n) \in AT_n \Big\},\,$$

где φ_i^* — релятивизация формулы φ_i относительно замкнутого терма \bar{c}^{ε_i} , а именно φ_i^* получена из φ_i в результате замены всех вхождений подформул вида $\forall x \psi$ на $\forall x ((x \leq \bar{c}^{\varepsilon_i}) \to \psi)$, $\exists x \psi$ — на $\exists x ((x \leq \bar{c}^{\varepsilon_i}) \& \psi)$, термов C(t) — на $(\bar{c}^{\varepsilon_i} \setminus t)$ и 1 — на \bar{c}^{ε_i} .

Замечание 3. Множества формул AT_n^l перечислимы равномерно по n.

Предложение 4. Множество AT_n^l является множеством всех атомов булевых алгебр $F_n(\operatorname{Th}(\mathfrak{A},\bar{a}))$ локальных I-алгебр \mathfrak{A} с выделенным набором констант a_1,\ldots,a_l , а именно

- (а) для любой локальной I-алгебры $\mathfrak A$ c выделенным набором констант $a_1,\ldots,a_l\in \mathfrak A$, являющейся простой моделью, и любых $b_1,\ldots,b_n\in \mathfrak A$ найдется формула $\varphi(x_1,\ldots,x_n)\in AT_n^l$ такая, что $(\mathfrak A,\bar a)\models \varphi(b_1,\ldots,b_n)$ и $\varphi(x_1,\ldots,x_n)$ полная формула в $\mathrm{Th}(\mathfrak A,\bar a)$;
- (б) для любой формулы $\varphi(x_1, \dots, x_l) \in AT_n^l$ найдутся локальная I-алгебра (\mathfrak{A}, \bar{a}) с выделенным набором констант, являющаяся простой моделью, и набор элементов $b_1, \dots, b_n \in \mathfrak{A}$ такой, что $(\mathfrak{A}, \bar{a}) \models \varphi(b)$ и $\varphi(x_1, \dots, x_n)$ полная формула в теории $\operatorname{Th}(\mathfrak{A}, \bar{a})$.

Доказательство. (а) Пусть (\mathfrak{A}, \bar{a}) — простая модель и $d_1, \ldots, d_n \in \mathfrak{A}$. Обозначим $\{\varepsilon_1, \ldots, \varepsilon_{2^l}\} = \{0,1\}^l$. Пусть $\varphi_i(\bar{x})$ — полная формула из AT_n , реализующаяся на кортеже $\langle d_1 \cap \bar{a}^{\varepsilon_i}, \ldots, d_n \cap \bar{a}^{\varepsilon_i} \rangle$ в модели $(\bar{a}^{\varepsilon_i})$. Тогда рассмотрим формулу $\varphi(\bar{x}) = \underset{i \leq 2^l}{\&} \varphi_i^*(x_1 \cap \bar{c}^{\varepsilon_i}, \ldots, x_n \cap \bar{c}^{\varepsilon_i})$.

По построению $\varphi(\bar{x}) \in AT_n^l$. Так как для каждого $i \leq 2^l$ справедливо $(\bar{a}^{\varepsilon_i}) \models \varphi_i(d_1 \cap \bar{a}^{\varepsilon_i}, \dots, d_n \cap \bar{a}^{\varepsilon_i})$, для каждого $i \leq 2^l$ выполнено $(\mathfrak{A}, \bar{a}) \models \varphi_i^*(d_1 \cap \bar{a}^{\varepsilon_i}, \dots, d_n \cap \bar{a}^{\varepsilon_i})$. Тем самым $(\mathfrak{A}, \bar{a}) \models \varphi(\bar{d})$. Покажем, что формула $\varphi(\bar{x})$ полная. Рассмотрим формулу $\psi(\bar{x})$ такую, что $(\mathfrak{A}, \bar{a}) \models \psi(\bar{d})$. Пусть $(\mathfrak{B}, \bar{b}) \equiv (\mathfrak{A}, \bar{a})$, $u_1, \dots, u_n \in \mathfrak{B}$ и $(\mathfrak{B}, \bar{b}) \models \varphi(\bar{u})$. Тогда $((\bar{a}^{\varepsilon_i}), d_1 \cap \bar{a}^{\varepsilon_i}, \dots, d_n \cap \bar{a}^{\varepsilon_i}) \equiv ((\bar{b}^{\varepsilon_i}), u_1 \cap \bar{b}^{\varepsilon_i}, \dots, u_n \cap \bar{b}^{\varepsilon_i})$ для всех $i \leq 2^l$. Следовательно, $(\mathfrak{A}, \bar{a}, \bar{d}) \equiv (\mathfrak{B}, \bar{b}, \bar{u})$. Стало быть, $(\mathfrak{B}, \bar{b}) \models \psi(\bar{u})$. Поэтому $\mathrm{Th}(\mathfrak{A}, \bar{a}) \vdash (\varphi(\bar{x}) \to \psi(\bar{x}))$. Таким образом, формула $\varphi(\bar{x})$ полная в теории $\mathrm{Th}(\mathfrak{A}, \bar{a})$.

