УНИВЕРСАЛЬНЫЕ ФУНКЦИИ И ПОЧТИ c-ПРОСТЫЕ МОДЕЛИ

А. Н. Хисамиев

Аннотация. Введено понятие почти c-простой модели и доказано существование универсальной Σ -функции в наследственно конечной надстройке над такой моделью. Построены семейства почти c-простых деревьев и эквивалентностей.

 $DOI\,10.17377/smzh.2015.56.316$

Ключевые слова: наследственно конечное допустимое множество, универсальная Σ -функция, почти c-простая модель, дерево, эквивалентность.

В настоящее время общепризнанно, что одним из важных обобщений понятия вычислимости является Σ-определимость (обобщенная вычислимость) в допустимых множествах. Это обобщение дало возможность исследовать проблемы вычислимости над произвольными алгебраическими системами, например, над полем вещественных чисел. В [1,2] понятие Σ -определимости позволило сформулировать новую концепцию теоретического программирования, так называемое семантическое программирование, в которой программа является одновременно своей же спецификацией, а исполнение ее сводится к проверке истинности утверждения на алгебраической системе. Наиболее важные результаты по теории вычислимости в допустимых множествах и их применение в теоретической информатике (семантическое программирование, динамическая логика, теория эффективных f-пространств и т. д.) приведены в монографии Ю. Л. Ершова [3], в которой отмечена важность следующего направления дальнейших исследований: «для лучшего понимания общей природы вычислимости (конструктивной познаваемости) следует дальше развить (понять) вычислимость в допустимых множествах вида $\mathbb{HF}(\mathfrak{A})$ — наследственно конечной надстройке над системой 🎗, где 🎗 является либо моделью достаточно простой теории, либо одним из классических объектов, таким, например, как поле \mathbb{R} вещественных чисел» [3, с. 12].

Одним из принципиальных результатов классической теории вычислимости является существование универсальной частично вычислимой функции. Как известно (см. [3]), в любом допустимом множестве конечной сигнатуры существует универсальный Σ -предикат, но это неверно для Σ -функций. В [4] построена модель $\mathfrak M$ такая, что в наследственно конечном допустимом множестве $\mathbb H\mathbb F(\mathfrak M)$ не существует универсальной Σ -функции. Поэтому представляет интерес нахождение условия на модель $\mathfrak M$ для существования универсальной Σ -функции в наследственно конечной надстройке $\mathbb H\mathbb F(\mathfrak M)$ над $\mathfrak M$. Отметим,

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта АНФ а 13–01–91001) и Совета по грантам президента РФ и государственной поддержке ведущих научных школ (код проекта НШ–860.2014.1).

что существование универсальной Σ-функции дает возможность в семантическом программировании получить универсальный язык программирования для Σ -функций на основе Σ -программ. В [3] доказано, что если \mathfrak{M} — модель разрешимой и модельно полной теории, то в $\mathbb{HF}(\mathfrak{M})$ существует универсальная Σ -функция. В [5–7] для одного класса K моделей найдены необходимые и достаточные условия для существования универсальной Σ -функции в $\mathbb{HF}(\mathfrak{M})$, где $\mathfrak{M} \in K$. В [8] установлено, что наследственно конечная списочная надстройка $\mathbb{HW}(\mathbb{R}_{\mathrm{exp}})$ над полем вещественных чисел с экспонентой удовлетворяет свойству униформизации, и как следствие получено существование универсальной Σ-функции в такой надстройке. Справедливость свойства униформизации для наследственно конечных надстроек $\mathbb{HF}(\mathbb{R})$ и $\mathbb{HF}(\mathbb{Q}_p)$ над полями вещественных и p-адических показана в [9,10]. В [11] построена абелева группа без кручения A такая, что в $\mathbb{HF}(A)$ не существует универсальной Σ -функции. В [12,13]введено понятие Σ -ограниченной модели и получено необходимое и достаточное условие для существования универсальной Σ-функции в наследственно конечной надстройке над такой моделью. Доказано, что любой линейный порядок, алгебра Ершова и абелева p-группа являются Σ -ограниченными моделями и в наследственно конечных надстройках над ними существуют универсальные Σ функции. В [14, 15] введено понятие Σ-однородной модели, дано необходимое и достаточное условие для существования универсальной функции в наследственно конечных надстройках над такими моделями и приведены примеры Σ -однородных абелевых групп и колец. В [16] построено дерево T высоты 4 такое, что в $\mathbb{HF}(T)$ не существует универсальной Σ -функции.

В [3] введено понятие простой теории, которая в [17] названа c-простой, т. е. разрешимая, модельно полная, ω -категоричная теория с разрешимым множеством полных формул называется c-простой.

В данной работе введено понятие почти c-простой модели и доказано существование универсальной Σ -функции в наследственно конечной надстройке над такой моделью. Построены семейства почти c-простых деревьев и эквивалентностей.

Рассматриваются модели конечных предикатных сигнатур. Заметим, что это ограничение не мешает рассматривать сигнатуры с операциями. Действительно, каждую сигнатурную операцию можно естественным способом заменить предикатом, который интерпретируется как график этой операции. Отметим, что при переходе от операциональных сигнатур к соответствующим чисто предикатным сигнатурам и обратно класс Σ -определимых отношений не изменяется.

Мы придерживаемся терминологии и обозначений по допустимым множествам из [3] и [12], по деревьям — из [18]. Напомним лишь некоторые из них.

Пусть $\mathfrak{M}, \mathfrak{N}$ — модели сигнатуры σ_0 , основные множества которых обозначаются через M, N соответственно; $\mathfrak{M}_0 \leq \mathfrak{M}$ означает, что \mathfrak{M}_0 — подмодель $\mathfrak{M};$ если $A \subseteq M$, то под A будем понимать подмодель $\langle A, \sigma_0 \mid A \rangle \leq \mathfrak{M};$ $M^{<\omega}$ — множество всех конечных последовательностей элементов из M; $lh \vec{a}$ — длина последовательности $\vec{a};$ если $\vec{a}_0, \ldots, \vec{a}_{k-1}, \vec{b}_0, \ldots, \vec{b}_{k-1} \in M^{<\omega}$, то отношение « $\varphi: \langle \vec{a}_0, \ldots, \vec{a}_{k-1} \rangle \to \langle \vec{b}_0, \ldots, \vec{b}_{k-1} \rangle$ — изоморфизм» означает, что $\varphi: \bigcup \operatorname{sp} \vec{a}_i \to \bigcup \operatorname{sp} \vec{b}_i$ — изоморфизм относительно сигнатуры $\sigma_0, \varphi \vec{a}_i = \vec{b}_i, i < k$, где $\varphi(a_0^i, \ldots, a_k^{i-1}) = \langle \varphi a_0^i, \ldots, \varphi a_i^{k-1} \rangle$.

Под *допустимым множеством* A будем понимать KPU-модель, у которой множество Ord A всех ординалов вполне упорядочено. Функция в A, график

которой определяется некоторой Σ -формулой в \mathbb{A} , называется Σ - ϕ ункцией.

Двухместная частичная Σ -функция $g(x,y):A^2\to A$ называется универсальной для семейства одноместных частичных Σ -функций в допустимом множестве \mathbb{A} , если семейство $\{\lambda y \ g(a,y) \mid a \in A\}$ состоит из всех одноместных частичных Σ -функций.

Важным классом допустимых множеств является класс наследственно конечных допустимых множеств вида $\mathbb{HF}(\mathfrak{M})$ — наследственно конечная надстройка над моделью \mathfrak{M} . Пусть $\mathscr{P}_{\omega}(X)$ — множество всех конечных подмножеств множества X.

Наследственно конечная надстройка $\mathbb{HF}(\mathfrak{M})$ над алгебраической системой $\mathfrak{M}=\langle M,\sigma_0\rangle$ определяется как алгебраическая система $\langle M\cup HF(M),U,\in,\varnothing,\sigma_0\rangle$ сигнатуры $\sigma_1=\langle U,\in,\varnothing,\sigma_0\rangle$, где

$$HF(M) = \bigcup_{n \in \omega} HF_n(M), \quad HF_0(M) = \varnothing,$$

$$HF_{n+1}(M) = \mathscr{P}_{\omega}(M \cup HF_n(M)),$$

и предикат U выделяет множество элементов модели \mathfrak{M} (*праэлементов*), а отношение \in и константа \varnothing имеют обычные теоретико-множественные смыслы.

Напомним, что носитель $\operatorname{sp} u$ элемента $u \in \mathbb{HF}(\mathfrak{M})$ определяется так: если $u \in M$, то $\operatorname{sp} u = \{u\}$. Пусть $u = \{x_0, \dots, x_s\}$, тогда $\operatorname{sp} u = \bigcup_{i=1}^s \operatorname{sp} x_i$. Элементами множества ω в $\mathbb{HF}(\mathfrak{M})$ являются ординалы.

Пусть S_m — множество всех подстановок множества $\{0,\ldots,m-1\}$, если m>0, и S_0 — множество, состоящее из тождественной подстановки множества $\{0\}$. Пусть дана последовательность $\vec{x}=\langle x_0,\ldots,x_{m-1}\rangle,\ lh\,\vec{x}=m,$ и $\sigma\in S_m$. Тогда $\vec{x}_\sigma=\langle x_{\sigma(0)},\ldots,x_{\sigma(m-1)}\rangle,\ \varnothing_\sigma=\varnothing$. Если $\varkappa(0,\ldots,m-1)\in HF(\omega),$ то $S_\varkappa=\{\sigma\in S_m\mid \varkappa(0,\ldots,m-1)=\varkappa(\sigma(0),\ldots,\sigma(m-1))\}$. Слово «вложение» означает «изоморфное вложение».