(б) Доказывается аналогично п. (б) предложения 3.

Следствие 4. Для любой локальной I-алгебры $\mathfrak A$ и произвольных $a_1,\ldots,a_l\in\mathfrak A$ множества $\{\varphi(x_1,\ldots,x_n)\mid \varphi(x_1,\ldots,x_n)-$ полная формула теории $\mathrm{Th}(\mathfrak A,a_1,\ldots,a_l)\}$ вычислимы равномерно по $n\in\omega.$

Напомним, что теория $\mathrm{Th}(\mathfrak{A},\bar{a})$ произвольной локальной I-алгебры с выделенными константами имеет простую модель.

Предложение 5. Простая модель теории $Th(\mathfrak{A}, \bar{a})$, где \mathfrak{A} — локальная I-алгебра, сильно конструктивизируема.

Доказательство. Теория $\operatorname{Th}(\mathfrak{A}, \bar{a})$ разрешима, и семейство множеств атомов булевых алгебр $F_n(\operatorname{Th}(\mathfrak{A}, \bar{a}))$ вычислимо. Следовательно, по теореме Гончарова [17] простая модель теории $\operatorname{Th}(\mathfrak{A}, \bar{a})$ имеет сильную конструктивизацию.

Следствие 5. Если локальная I-алгебра является почти простой моделью, то она сильно конструктивизируема.

Теорема 3. Пусть \mathfrak{A} — счетная локальная I-алгебра. Тогда \mathfrak{A} автоустойчива относительно сильных конструктивизаций в том и только том случае, когда \mathfrak{A} разлагается в прямое произведение конечного числа простых моделей.

Доказательство. (\Rightarrow) Следует из теоремы 1.

 (\Leftarrow) Пусть $\mathfrak A$ разлагается в прямое произведение конечного числа простых моделей. Тогда для некоторых $a_1,\ldots,a_l\in\mathfrak A$ алгебра $(\mathfrak A,\bar a)$ является простой моделью. Значит, $\mathfrak A$ сильно конструктивизируема, и множества $\{\varphi(x_1,\ldots,x_n)\mid \varphi(x_1,\ldots,x_n)$ — полная формула теории $\mathrm{Th}(\mathfrak A,c_1,\ldots,c_l)\}$ вычислимо перечислимы равномерно по $n\in\omega$. Используя критерий автоустойчивости относительно сильных конструктивизаций [16], получаем требуемое.

Теорема 3 доказана.

Следствие 6. Если $Th(\mathfrak{A})$ счетно-категорична, то счетная I-алгебра \mathfrak{A} автоустойчива относительно сильных конструктивизаций тогда и только тогда, когда \mathfrak{A} разлагается в прямое произведение конечного числа простых моделей.

Доказательство. Любая счетно-категоричная I-алгебра локальна в силу классификации счетно-категоричных I-алгебр [9]. Апеллируя к теореме 3, получаем требуемое.

Следствие 7. Если $\mathrm{Th}(\mathfrak{A})$ конечно аксиоматизируема, то счетная I-алгебра \mathfrak{A} автоустойчива относительно сильных конструктивизаций тогда и только тогда, когда \mathfrak{A} разлагается в прямое произведение конечного числа простых моделей.

Доказательство. В силу классификации конечно аксиоматизируемых I-алгебр [8] любая конечно аксиоматизируемая I-алгебра локальна.

Следствие 8. Пусть \mathfrak{A} — счетная булева алгебра. Тогда \mathfrak{A} автоустойчива относительно сильных конструктивизаций тогда и только тогда, когда \mathfrak{A} разлагается в прямое произведение конечного числа простых моделей.

Доказательство. Пусть \mathfrak{A} — произвольная булева алгебра. Обозначим через $\mathrm{ch}(\mathfrak{A})=(\mathrm{ch}_1(\mathfrak{A}),\mathrm{ch}_2(\mathfrak{A}),\mathrm{ch}_3(\mathfrak{A}))$ элементарную характеристику булевой алгебры \mathfrak{A} . Если $\mathrm{ch}_1(\mathfrak{A})<\infty$, то \mathfrak{A} является локальной I-алгеброй с нулевым идеалом, и утверждение следует из теоремы \mathfrak{A} . Пусть $\mathrm{ch}(\mathfrak{A})=(\infty,0,0)$. Тогда достаточно доказать, что если \mathfrak{A} представима в виде прямого произведения конечного числа простых моделей, то \mathfrak{A} автоустойчива относительно сильных конструктивизаций. Пусть $\sigma_l=\langle \cup, \cap, C, 0, 1, c_1, \dots, c_l \rangle$. Доказательство почти дословно повторяет доказательство теоремы \mathfrak{A} , нужно только внести изменения в множество полных формул AT_n для случая булевых алгебр (без выделенных констант). Для случая булевой алгебры характеристики $(\infty,0,0)$ рассмотрим формулы вида $\varphi_i(x_1,\dots,x_n)=\underbrace{\&}_{j\leq 2^n,j\neq i}(\mathrm{ch}(t_i(x))=(k_i,l_i,m_i))$, где $i\leq 2^n,k_i,l_i\in\mathbb{N}, m_i\in\{0,1\}, t_i(\bar{x})=\bar{x}^{\varepsilon_i}$ и $\{\varepsilon_1,\dots,\varepsilon_{2^n}\}=\{0,1\}^n$. Формула $\varphi_i(\bar{x})$ означает, что $\mathrm{ch}(\bar{x}^{\varepsilon_i})=(\infty,0,0)$ (это следует из того, что $\mathrm{ch}(\mathfrak{A})=(\infty,0,0)$), а у остальных элементов \bar{x}^{ε_i} при $j\neq i$ характеристика конечна: $\mathrm{ch}(\bar{x}^{\varepsilon_j})=(k_i,l_i,m_i)$. Напомним, что при этом $1=\bar{x}^{\varepsilon_1}\cup\dots\cup\bar{x}^{\varepsilon_{2^n}}$ и элементы \bar{x}^{ε_j} попарно не пересекаются. Следствие 8 доказано.