$\S 1$. Почти *с*-простые модели

Здесь введено понятие почти c-простой модели и доказано существование универсальной Σ -функции в наследственно конечной надстройке над такой моделью.

Пусть дана модель \mathfrak{M} конечной сигнатуры σ_0 и для каждого конечного подмножества $M_0 \subseteq M$ существует однозначно определенное конечное подмножество $[M_0] \subseteq M$ такое, что $M_0 \subseteq [M_0]$ и $[[M_0]] = [M_0]$. Множество $[M_0]$ называется замыканием множества M_0 . Если $[M_0] = M_0$, то M_0 назовем замкнутым множеством.

Определение 1.1. Пусть для модели \mathfrak{M} конечной сигнатуры σ_0 и ее подмодели $\mathfrak{N} \leq \mathfrak{M}$ справедливы следующие условия.

- 1. \mathfrak{N} модель с-простой теории T, и ее носитель N является Σ -подмножеством в $\mathbb{HF}(\mathfrak{M})$.
- 2. В $\mathbb{HF}(\mathfrak{N})$ существуют Σ -формулы без параметров, определяющие Δ -предикат $\mathfrak{B}\subseteq\mathscr{P}_{\omega}(N)\times\mathscr{P}_{\omega}(N)$, для которого справедливо

$$\mathbb{HF}(\mathfrak{N}) \models \mathfrak{B}(x, y \cup z) \& x \subseteq y, x \subseteq z \to \mathfrak{B}(x, y) \& \mathfrak{B}(x, z).$$

3. Модель ${\mathfrak M}$ локально вложима в ${\mathfrak N}$.

Пусть $A\subseteq M,\, B\subseteq N$ и $\alpha:A\to B$ — изоморфизм. Тогда

- (а) если A замкнуто, то для любого конечного $A^1 \supseteq A$ существует вложение $\psi: A^1 \to \mathfrak{N}$, продолжающее α , такое, что $\mathbb{HF}(\mathfrak{N}) \models \mathfrak{B}(B, \psi A^1)$;
- (b) если вложения $\varphi^{\varepsilon}: A^{\varepsilon} \to \mathfrak{N}, A^{\varepsilon} \supseteq A, \varepsilon < 2$, продолжают α и $\mathbb{HF}(\mathfrak{N}) \models \mathfrak{B}(B, \varphi^{\varepsilon} A^{\varepsilon})$, то существует вложение $\psi: (A^0 \cup A^1) \to \mathfrak{N}$, продолжающее α , для которого $\mathbb{HF}(\mathfrak{N}) \models \mathfrak{B}(B, \psi(A^0 \cup A^1))$;
- (c) для любого $B^1 \supseteq B$ такого, что $\mathbb{HF}(\mathfrak{N}) \models \mathfrak{B}(B, B^1)$, существует вложение $\psi: B^1 \to \mathfrak{M}$, продолжающее α^{-1} .

Тогда \mathfrak{M} назовем *почти с-простой моделью*.

Теорема 1.1. В наследственно конечной надстройке $\mathbb{HF}(\mathfrak{M})$ над почти с-простой моделью \mathfrak{M} существует универсальная Σ -функция.

Для доказательства теоремы нам потребуются следующие леммы. Для любой Σ -формулы $\Phi(\vec{b},u,v)=\exists w\Phi_0^{(w)}(\vec{b},u,v)$ введем формулу

$$\Phi^*(\vec{b}, u, v, e) = \Phi_0^{(e)}(\vec{b}, u, v) \& \mathfrak{B}(\operatorname{sp} \vec{b}, \operatorname{sp} e \cup \operatorname{sp} \vec{b} \cup \operatorname{sp} u \cup \operatorname{sp} v).$$

Лемма 1.1. Пусть $\vec{a} \in M^{<\omega}$, $\vec{b} \in N^{<\omega}$, $\alpha : \vec{a} \to \vec{b}$ — изоморфизм и Σ-формула $\Phi(\vec{a}, x, z) = \exists d\Phi_0^{(d)}(\vec{a}, x, z)$ с параметром \vec{a} определяет функцию f в $\mathbb{HF}(\mathfrak{M})$. Тогда формула $\exists e\Phi^*(\vec{b}, u, v, e)$ с параметром \vec{b} определяет некоторую Σ-функцию $g_{\Phi,\alpha}$ в $\mathbb{HF}(\mathfrak{M})$.

ДОКАЗАТЕЛЬСТВО. Пусть $\mathbb{HF}(\mathfrak{N}) \models \Phi^*(\vec{b}, u^{\varepsilon}, v^{\varepsilon}, e^{\varepsilon}), \, \varepsilon < 2, \, \text{и} \, u^0 = u^1$. Тогда существуют конечные подмножества $N^{\varepsilon} = \operatorname{sp} e^{\varepsilon} \cup \operatorname{sp} \vec{b} \cup \operatorname{sp} u^{\varepsilon} \cup \operatorname{sp} v^{\varepsilon}$ такие, что

$$\mathbb{HF}(N^{\varepsilon}) \models \exists e^{\varepsilon} \Phi_0^{(e^{\varepsilon})}(\vec{b}, u^{\varepsilon}, v^{\varepsilon})$$
 (1)

и $\mathbb{HF}(\mathfrak{N}) \models \mathfrak{B}(\operatorname{sp}\vec{b},N^{\varepsilon})$. По условию $3(\operatorname{b})$ существует вложение $\psi_1:N^0\cup N^1\to\mathfrak{N}$ такое, что $\psi_1(\vec{b})=\vec{b}$ и $\mathbb{HF}(\mathfrak{N})\models \mathfrak{B}(\operatorname{sp}\vec{b},\psi_1(N^0\cup N^1))$. Пусть $N_0=\psi_1(N^0\cup N^1)$. По условию $3(\operatorname{c})$ существует вложение $\psi:N_0\to\mathfrak{M}$, для которого $\psi(\vec{b})=\vec{a}$. Пусть ψ_1^* и ψ^* — естественное продолжение вложений ψ_1 и ψ в наследственно конечную надстройку над $N^0\cup N^1$ и N_0 соответственно. Тогда из (1) вытекает $\mathbb{HF}(\mathfrak{M})\models \Phi(\vec{a},\psi^*\psi_1^*u^{\varepsilon},\psi^*\psi_1^*v^{\varepsilon})$. Так как $\psi^*\psi_1^*u^0=\psi^*\psi_1^*u^1$ и формула Φ определяет функцию в $\mathbb{HF}(\mathfrak{M})$, имеем $\psi^*\psi_1^*v^0=\psi^*\psi_1^*v^1$, т. е. $v^0=v^1$. Таким образом, формула $\exists e\Phi^*(\vec{b},u,v,e)$ определяет некоторую функцию $g_{\Phi,\alpha}$ в $\mathbb{HF}(\mathfrak{N})$. \square

Следующая лемма непосредственно вытекает из определения c-простой теории.

Лемма 1.2. Пусть T-c-простая теория. Тогда существует сильно вычислимая последовательность $\{P_n\}_{n\in\omega}$, где P_n- множество номеров не T-эквивалентных полных \exists -формул от переменных $\vec{x}=\langle x_0,\ldots,x_{n-1}\rangle$, содержащее все с точностью до T-эквивалентности полные формулы от переменных \vec{x} .

Пусть $\vec{a}=\langle a_0,\dots,a_{n-1}\rangle\in M^n$ и $D_{\vec{a}}(a_0,\dots,a_{n-1})$ — диаграмма подмодели $\langle\operatorname{sp}\vec{a},\sigma_0\rangle$. Через $D_{\vec{a}}(\vec{x})$ обозначим формулу, полученную из $D_{\vec{a}}(\vec{a})$ заменой a_i на x_i . Пусть \mathfrak{N} — счетная модель c-простой теории с основным множеством N. Для любых кортежей $\vec{b},\vec{u}\in N^{<\omega}$ и $m=lh\,\vec{b}+lh\,\vec{u}$ введем формулу

$$I(K, \vec{b}, \vec{u}) = \forall \varphi \in KD_{\vec{b}, \vec{u}}(\vec{b}, \varphi \vec{u}) \& \forall s \in P_m(\exists \vec{u}^0(D_{\vec{b}, \vec{u}}(\vec{b}, \vec{u}^0) \& \Phi_s(\vec{b}, \vec{u}^0))$$

$$\to \exists \varphi^0 \in K(\Phi_s(\vec{b}, \varphi^0 \vec{u}) \& \forall \varphi^1 \in K(\varphi^0 \neq \varphi^1 \to \neg \Phi_s(\vec{b}, \varphi^1 \vec{u}))).$$

Легко проверить, что для любых $\vec{b}, \vec{u} \in N^{<\omega}$ предикат I определяет конечное множество изоморфизмов K, мощность которого равна мощности полных

формул, совместных с $D_{\vec{b},\vec{u}}(\vec{x})$. Поскольку теория T модельно полна и разрешима, эффективно находится Σ -формула с параметрами \vec{b},\vec{u} , определяющая предикат I.

Для любых Σ -формул $\Phi(\vec{a},x,z)=\exists d\Phi_0^{(d)}(\vec{a},x,z),\ \Psi(\vec{b},u,v)$ и изоморфизма $\alpha:\vec{a}\to\vec{b}$ введем формулу

$$\begin{split} \Xi_{\Psi,\Phi,\alpha}(x,z) &= \exists d \big(\Phi_0^{(d)}(\vec{a},x,z) \ \& \ \exists \varkappa \, \exists \tau \, \exists \rho \, \exists \vec{x} \, \exists \vec{d} \, \exists \vec{u} \, \exists \vec{v} \, \exists \vec{e} \, \exists \varphi(\varkappa,\tau,\rho \in HF(\omega)) \\ \& \ x &= \varkappa(\vec{x}) \ \& \ z = \tau(\vec{z}) \ \& \ d = \rho(\vec{d}) \ \& \ \vec{x}, \vec{z}, \vec{d} \in M^{<\omega} \ \& \ \vec{u}, \vec{v}, \vec{e} \in N^{<\omega} \\ \& \ D_{\langle \vec{a}, \vec{x}, \vec{z}, \vec{d} \rangle}(\langle \vec{b}, \vec{u}, \vec{v}, \vec{e} \rangle) \ \& \ \mathbb{HF}(\mathfrak{N}) \models [\Phi^*(\vec{b}, \varkappa(\vec{u}), \tau(\vec{v}), \rho(\vec{e})) \ \& \ \Psi(\vec{b}, \varkappa(\vec{u}), \tau(\vec{v})) \\ \& \ \exists K(I(K, \vec{b}, \langle \vec{u}, \vec{v}, \vec{e} \rangle) \ \& \ \forall \varphi \in K(\mathfrak{B}(\operatorname{sp}\vec{b}, \operatorname{sp}\varphi\vec{e} \cup \operatorname{sp}\vec{b} \cup \operatorname{sp}\varphi\vec{u} \cup \operatorname{sp}\varphi\vec{v}) \\ & \to \Psi(\vec{b}, \varkappa(\varphi\vec{u}), \tau(\varphi\vec{v}))))] \big). \end{split}$$

Лемма 1.3. Пусть модели \mathfrak{M} , \mathfrak{N} удовлетворяют условиям определения 1.1. Тогда справедливы следующие утверждения.

- 1. Пусть Σ -формула $\Psi(\vec{b},u,v)$ с параметром $\vec{b} \in N^{<\omega}$ определяет функцию g в $\mathbb{HF}(\mathfrak{N})$. Тогда для любых $\vec{a} \in M^{<\omega}$, изоморфизма $\alpha: \vec{a} \to \vec{b}$ и Σ -формулы $\Phi(\vec{a},x,z) = \exists d\Phi_0^{(d)}(\vec{a},x,z)$ формула $\Xi_{\Psi,\Phi,\alpha}(x,z)$ определяет некоторую Σ -функцию $f_{\Psi,\Phi,\alpha}$ в $\mathbb{HF}(\mathfrak{M})$.
- 2. Пусть функция f определена Σ -формулой $\Phi(\vec{a}, x_1, x_2) = \exists d\Phi_0^{(d)}(\vec{a}, x_1, x_2)$ в $\mathbb{HF}(\mathfrak{M})$ с параметром \vec{a} , sp \vec{a} замкнуто, $\alpha: \vec{a} \to \vec{b}$ изоморфизм, и функция $g_{\Phi,\alpha}(u,v)$, введенная в лемме 1.1 по функции f, определена формулой $\Psi(\vec{b},u,v)$. Тогда функция $f_{\Psi,\Phi,\alpha}$, определенная по Ψ,Φ,α , как в п. (1), расширяет функцию f.

Доказательство. Докажем утверждение 1. Пусть

$$\mathbb{HF}(\mathfrak{M}) \models \Xi_{\Psi,\Phi,\alpha}(\varkappa^{\varepsilon}(\vec{x}^{\varepsilon}), \tau^{\varepsilon}(\vec{z}^{\varepsilon})), \quad \varepsilon < 2, \tag{2}$$

И

$$\varkappa^0(\vec{x}^0) = \varkappa^1(\vec{x}^1),\tag{3}$$

т. е.

$$\kappa^0 = \kappa^1 \rightleftharpoons \varkappa, \quad \vec{x}^1 = \vec{x}^0_{\sigma}$$
(4)

для некоторой подстановки $\sigma \in S_{\varkappa}$. Докажем, что $\tau^0(\vec{z}^0) = \tau^1(\vec{z}^1)$. Из (2) следует, что существуют изоморфизмы $\varphi_{\varepsilon} : \langle \vec{a}, \vec{x}^{\varepsilon}, \vec{z}^{\varepsilon}, \vec{d}^{\varepsilon} \rangle \to \langle \vec{b}, \vec{u}^{\varepsilon}, \vec{v}^{\varepsilon}, \vec{e}^{\varepsilon} \rangle$ такие, что

$$\mathbb{HF}(\mathfrak{N}) \models \Phi^*(\vec{b}, \varkappa(\vec{u}^{\varepsilon}), \tau^{\varepsilon}(\vec{v}^{\varepsilon}), \rho^{\varepsilon}(e^{\varepsilon})) \& \Psi(\vec{b}, \varkappa(\vec{u}^{\varepsilon}), \tau^{\varepsilon}(\vec{v}^{\varepsilon})) \\
\& \exists K^{\varepsilon}(I(K^{\varepsilon}, \vec{b}, \langle \vec{u}^{\varepsilon}, \vec{v}^{\varepsilon}, \vec{e}^{\varepsilon} \rangle) \& \forall \varphi \in K^{\varepsilon}(\mathfrak{B}(\operatorname{sp} \vec{b}, \operatorname{sp} \varphi \vec{e}^{\varepsilon} \cup \operatorname{sp} \vec{b} \cup \operatorname{sp} \varphi \vec{u}^{\varepsilon} \cup \operatorname{sp} \varphi \vec{v}^{\varepsilon}) \\
& \to \Psi(\vec{b}, \varkappa(\varphi \vec{u}^{\varepsilon}), \tau^{\varepsilon}(\varphi \vec{v}^{\varepsilon})))). \quad (5)$$

Отсюда и из определения формулы Φ^* следует, что для φ_{ε} справедливы требования условия 3(b), а потому существует изоморфизм

$$\psi: \langle \vec{a}, \vec{x}^0, \vec{x}^1, \vec{z}^0, \vec{z}^1, \vec{d}^0, \vec{d}^1 \rangle \to \langle \vec{b}, \vec{u}_0^0, \vec{u}_0^1, \vec{v}_0^0, \vec{v}_0^1, \vec{e}_0^0, \vec{e}_0^1 \rangle \tag{6}$$

такой, что $\mathbb{HF}(\mathfrak{N}) \models \mathfrak{B}(\operatorname{sp}\vec{b},\operatorname{sp}\vec{e}_0^0 \cup \operatorname{sp}\vec{e}_0^1 \cup \operatorname{sp}\vec{u}_0^0 \cup \operatorname{sp}\vec{u}_0^1 \cup \operatorname{sp}\vec{u}_0^1 \cup \operatorname{sp}\vec{v}_0^1 \cup \operatorname{sp}\vec{v}_0^1)$. Отсюда и из условия 2 определения 1.1 вытекает, что

$$\mathbb{HF}(\mathfrak{N}) \models \mathfrak{B}(\operatorname{sp}\vec{b}, \operatorname{sp}\vec{e}_0^{\varepsilon} \cup \operatorname{sp}\vec{b} \cup \operatorname{sp}\vec{u}_0^{\varepsilon} \cup \operatorname{sp}\vec{v}_0^{\varepsilon}). \tag{7}$$

Так как $\mathbb{HF}(\mathfrak{N}) \models D_{\vec{b},\langle \vec{u}^0,\vec{v}^0,\vec{e}^0\rangle}(\vec{b},\psi \circ \varphi_0^{-1}\langle \vec{u}^0,\vec{v}^0,\vec{e}^0\rangle)$, существуют $\varphi \in K^0$ и полная формула, истинная на элементах $\langle \vec{b},\varphi\vec{u}^0,\varphi\vec{v}^0,\varphi\vec{e}^0\rangle$ и $\langle \vec{b},\vec{u}^0_0,\vec{v}^0_0,\vec{e}^0_0\rangle$. Отсюда и из (7) получим

$$\mathbb{HF}(\mathfrak{N}) \models \mathfrak{B}(\operatorname{sp}\vec{b}, \operatorname{sp}\varphi\vec{e}^0 \cup \operatorname{sp}\vec{b} \cup \operatorname{sp}\varphi\vec{u}^0 \cup \operatorname{sp}\varphi\vec{v}^0). \tag{8}$$

Из (8) и (5) имеем

$$\mathbb{HF}(\mathfrak{N}) \models \Psi(\vec{b}, \varkappa(\varphi \vec{u}^0), \tau^0(\varphi \vec{v}^0)).$$

Стало быть,

$$\mathbb{HF}(\mathfrak{N}) \models \Psi(\vec{b}, \varkappa(\vec{u}_0^0), \tau^0(\vec{v}_0^0)). \tag{9}$$

Из (4), (6) следует, что $\psi:\langle \vec{a}, \vec{x}^1, \vec{z}^0, \vec{z}^1, \vec{d}^0, \vec{d}^1 \rangle \rightarrow \left\langle \vec{b}, (\vec{u}^0_0)_\sigma, \vec{v}^0_0, \vec{v}^1_0, \vec{e}^0_0, \vec{e}^1_0 \right\rangle$ также изоморфизм. Поэтому аналогично (9)

$$\mathbb{HF}(\mathfrak{N}) \models \Psi(\vec{b}, \varkappa((\vec{u}_0^0)_{\sigma}), \tau^1(\vec{v}_0^1)). \tag{10}$$

Так как формула Ψ определяет функцию, из (3), (4), (9), (10) получим $\tau^0(\vec{v}_0^0) = \tau^1(\vec{v}_0^1)$. Отсюда согласно (6) вытекает требуемое равенство $\tau^0(\vec{z}^0) = \tau^1(\vec{z}^1)$, т. е. утверждение (1) доказано.