Следствие 9. Если $\mathfrak A$ — счетная суператомная булева алгебра с одним выделенным идеалом, то $\mathfrak A$ автоустойчива относительно сильных конструктивизаций тогда и только тогда, когда $\mathfrak A$ разлагается в прямое произведение конечного числа простых моделей.

Доказательство. Суператомные булевы алгебры с одним выделенным идеалом локальны, кроме одного элементарного типа, имеющего бесконечную характеристику. Для него доказательство аналогично доказательству следствия 8.

Следствие 9 доказано.

Авторы выражают признательность С. С. Гончарову за полезные обсуждения.

ЛИТЕРАТУРА

1. Мальцев А. И. Конструктивные алгебры. І // Успехи мат. наук. 1961. Т. 16, № 3. С. 3–60.

- **2.** *Мальцев А. И.* О рекурсивных абелевых группах // Докл. АН СССР. 1962. Т. 146, № 5. С. 1009–1012.
- Ершов Ю. Л. Конструктивные модели // Избранные вопросы алгебры и логики. Новосибирск: Наука, 1973. С. 111–130.
- 4. Morley M. D. Decidable models // Israel J. Math. 1976. V. 25, N 3-4. P. 233-240.
- 5. Гончаров С. С., Ершов Ю. Л. Конструктивные модели. Новосибирск: Науч. книга, 1999.
- Нуртазин А. Т. Сильные и слабые конструктивизации и вычислимые семейства // Алгебра и логика. 1974. Т. 13, № 3. С. 311–323.
- Ершов Ю. Л. Разрешимость элементарной теории дистрибутивных структур с относительными дополнениями и теории фильтров // Алгебра и логика. 1964. Т. 3, № 3. С. 17–38.
- 8. Пальчунов Д. Е. Конечно-аксиоматизируемые булевы алгебры с выделенными идеалами // Алгебра и логика. 1987. Т. 26, № 4. С. 435–455.
- 9. Pal'chunov D. E. Countably-categorical Boolean algebras with distinguished ideals // Stud. Logica. 1987. V. 46, N 2. P. 121–135.
- 10. Пальчунов Д. Е. Простые и счетно-насыщенные булевы алгебры с выделенными идеалами // Тр. Ин-та математики СО РАН. 1993. Т. 25. С. 82–103.
- Пальчунов Д. Е. Теории булевых алгебр с выделенными идеалами, не имеющие простой модели // Тр. Ин-та математики СО РАН. 1993. Т. 25. С. 104–132.
- Гончаров С. С., Дзгоев В. Д. Автоустойчивость моделей // Алгебра и логика. 1980. Т. 19, № 1. С. 45–58.
- LaRoche P. Recursively represented Boolean algebras // Notices Amer. Math. Soc. 1977.
 V. 24. P. A-552.
- **14.** *Когабаев Н. Т.* Автоустойчивость булевых алгебр с выделенным идеалом // Сиб. мат. журн. 1998. Т. 39, № 5. С. 1074–1084.
- **15.** Алаев П. Е. Автоустойчивые *I*-алгебры // Алгебра и логика. 2004. Т. 43, № 5. С. 511–550.
- Goncharov S., Khoussainov B. Open problems in the theory of constructive algebraic systems // Contemp. Math. 2000. V. 257. P. 145–170.
- Гончаров С. С. Счетные булевы алгебры и разрешимость. Новосибирск: Науч. книга, 1996.

Cтатья поступила 26 апреля 2014 г.

Пальчунов Дмитрий Евгеньевич Институт математики им. С. Л. Соболева СО РАН, пр. Академика Коптюга, 4, Новосибирск 630090 palch@math.nsc.ru

Трофимов Александр Викторович Новосибирский гос. университет, ул. Пирогова, 2 Новосибирск 630090 Tr0f@mail.ru

Турко Алена Игоревна Новосибирский гос. университет, ул. Пирогова, 2 Новосибирск 630090 alenaturko@gmail.com