Докажем утверждение 2. Пусть f(x) = z. Достаточно доказать, что в $\mathbb{HF}(\mathfrak{M})$ выполнена формула $\Xi_{\Psi,\Phi,\alpha}(x,z)$. Так как f определяется формулой Φ , справедливо $\mathbb{HF}(\mathfrak{M}) \models \exists d\Phi_0^{(d)}(\vec{a},x,z)$. Пусть $x = \varkappa(\vec{x}), \ z = \tau(\vec{z}), \ d = \rho(\vec{d}), \ \varkappa, \tau, \rho \in HF(\omega), \ \vec{x}, \ \vec{z}, \ \vec{d} \in M^{<\omega}$. Поскольку sp \vec{a} замкнуто, по условию 3(a) существует вложение ψ : sp $\vec{a} \cup$ sp $\vec{z} \cup$ sp $\vec{d} \rightarrow \mathfrak{N}$, продолжающее α , для которого

$$\mathbb{HF}(\mathfrak{N}) \models \Phi^*(\vec{b}, \varkappa(\psi\vec{x}), \tau(\psi\vec{z}), \rho(\psi\vec{d})). \tag{11}$$

Положим $\vec{u} = \psi \vec{x}$, $\vec{v} = \psi \vec{z}$, $\vec{e} = \psi \vec{d}$. Тогда из (11) следует $g_{\Phi,\alpha}(\varkappa(\vec{u})) = \tau(\vec{v})$, т. е. $\mathbb{HF}(\mathfrak{N}) \models \Psi(\vec{b},\varkappa(\vec{u}),\tau(\vec{v}))$. Пусть множество K и изоморфизм $\varphi \in K$ такие, что $\mathbb{HF}(\mathfrak{N}) \models I(K,\vec{b},\langle\vec{u},\vec{v},\vec{e}\rangle)$ & $\mathfrak{B}(\operatorname{sp}\vec{b},\operatorname{sp}\varphi\vec{e}\cup\operatorname{sp}\vec{b}\cup\operatorname{sp}\varphi\vec{u}\cup\operatorname{sp}\varphi\vec{v})$. Тогда $\mathbb{HF}(\mathfrak{N}) \models \Phi^*(\vec{b},\varkappa(\varphi\vec{u}),\tau(\varphi\vec{v}),\rho(\varphi\vec{e}))$, поэтому $\mathbb{HF}(\mathfrak{N}) \models \Psi(\vec{b},\varkappa(\varphi\vec{u}),\tau(\varphi\vec{v}))$, следовательно, в $\mathbb{HF}(\mathfrak{M})$ истинна формула $\Xi_{\Psi,\Phi,\alpha}(x,z)$. \square

Замечание 1.1. Пусть $\Phi_u(x_0, x_1)$ — универсальный Σ -предикат в $\mathbb{HF}(\mathfrak{M})$, определенный теоремой 2.6.2 из [3]. Из доказательства этой теоремы вытекает, что для любой Σ -формулы $\Phi(\vec{a}, x)$, $\vec{a} \in M^{<\omega}$, справедлива эквивалентность $\Phi(\vec{a}, x) \equiv \Phi_u(\langle n, \vec{a} \rangle, x)$ для всех значений x в $\mathbb{HF}(\mathfrak{M})$ при некотором $n \in \omega$.

Замечание 1.2. Поскольку \mathfrak{N} — модель c-простой теории, а следовательно, регулярной теории, из доказательства теоремы 3.5.1 [3] и замечания 1.1 следует, что существует Σ -формула $\Psi_{\mathfrak{N}}(u_0,u_1,u_2)$ сигнатуры σ_1 , определяющая универсальную функцию в $\mathbb{HF}(\mathfrak{N})$ и такая, что для любой Σ -функции, заданной Σ -формулой с параметром $\vec{b} \in N^{<\omega}$, формула $\Psi_{\mathfrak{N}}(\langle m, \vec{b} \rangle, u_1, u_2)$ также определяет эту функцию при некотором $m \in \omega$.

Доказательство теоремы. Покажем, что следующая формула определяет универсальную Σ -функцию в $\mathbb{HF}(\mathfrak{M})$:

$$\begin{split} & \Phi_{\mathfrak{M}}(x_{0}, x_{1}, x_{2}) = \exists s \exists m \exists n \exists \vec{a} \exists \vec{b} \exists \alpha (x_{0} = \langle s, m, n, \alpha \rangle \& s, m, n \in \omega \& \vec{a} \in M^{<\omega} \\ \& \vec{b} \in N^{\omega} \& D_{\vec{a}}(\vec{b}) \& \alpha(\vec{a}) = \vec{b} \& \Xi_{\Psi_{\mathfrak{M}}(\langle m, \vec{b} \rangle, u_{1}, u_{2}), \Phi_{s}, \alpha}(x_{1}, x_{2}) \& \Phi_{u}(\langle n, \vec{a} \rangle, x_{1})), \end{split}$$

где $\Phi_s(\vec{a},x,z) - \Sigma$ -формула номера s вида $\exists d\Phi_0^{(d)}(\vec{a},x,z), \, \Psi_{\mathfrak{N}}(u_0,u_1,u_2)$ определена в замечании 1.2, а $\Phi_u(x_0,x_1)$ — в замечании 1.1.

Пусть дана произвольная Σ-функция f, которая в $\mathbb{HF}(\mathfrak{M})$ определяется Σ-формулой $\Phi(\vec{a},x_1,x_2)=\exists d\Phi_0^{(d)}(\vec{a},x_1,x_2)$ с параметром \vec{a} . Не умаляя общности рассуждений, можно считать, что sp \vec{a} замкнуто. По условию 3 из определение 1.1 существуют \vec{b} и изоморфизм $\alpha:\vec{a}\to\vec{b}$. По лемме 1.1 формула $\exists e\Phi^*(\vec{b},u_1,u_2,e)$ определяет Σ-функцию $g_{\Phi,\alpha}$ в $\mathbb{HF}(\mathfrak{M})$. По замечанию 1.2 функция $g_{\Phi,\alpha}$ определяется формулой $\Psi_{\mathfrak{M}}(\langle m,\vec{b}\rangle,u_1,u_2)$ в $\mathbb{HF}(\mathfrak{M})$ при некотором $m\in\omega$. Пусть формула $\Phi(\vec{a},x_1,x_2)$ имеет номер s, а число n такое, что $x\in\delta f\Leftrightarrow\mathbb{HF}(\mathfrak{M})\models\Phi_u(\langle n,\vec{a}\rangle,x)$. Тогда по лемме 1.3 формула $\Phi_{\mathfrak{M}}(\langle s,m,n,\alpha\rangle,x_1,x_2)$ определяет в $\mathbb{HF}(\mathfrak{M})$ функцию f.

Пусть дана произвольная последовательность $\langle s, m, n, \alpha \rangle$, где $s, m, n \in \omega$, $\alpha : \vec{a} \to \vec{b}$ — изоморфизм. Формула $\Psi_{\mathfrak{N}}(\langle m, \vec{b} \rangle, u_1, u_2)$ определяет некоторую функцию g в $\mathbb{HF}(\mathfrak{N})$. По лемме 1.3 формула $\Phi_{\mathfrak{M}}(\langle s, m, n, \alpha \rangle, x_1, x_2)$ определяет некоторую Σ -функцию в $\mathbb{HF}(\mathfrak{M})$. Теорема доказана. \square

Приведем пример модели \mathfrak{M} теории эквивалентности такой, что в $\mathbb{HF}(\mathfrak{M})$ отсутствует универсальная Σ -функция и в то же время для \mathfrak{M} справедливы все условия определения почти c-простой модели, кроме условия 3(c). В качестве такого примера возьмем модель $\mathfrak{M} = \langle M, Q_0, Q_1 \rangle$, построенную в [4] (см. также [3, с. 149]). Она определена следующими условиями:

- а) Q_0, Q_1 отношения эквивалентности на M и $Q_1 \subseteq Q_0$;
- b) для любого $[x]_{Q_0}$ эквивалентных $x \in M$ элементов справедлива одна из следующих альтернатив:

 $[x]_{Q_0}$ есть объединение бесконечного числа Q_1 -классов эквивалентных элементов, которые состоят точно из двух (трех) элементов;

с) существует бесконечно много попарно не Q_0 -эквивалентных элементов $x \in M$ таких, что $[x]_{Q_0}$ содержит Q_1 -классы точно с двумя элементами; существует бесконечно много попарно не Q_0 -эквивалентных элементов $x \in M$ таких, что $[x]_{Q_0}$ содержит Q_1 -классы точно с тремя элементами.

Пусть \mathfrak{N} — подмодель \mathfrak{M} , которая получена объединением всех Q_0 -классов таких, что они состоят из Q_1 -классов, содержащих точно три элемента.

Тогда справедливо

Предложение 1.1. Для моделей $\mathfrak{N} \leq \mathfrak{M}$ справедливы все условия определения почти *с*-простой модели, кроме условия 3(c).

ДОКАЗАТЕЛЬСТВО состоит в проверке справедливости условий 1–3(b) определения 1.1 почти c-простой модели.

1. Легко проверить, что Σ-формула

$$N(x) = \exists y_0 \exists y_1 \exists y_2 \Big(\bigwedge_{i < 3} (xQ_1y_i) \& \bigwedge_{i < j < 3} (y_i \neq y_j) \Big)$$

определяет N в $\mathbb{HF}(\mathfrak{M})$.

2. Для определения формулы $\mathfrak B$ введем предикат $\mathfrak B_0(X,Z)$ в модели $\mathbb H\mathbb F(\mathfrak N),$ положив

$$\mathfrak{B}_0(X,Z) \rightleftharpoons X \subseteq Z \subseteq N \& \forall z \in Z \exists x \in X(xQ_1z)$$

$$\& \forall x \in X \exists z_0 \exists z_1 \exists z_2 \Big(\bigwedge_i (z_i \in Z \& xQ_1z_i) \& \bigwedge_{i < j < 3} (z_i \neq z_j) \Big).$$

Искомый предикат $\mathfrak{B}(X,Y)$ в $\mathbb{HF}(\mathfrak{N})$ определим формулой

$$\mathfrak{B}(X,Y) \rightleftharpoons Y \subseteq N \& \exists Z(\mathfrak{B}_0(X,Z) \& Y \cap Z = X),$$

т. е. Y — конечное подмножество N такое, что любой элемент $y \in Y \setminus X$ не Q_1 -эквивалентен любому элементу $x \in X$.

Пусть $X\subseteq M,\,|X|<\omega.$ Тогда замыкание [X] определим равенством

$$[X] = \bigcup \{ y \mid \exists x \in X(xQ_1y) \}.$$

Легко проверить, что при таких определениях предиката $\mathfrak B$ и операции замыкания справедливы условия 1, 2, 3(a), 3(b), но нарушается условие 3(c) определения 1.1 почти c-простой модели. \square

§ 2. Почти ограниченно ветвящиеся деревья

Здесь приведено семейство почти c-простых моделей теории деревьев, в наследственно конечных надстройках над которыми существуют универсальные Σ -функции.

Приведем некоторые часто используемые определения и обозначения, связанные с понятием дерева.

Частично упорядоченное множество T называется depesom, если для любого $x \in T$ множество всех элементов, меньших x (npeduecmsehuukos x в T), вполне упорядоченно и T содержит наименьший элемент r, который называется kophem. Для каждой вершины $x \in T$ через koldent level будет обозначаться порядковый тип множества всех предшественников k в k называемый k вершины k в дереве k вершины k в дереве k определяется следующим образом:

$$ht(T) = \sup_{x \in T} (\operatorname{level}_T(x)) + 1.$$

Если $a,b \in T$ и $a < b \ (a \neq b)$ и между ними нет элементов из T, то b называется непосредственным последователем a.

Пусть T — дерево и $a \in T$. Если мощность множества всех непосредственных последователей элемента $a, a \neq r$, равна α , то будем говорить, что a α -ветвится. Если α — конечный кардинал, то будем говорить, что a конечно ветвится. Пусть β — некоторый кардинал. Будем говорить, что элемент a ветвится не более β , если a α -ветвится и $\alpha \leq \beta$.

Пусть $a \in T \setminus \{r\}$. Поддерево

$$[a]_T = \{ y \mid \exists z (z \le a \& \text{level}_T(z) = 1) \& y \ge z \} \cup \{ r \}$$
(12)

называется элементарным поддеревом, содержащим а.

Пусть T — дерево высоты h+1.

Если любой элемент уровня $i < h_0$ элементарного дерева $E \subseteq T$ высоты $h_0+1, h_0 \le h$, ветвится не более $N \in \omega$, то будем говорить, что E ветвится не более N.

Если существует число $N \in \omega$ такое, что любое элементарное дерево из T ветвится не более N, то T называется ограниченно ветвящимся деревом.

Пусть T_0 и T_1 — деревья с корнями r_0 и r_1 соответственно, $T_0 \cap T_1 = \emptyset$. Тогда через $T_0 \cup T_1$ обозначим дерево, полученное объединением $T_0 \setminus \{r_0\}$ и $T_1 \setminus \{r_1\}$ и соотношением $r_0 = r_1 = r$.

Если дерево T_0 изоморфно вложимо в дерево T_1 и $T_0 \not\simeq T_1$, то будем говорить, что T_0 собственно изоморфно вложимо в T_1 .

Определение 2.1. Дерево T высоты $h+1,\,h\in\omega,$ назовем *почти ограниченно ветвящимся*, если

$$T = F \cup I, \tag{13}$$

где F — ограниченно ветвящееся дерево, а I — объединение конечного числа элементарных деревьев таких, что в них имеются бесконечно ветвящиеся элементы и любой последователь таких элементов не имеет последователя.

Теорема 2.1. Пусть T- почти ограниченно ветвящееся дерево конечной высоты h+1. Тогда существует его конечное константное обогащение T' такое, что T'- почти c-простая модель.

Доказательству предпошлем следующие леммы.

Лемма 2.1. Пусть F — ограниченно ветвящееся дерево высоты h+1. Тогда существуют элементарные деревья $E_i, i < \alpha < \omega$, высоты не более h+1 такие, что

$$F = T_1 \cup T_0, \tag{14}$$

$$T_1 = \bigcup_{i < \alpha} T_{1i},\tag{15}$$

где T_{1i} — объединение всех элементарных деревьев в F, изоморфных E_i , E_i не вложимо в E_j при $i \neq j, i, j < \alpha$, и любое элементарное дерево из T_0 собственно изоморфно вложимо в некоторое E_i .

Доказательство. Так как F ограниченно ветвится, существует такое число $N \in \omega$, что любое элементарное дерево E из F ветвится не более N. Пусть E_N — элементарное дерево высоты h+1 такое, что любой элемент $x \neq r$ уровня i < h имеет точно N последователей. Пусть мощность $|E_N|$ равна γ . Тогда любое элементарное дерево, ветвящееся не более N, изоморфно вложимо в E_N . Поэтому любое элементарное дерево E из F изоморфно вложимо в E_N . Отсюда следует, что существует конечное число элементарных деревьев $E_0, \ldots, E_{\alpha-1}$ таких, что любое элементарное дерево E из F либо изоморфно некоторому E_i , либо собственно вложимо в некоторое E_j , а E_i не вложимо в E_j при $i \neq j < \alpha$. Если обозначить через T_{1i} объединение всех элементарных деревьев из F, изоморфных E_i , а $T_0 = F \setminus \{ \cup T_{1i} \mid i < \alpha \} \cup \{r\}$, то получим справедливость (14), (15). \square

Из леммы 2.1 следует, что любое почти ограниченно ветвящееся дерево T высоты $h+1,\,h\in\omega,$ можно представить в виде

$$T = T_0 \cup T_1 \cup T_2,$$

где $T_1 = T_{10} \cup \cdots \cup T_{1\alpha-1}$, $\alpha \in \omega$, и существует конечное число элементарных деревьев E_i высоты не более h+1, $ht(E_0)=h+1$, E_i не вложимо в E_j при $i \neq j$, $i,j < \alpha$, а T_{1j} — объединение конечного или бесконечного числа копий E_i . Если T_{1i} конечно, то все элементы можно включить в сигнатуру модели T. Поэтому будем считать, что все T_{1i} бесконечны; T_0 — объединение всех элементарных деревьев из T, собственно вложимых в некоторое E_i ; $T_2 = T \setminus (T_0 \cup T_1) \cup \{r\}$, т. е. T_2 — объединение конечного числа элементарных деревьев, где имеются бесконечно ветвящиеся элементы, но любой последователь такого элемента не имеет последователя.

В T выделим некоторые элементарные поддеревья: $E_0, \ldots, E_{\alpha-1}, E_i \subseteq T_{1i},$ и введем множества

$$A=igcup_{i $B=\{b\in T_2\mid b\ {
m конечно\ ветвится}\ orall c\in C(
olimits_c>b)\}.$$$

Пусть

$$A=\{r,a_{i0},\ldots,a_{i\lambda_i-1}\mid i
$$\sigma_1=\langle\leq,r,a_{00},\ldots,a_{0\lambda_0-1},\ldots,a_{lpha-10},\ldots,a_{lpha-1\lambda_{lpha-1}-1}
angle,$$

$$\sigma_2=\langle\leq,r,b_0,\ldots,b_{eta-1},c_0,\ldots,c_{\gamma-1}
angle,$$

$$\mathfrak{M}=\langle T,\sigma
angle,\quad \mathfrak{N}=\langle T_1\cup T_2,\sigma
angle,$$
 где $\sigma=\langle\leq,r,\langle a_{ij}\mid i
$$C_{\sigma_1}=A,\quad C_{\sigma_2}=B\cup C,\quad \lambda_i=|E_i|-1.$$$$$

Покажем, что модели $\mathfrak M$ и $\mathfrak N$ удовлетворяют условиям определения почти c-простой модели.

Введем следующие предикаты:

- a) $x \in T_2 \Leftrightarrow \mathfrak{M} \models \bigvee \{x = b \mid b \in B\} \lor \bigvee \{x \geq c \mid c \in C\} \lor x = r,$
- b) $x \in T_1 \Leftrightarrow \mathbb{HF}(\mathfrak{M}) \models x = r \lor (x \not\in T_2 \& \exists F \exists y \in F(y > r \& \forall z \in F(z = r \lor z \ge y) \& \exists i < \alpha \exists \varphi (\varphi : E_i \to F$ изоморфизм) & $x \in F$)).

Отсюда следует, что $T_1, T_2 - \Sigma$ -подмножества в $\mathbb{HF}(\mathfrak{M})$ т. е. носитель модели $\mathfrak{N} - \Sigma$ -подмножество в $\mathbb{HF}(\mathfrak{M})$.

Лемма 2.2. Теория модели $T_1=\langle T_1,\sigma_1 \rangle$ разрешима и счетно категорична.

Доказательство. Введем следующие аксиомы, истинные в T_1 .

- 1. Аксиомы дерева.
- 2. Высота любого элемента не более h+1, т. е.

$$\forall x_0 \dots \forall x_h (r \le x_0 \le \dots \le x_h \to \exists i \le h \exists j \le h (x_i = r \lor (i \ne j \& x_i = x_j))).$$

 $3_{i<\alpha}$. Диаграмма элементарного дерева $E_i = \{r, \{a_{ij} \mid j < \lambda_i\}\}$, где $r < a_{i0} \le a_{ij}$ для любого $j < \lambda_i$, и высота E_i равна $h_i + 1$, $h = h_0 \ge h_i$, $0 < i < \alpha$. Пусть $\lambda = \max\{\lambda_i \mid i < \alpha\} + 1$.

 $4_{k \leq \lambda}$. Любое подмножество $S \subseteq T_1$, имеющее наименьший элемент, отличный от r, мощности k изоморфно вложимо в некоторое E_i , т. е.

$$orall x_0 \dots orall x_{k-1} \Big(igwedge_{1 \leq s < k} x_s \geq x_0 > r$$
 $o igvee_{i \leq \alpha} \exists \varphi_i (\varphi_i : \{x_0, \dots, x_{k-1}\} o E_i$ — изоморфное вложение) $\Big)$.

 $5_{k \leq \lambda}$. Любое подмножество T_1 , имеющее наименьший элемент, отличный от r, содержится в некотором подмножестве мощности не более λ , имеющем наименьший элемент, отличный от r, в которое вложимо некоторое E_i , т. е.

$$\forall x_0 \dots \forall x_{k-1} \Big(\bigwedge_{1 \leq i < k} x_i \geq x_0 > r \to \Big(\bigvee_{i < \alpha} \exists y_{i0} \dots \exists y_{i\lambda_i-1} \Big(\bigwedge_{j < \lambda_i} (y_{ij} \geq y_{j0} > r) \\ \& \ x_0 \geq y_{i0} \ \& \ \forall p < k \exists j < \lambda_i (x_p = y_{ij}) \\ \& \ \exists \varphi_i (\varphi_i : E_i \to \{r, y_{i0}, \dots, y_{i\lambda_i-1}\} - \text{изоморфизм}) \Big) \Big) \Big).$$

 $6_{i<\alpha,n<\omega}$. Существует n элементарных деревьев, изоморфных E_i , с корнем r.

Докажем, что любое счетное дерево D, на котором истинны аксиомы 1–6 изоморфно T_1 . Сначала покажем, что любое элементарное дерево $D_0\subseteq D$ изоморфно некоторому $E_k,\ k<\alpha$. По аксиоме 2 высота D_0 не более h+1. Докажем, что $|D_0|<\lambda$. Допустим противное, т. е. $|D_0|\geq \lambda,\ \lambda=\max\{\lambda_i\mid i<\alpha\}+1,\ \lambda_i=|E_i|-1$. Пусть $X\subseteq D_0,\ X=\{x_0,\dots,x_{\lambda-1}\},\ x_k\geq x_0>r$. Тогда по аксиоме 4_λ существует вложение $\varphi:X\to E_i$ для некоторого i. Так как $|E_i|=\lambda_i<\lambda,\$ то $|X|\leq \lambda_i<\lambda.$ Таким образом, $|D_0|<\lambda.$ Поэтому существует вложение

$$\varphi: D_0 \to E_k, \quad k < \alpha.$$
(16)

В силу максимальности элементарного дерева D_0 и аксиомы 5 существуют $s<\alpha$ и вложение

$$\psi: E_s \to D_0. \tag{17}$$

Отсюда и из (16) получим вложимость E_s в E_k . Если $s \neq k$, то это невозможно, т. е. s = k. Отсюда и из (16), (17) следует $D_0 \simeq E_k$, т. е. любое элементарное дерево D_0 в D изоморфно некоторому E_k .

По аксиоме 6 в D содержится счетное число копий элементарного дерева E_i для любого $i < \alpha$. Следовательно, $D \simeq T_1$, т. е. теория $\mathrm{Th}(T_1)$ счетно категорична, поэтому полна. Отсюда и из вычислимо перечислимой аксиоматизируемости теории $\mathrm{Th}(T_1)$ получим ее разрешимость. \square

Следствие 2.1. Теория модели $\mathfrak{N} = \langle T_1 \cup T_2, \sigma \rangle$ разрешима и счетно категорична.

Доказательство. Добавим к аксиомам 1–6 теории $Th(T_1)$ следующие.

7. Для любого элемента $x \neq r$ найдутся либо подмножество $S \subseteq \mathfrak{N}$, имеющее наименьший элемент $x_0 > r$, и число $i < \alpha$ такие, что $x \in S$, $|S| \leq \lambda_i$ и существует изоморфное вложение $\varphi : E_i \to S$, либо $x = b_k$, либо $x \geq c_l$, $k < \beta$, $l < \gamma$.

 $8_{k<\gamma,n<\omega}$. Элемент c_k имеет n непосредственных последователей.

9. $OD(C_{\sigma_2})$ — открытая диаграмма модели $\langle C_{\sigma_2}, \leq, r \rangle$.

 $10_{k<\gamma}$. Если $x>c_k$, то x не имеет последователя.

Используя лемму 2.2, легко проверить, что аксиомы 1–10 определяют счетно категоричную теорию и $\mathfrak{N}=\langle T_1 \cup T_2, \sigma \rangle$ является ее счетной моделью. \square

Для описания полных формул теории $\operatorname{Th}(\mathfrak{N})$ приведем некоторые свойства теории $\operatorname{Th}(T_1)$. Пусть $x \in (T_1 \setminus A)$ и $\vec{x} = \langle x_0, \dots, x_{m-1} \rangle$, sp $\vec{x} = [x]_{T_1}$.

Через $D_{\vec{x}}(\vec{x})$ обозначим диаграмму модели $X = \langle A \cup [x]_{T_1}, \sigma_1 \rangle$, т. е. конъюнкцию формул либо вида $y_i \leq y_j$, либо вида $\neg (y_i \leq y_j), y_i \in A \cup [x]_{T_1}$, истинных на модели X. Легко проверить, что справедлива

Лемма 2.3. Пусть
$$\vec{x}^{\varepsilon} \in [c^{\varepsilon}]_{T_1}^{<\omega}, \ \vec{x}^{\varepsilon} = \left\langle x_0^{\varepsilon}, \ldots, x_{m-1}^{\varepsilon} \right\rangle, \ \varepsilon < 2, \ \mathit{и}$$

$$T_1 \models D_{\vec{x}^0}(\vec{x}^0) \& D_{\vec{x}^0}(\vec{x}^1).$$

Тогда существует автоморфизм φ модели $\langle T_1, \sigma_1 \rangle$ такой, что $\varphi(\vec{x}^0) = \vec{x}^1, \, \varphi(\vec{x}^1) = \vec{x}^0.$

Для любой последовательности $\vec{x}\in T_2^{<\omega}$ обозначим через $E_{\vec{x}}(\vec{x})$ открытую диаграмму модели sp $\vec{x}\cup C_{\sigma_2}$ сигнатуры σ_2 . Легко проверить, что справедлива

Лемма 2.4. Пусть $\vec{x}^{\varepsilon}\in\mathfrak{N}^{<\omega},\,\vec{x}^{\varepsilon}=\left\langle x_{0}^{\varepsilon},\ldots,x_{r-1}^{\varepsilon}\right\rangle ,\,\varepsilon<2,$ и

$$\mathfrak{N} \models E_{\vec{x}^0}(\vec{x}^0) \& E_{\vec{x}^0}(\vec{x}^1).$$

Тогда $\vec{x}^0, \vec{x}^1 \in T_2^{<\omega}$ и любой изоморфизм $\varphi: T_1 \to T_1$ можно продолжить до такого изоморфизма $\psi: \mathfrak{N} \to \mathfrak{N},$ что справедливо

$$\psi x = \left\{egin{array}{ll} x_i^1, & ext{ecли } x = x_i^0, \ x_i^0, & ext{ecли } x = x_i^1, \ x, & ext{ecли } x \in T_2 \setminus (\operatorname{sp} \vec{x}^0 \cup \operatorname{sp} \vec{x}^1), \ arphi x, & ext{ecли } x \in T_1. \end{array}
ight.$$

Пусть дана последовательность $\vec{x} = \langle x_0, \dots, x_{n-1} \rangle \in \mathfrak{N}^{<\omega}$, для которой существуют число e < n и множество последовательностей $S = \{\langle k_{i,0}, \dots, k_{i,l_i-1} \rangle \mid i < e, \ l_i > 0, \ \sum l_i = n, \ \{k_{i,j} \mid i < e, \ j < l_i\} = \{0, \dots, n-1\}\}$ такие, что для подпоследовательностей $\vec{x}_i = \langle x_{k_{i,0}}, \dots, x_{k_{i,l_i-1}} \rangle$, i < e, справедливы условия

- а) если $i \leq j < e-1$, то sp $\vec{x}_i = \operatorname{sp} \vec{x}_j = [a_i]_{T_1}, \ a_i \in T_1 \setminus \{r\}$ тогда и только тогда, когда i=j;
 - b) $\vec{x}_{e-1} \in T_2^{<\omega}$.

Введем формулу

$$\Phi_{n,S}(\vec{x}) = \bigwedge_{i < e-1} D_{\vec{x}_i}(\vec{x}_i) \& E_{\vec{x}_{e-1}}(\vec{x}_{e-1}).$$
(18)

Из лемм 2.3 и 2.4 вытекает

Следствие 2.2. Пусть для последовательностей $\vec{x}^{\varepsilon} = \left\langle x_0^{\varepsilon}, \dots, x_{n-1}^{\varepsilon} \right\rangle \in \mathfrak{N}^{<\omega}, \ \varepsilon < 2, \ \varepsilon < 2, \ \varepsilon < 2$

$$\mathfrak{N} \models \Phi_{n,S^0}(\vec{x}^0) \& \Phi_{n,S^0}(\vec{x}^1),$$

где формула Φ_{n,S^0} определена по последовательности \vec{x}^0 так же, как в (18). Тогда существует изоморфизм $\varphi:\mathfrak{N}\to\mathfrak{N}$ такой, что $\varphi(\vec{x}^0)=\vec{x}^1$.

Следствие 2.3. Любая полная формула $\Phi(\vec{x}_1)$, $\vec{x}_1 = \langle x_0, \dots, x_{k-1} \rangle$, совместная c теорией $\text{Th}(\mathfrak{N})$, эквивалентна некоторой формуле вида

$$\exists x_k \dots \exists x_{n-1} \Phi_{n,S}(x_0,\dots,x_{n-1}) \rightleftharpoons \Phi_{n,S}^0(\vec{x}_1).$$

ДОКАЗАТЕЛЬСТВО. Докажем, что $\Phi^0_{n,S}(\vec{x}_1)$ — полная формула. Пусть существуют формула $\Psi(\vec{x}_1)$ сигнатуры σ и последовательности \vec{a}_1, \vec{b}_1 такие, что

$$\mathfrak{N} \models \Phi_{n,S}(\vec{a}, \vec{a}_1) \& \Psi(\vec{a}), \tag{19}$$

$$\mathfrak{N} \models \Phi_{n,S}(\vec{b}, \vec{b}_1) \& \neg \Psi(\vec{b}). \tag{20}$$

Тогда существует изоморфизм $\varphi:\mathfrak{N}\to\mathfrak{N}$ такой, что $\varphi\vec{a}=\vec{b},\, \varphi\vec{a}_1=\vec{b}_1.$ Отсюда и из (19) имеем

$$\mathfrak{N} \models \Phi_{n,S}(\vec{b}, \vec{b}_1) \& \Psi(\vec{b}),$$

что противоречит (20). \square

Пусть F_k — множество всех полных формул вида $\Phi^0_{n,S}(x_0,\dots,x_{k-1})$. Легко проверить, что из определений модели $\mathfrak N$ и формулы $\Phi^0_{n,S}$ вытекает, что последовательность $\langle F_k \mid n \in \omega \rangle$ сильно вычислима. Отсюда и из следствия 2.3 получаем

Следствие 2.4. Существует сильно вычислимая последовательность $F = \langle F_k \mid k \in \omega \rangle$ конечных множеств всех полных формул от переменных x_0, \ldots, x_{k-1} , совместных c теорией $\text{Th}(\mathfrak{N})$.

Лемма 2.5. Теория $Th(\mathfrak{N})$ модельно полна.

Доказательство. Согласно критерию А. Робинсона [19] для доказательства леммы достаточно проверить справедливость следующего предложения. Если $\mathfrak{N}^0 \subseteq \mathfrak{N}^1$ — две модели теории $\mathrm{Th}(\mathfrak{N})$ и $A \subseteq \mathfrak{N}^1$ — конечное подмножество, то существует изоморфное вложение $\varphi: A \to \mathfrak{N}^0$ такое, что $\varphi \upharpoonright A \cap \mathfrak{N}^0 = \mathrm{id}$.

Пусть $N^{\varepsilon} = \langle T_1^{\varepsilon} \cup T_2^{\varepsilon}, \sigma \rangle$, где $T_1^{\varepsilon} \subseteq T_1$, $T_2^{\varepsilon} \subseteq T_2$. Так как $\mathfrak{N}^0 \subseteq \mathfrak{N}^1$, то $T_1^0 \subseteq T_1^1$, $T_2^0 \subseteq T_2^1$. Пусть $B^{\varepsilon} = T_1^{\varepsilon} \cap A$. Тогда $B^0 \subseteq B^1$ и $B^1 = B^0 \cup E$ для некоторого $E \subseteq T_1^1 \setminus T_1^0$. Не умаляя общности рассуждения, можно считать, что $E = [e_0]_{T_1^1} \cup \cdots \cup [e_{m-1}]_{T_1^1}$, $[e_s]_{T_1^1} \simeq E_{k_s}$ для некоторого s < m, $k_s < \alpha$. Так как в T_1^0 имеется счетное число копий элементарного дерева E_{k_s} , в T_1^0 существует поддерево $F = [f_0]_{T_1^0} \cup \cdots \cup [f_{m-1}]_{T_1^0}$ такое, что $F \cap B^0 = \{r\}$. Отсюда легко следует, что существует изоморфизм $\varphi_0: B^1 \to B^0 \cup F$, где $\varphi_0 \upharpoonright B^0 = \mathrm{id}$.

Пусть теперь $G=T_2^1\cap A$ и $G_k=\{x>c_k\mid x\in G,\ k<\gamma\}$. Тогда любой элемент $x\in G$ равен либо r, либо $b_i,\ i<\beta$, либо c_i , либо $x\in G_k,\ k<\gamma$. Пусть $G_k^0=G_k\cap T_2^0$. Тогда $\left|G_k^0\right|\leq |G_k|$. Так как множества $D_k^0=\{x>c_k\mid x\in T_2^0\}$ бесконечны, существуют изоморфные вложения $\psi_k:G_k\to D_k^0$, где $\psi_k\upharpoonright G_k^0=\mathrm{id},\ k<\gamma$, которые однозначно определяют изоморфное вложение $\varphi_1:G\to T_2^0,\ \varphi_1\upharpoonright G\cap T_2^0=\mathrm{id}.$

Легко проверить, что изоморфные вложения φ_0 и φ_1 однозначно определяют требуемое вложение $\varphi:A\to\mathfrak{N}^0,\,\varphi\upharpoonright A\cap\mathfrak{N}^0=\mathrm{id}.$

Из следствий 2.1, 2.4 и леммы 2.5 следует, что \mathfrak{N} — модель c-простой теории, т. е. справедливо условие 1 определения 1.1 почти c-простой модели.

2. Определим предикат $\mathfrak{B}(x,y)$ эквивалентностью

$$\mathbb{HF}(\mathfrak{N}) \models \mathfrak{B}(x,y) \Leftrightarrow x,y \subseteq T_1 \cup T_2 \& y \supseteq C_{\sigma} \cup x$$
 & $y \cap \left(\bigcup \{[z]_{T_1} \mid z \in x \cap T_1\}\right) \subseteq x.$ (21)

Так как справедливы следующие эквивалентности:

$$F = [z]_{T_1} \Leftrightarrow \mathbb{HF}(T_1) \models \exists y (r < y \& z \ge y \& \forall z \in F((z = r \lor z \ge y) \& \exists \varphi \exists i < \alpha(\varphi : E_i \to F -$$
вложение))),
$$x \in [z]_{T_1} \Leftrightarrow \mathbb{HF}(T_1) \models \exists F(F = [z]_{T_1} \& x \in F), \\ x \not\in [z]_{T_1} \Leftrightarrow \mathbb{HF}(T_1) \models \exists F(F = [z]_{T_1} \& x \not\in F),$$

отношение $x \in [z]_{T_1}$ является двуместным Δ -предикатом.

Подмножества C_{σ} , T_1 , T_2 также являются Δ -подмножествами в $\mathbb{HF}(\mathfrak{N})$. Отсюда и из (21) следует, что отношение \mathfrak{B} является Σ -предикатом.

Так как справедлива

$$\mathbb{HF}(\mathfrak{N}) \models \mathbb{T}(x,y) \Leftrightarrow \mathbb{HF}(\mathfrak{N}) \models \exists c \in C_{\sigma}(c \notin y) \lor x \not\subseteq y$$
$$\lor \exists z \in (x \cap T_1) \setminus \{r\} \exists F \exists u (F = [z]_{T_1} \& u \in y \cap F \& u \notin x),$$

 \mathfrak{B} является Δ -предикатом в $\mathbb{HF}(\mathfrak{N})$.

Легко проверить, что для предиката $\mathfrak B$ справедлива формула из условия 2 определения 1.1 почти c-простой модели. Таким образом, справедливость условия 2 для модели $\mathfrak N$ доказана.

3. Пусть X — конечное подмножество \mathfrak{M} . Тогда замыкание [X] определим равенством

$$[X] = C_{\sigma} \cup \Big(\bigcup\{[x]_T \mid x \in X \cap (T_0 \cup T_1)\}\Big) \cup (X \cap T_2).$$

Легко заметить, что [X] конечно. Если X = [X], то X называется замкнутым подмножеством в \mathfrak{M} .

Для любого подмножества $X\subseteq\mathfrak{M}$ обозначим

$$L_1(X) = \{ z_x \mid x \in X \cap (T_0 \cup T_1), \ z_x \le x, \ \text{level}(z_x) = 1 \},$$

$$X^{i} = \{x \in X \mid x > c_{i}\}, i < \gamma.$$

Для доказательства справедливости условия 3 для $\mathfrak M$ нам потребуются следующие леммы.

Лемма 2.6. Пусть даны конечные подмножества $X,Y\subseteq\mathfrak{M}$. Тогда существует вложение $\varphi:[X]\to\mathfrak{N}$ такое, что $\varphi[X]\cap Y\subseteq C_\sigma$.

Доказательство. Пусть $L_1(X) = \{x_0, \dots, x_{k-1}\}$. Так как для любого $s < \alpha$ число элементарных деревьев, изоморфных E_s , бесконечно много, существуют различные элементы z_0, \dots, z_{k-1} уровня 1 в T_1 , не содержащие элементов из $L_1(Y)$, такие, что существуют изоморфные вложения $\varphi_i : [x_i]_T \to [z_i]_{T_1}$.

Поскольку c_k бесконечно ветвится, существует изоморфное вложение ψ_k : $X^k \to T^k \setminus Y^k$. Тогда изоморфное вложение $\varphi: [A] \to \mathfrak{N}$, продолжающее φ_i и ψ_k , будет требуемым. \square

Подмножества X^0 и X^1 модели \mathfrak{M} назовем *несравнимыми*, если для любых элементов $x^0 \in X^0 \setminus C_{\sigma}$ и $x^1 \in X^1 \setminus C_{\sigma}$ верно $x^0 \not \leq x^1$ и $x^1 \not \leq x^0$.

Лемма 2.7. Пусть даны конечные подмодели $M^0 \leq M^1 \leq \mathfrak{M}$ такие, что M^0 и $M^1 \setminus M^0$ несравнимы. Тогда для любого вложения $\varphi: M^0 \to \mathfrak{M}(\mathfrak{N})$ существует вложение $\psi: M^1 \to \mathfrak{M}(\mathfrak{N})$, продолжающее φ . Кроме того, для вложений φ, ψ в \mathfrak{N} справедливо $\mathbb{HF}(\mathfrak{N}) \models \mathfrak{B}(\varphi M^0, \psi M^1)$.

Доказательство. Из леммы 2.6 следует, что существует изоморфизм φ^0 : $[M^1] \to \mathfrak{M}$ такой, что $\varphi^0[M^1] \cap [\varphi M^0] = C_{\sigma}$. Пусть $\varphi^1 \rightleftharpoons \varphi^0 \upharpoonright M^1 \setminus M^0$. Так как M^0 и $M^1 \setminus M^0$ несравнимы, вложение $\psi: M^1 \to \mathfrak{M}$, продолжающее φ и φ^1 , будет требуемым. \square

Продолжим доказательство справедливости условия 3. Для любого $X\subseteq\mathfrak{M}$ существование вложения $\alpha:X\to\mathfrak{N}$ непосредственно следует из леммы 2.6 при условии $Y=C_\sigma$. Пусть $\alpha:X\to Y$ — изоморфизм, где $X\le\mathfrak{M},\,Y\le\mathfrak{N}.$

3(а). Допустим, что множество X замкнуто и $X^1 \supseteq X$. Из замкнутости X следует, что множества X и $X^1 \setminus X$ несравнимы. По лемме 2.7 существует вложение $\psi: X^1 \to \mathfrak{N}$, продолжающее α , для которого $\mathbb{HF}(\mathfrak{N}) \models \mathfrak{B}(Y, \psi X^1)$.

$$3(\mathbf{b}).$$
 Пусть $\varphi^{\varepsilon}:X^{\varepsilon}\to\mathfrak{N}$ — изоморфизм, $\varepsilon<2,\,X\leq X^{\varepsilon}\leq\mathfrak{M}$ и

$$\varphi^{\varepsilon} \upharpoonright X = \alpha, \quad \mathbb{HF}(\mathfrak{N}) \models \mathfrak{B}(Y, \varphi^{\varepsilon} X^{\varepsilon}).$$
 (22)

Из (22) следует, что множества X и $(X^0 \cup X^1) \setminus X$ несравнимы. Действительно, допустим противное, т. е. существуют $e \in (X^0 \cup X^1) \setminus X$ и $f \in X \setminus C_\sigma$ такие, что либо $e \leq f$, либо $f \leq e$. Пусть для определенности $e \in X^0$. Тогда $\varphi^0 e \in \cup \{[z]_{T_1} \mid z \in Y \cap T_1\}$, но $\varphi^0 e \notin Y$. Следовательно, $\mathbb{HF}(\mathfrak{N}) \models \neg \mathfrak{B}(Y, \varphi^0 X^0)$, что противоречит (22). Отсюда множества X и $(X^0 \cup X^1) \setminus X$ несравнимы. Тогда по лемме 2.7 существует вложение $\psi: X^0 \cup X^1 \to \mathfrak{N}$, продолжающее α , для которого справедливо $\mathbb{HF}(\mathfrak{N}) \models \mathfrak{B}(Y, \psi(X^0 \cup X^1))$.

$$3(c)$$
. Пусть $Y^1 \supseteq Y$ и $\mathbb{HF}(\mathfrak{N}) \models \mathfrak{B}(Y, Y^1)$.

Докажем, что существует вложение $\psi: Y^1 \to \mathfrak{M}$, продолжающее α^{-1} . Так же, как в доказательстве условия 3(b), можно показать, что множества $Y^1 \setminus Y$ и Y несравнимы. Тогда по лемме 2.7 существует вложение $\psi: Y^1 \to \mathfrak{M}$, продолжающее α^{-1} .

Таким образом, условие 3 справедливо для $\mathfrak{M},$ т. е. $\mathfrak{M}-$ почти c-простая модель. \square

Из теорем 2.1 и 1.1 вытекает

Следствие 2.5. Пусть T — почти ограниченно ветвящееся дерево. Тогда в наследственно конечном допустимом множестве $\mathbb{HF}(T)$ существует универсальная Σ -функция.

§ 3. Эквивалентности

В данном параграфе приведено семейство почти c-простых моделей теории эквивалентности, в наследственно конечных надстройках над которыми существуют универсальные функции.

Пусть даны модель $\mathfrak{M} = \langle M, E_0, E_1, \dots, E_n \rangle$, где E_i — отношения эквивалентности на множестве M, и последовательность чисел $\langle \pi_1, \dots, \pi_n \rangle$, $\pi_k > 1$, $0 < k \le n$, такие, что справедливы следующие утверждения.

- 1. $x E_0 y \Leftrightarrow x = y$.
- 2. $E_0 \subseteq E_1 \subseteq \cdots \subseteq E_n$.
- 3. Каждый E_k -класс состоит не более чем из π_k E_{k-1} -классов, $0 < k \le n$.
- 4. Существует бесконечно много E_n -классов таких, что каждый его E_k -класс состоит точно из π_k E_{k-1} -классов для любого k, $0 < k \le n$.

Теорема 3.1. Модель \mathfrak{M} почти c-проста.

Доказательство. Пусть основным множеством $\mathfrak N$ является объединением всех E_n -классов таких, что каждый его E_k -класс состоит точно из π_k E_{k-1} -классов для любого $k, \ 0 < k \le n$. Докажем справедливость условий 1–3 определения 1.1 почти c-простой модели.

1. Легко проверить, что формула

$$N(x) \rightleftharpoons \exists x_0 \dots \exists x_{\bar{\pi}-1} \Big(\bigwedge_{i \le j < \bar{\pi}} E_n(x_i, x_j) \& \bigwedge_{i < j < \bar{\pi}} (x_i \ne x_j) \& \bigvee_{i < \bar{\pi}_k} (x = x_i) \Big),$$

где $\bar{\pi} = \pi_0 \dots \pi_n$, определяет основное множество N модели \mathfrak{N} в $\mathbb{HF}(\mathfrak{M})$.

Для доказательства c-простоты теории модели $\mathfrak N$ докажем следующие леммы.

Лемма 3.1. Теория $\operatorname{Th}(\mathfrak{N})$ модели \mathfrak{N} разрешима, счетно категорична и модельно полна.

Доказательство. Аксиомами теории $\operatorname{Th}(\mathfrak{N})$ будут следующие предложения.

 $1_{k < n}$. E_k — отношение эквивалентности.

2. $\forall x \forall y (xE_0y \rightarrow x = y)$.

 $3_{0 < k < n}$. Любой E_k -класс состоит точно из π_k E_{k-1} классов.

$$4_{k<\omega}$$
. $\exists x_0 \dots \exists x_{k-1} (\& \neg x_i E_n x_i)$.

Легко проверить, что эти аксиомы определяют счетную модель $\mathfrak N$ с точности до изоморфизма, т. е. теория $\mathrm{Th}(\mathfrak N)$ счетно категорична. Отсюда и из

вычислимо перечислимой аксиоматизируемости теории $\mathrm{Th}(\mathfrak{N})$ следует, что она разрешима.

Докажем модельную полноту теории $\operatorname{Th}(\mathfrak{N})$. Для этого, как и в лемме 2.4, воспользуемся приведенным там критерием А. Робинсона. Пусть даны две модели $\mathfrak{N}^0 \leq \mathfrak{N}^1$ теории $\operatorname{Th}(\mathfrak{N})$ и $A \subseteq N^1$. Пусть $A_\varepsilon = A \cap N^\varepsilon$, $A_1 = A_0 \cup B$, где $B = A_1 \setminus A_0$. Не умаляя общности рассуждения, можно считать, что B состоит из m E_n -классов. Так как в \mathfrak{N}^0 существует бесконечно много E_n -классов, в \mathfrak{N}^0 найдутся E_n -классы C_0, \ldots, C_{m-1} такие, что $C \cap A_0 = \varnothing$, где $C = C_0 \cup \cdots \cup C_{m-1}$. Легко проверить, что существует изоморфное вложение $\varphi: A_1 \to \mathfrak{N}^0$ такое, что $\varphi B = C$, $\varphi \upharpoonright A_0 = \operatorname{id}$. \square

Пусть даны $m \in \omega$ и последовательность $\Xi = \langle S_0, \dots, S_{n-1} \rangle$ семейств непустых подмножеств множества $\bar{m} = \{0, \dots, m-1\}$ таких, что для любого k < n выполнены

$$S_0 = \Big\{ A_{i_0} \mid i_0 < \alpha_0, \ \bigsqcup \{ A_{i_0} \mid i_0 < \alpha_0 \} = \bar{m}, \ |A_{i_0}| \le \pi_n \Big\},$$

$$S_{k+1} = \Big\{ A_{i_0,\dots,i_{k+1}} \mid i_0 < \alpha_0,\dots,i_{k+1} < \alpha_{k+1}, \\ \bigsqcup \{ A_{i_0,\dots,i_{k+1}} \mid i_{k+1} < \alpha_{k+1} \} = A_{i_0,\dots,i_k}, \ |A_{i_0,\dots,i_{k+1}}| \le \pi_{n-(k+1)} \Big\},$$

где символ ⊔ означает объединение попарно не пересекающихся множеств.

Пусть дана последовательность $\vec{x} = \langle x_0, \dots, x_{m-1} \rangle$ переменных x_i . По любому семейству Ξ определим формулу $\Phi_{\Xi}(\vec{x})$ сигнатуры $\sigma = \langle E_0, \dots, E_n \rangle$, положив

$$\Phi_{\Xi}(\vec{x}) = \bigwedge \{ E_{n-k}(x_r, x_s) \mid r, s \in A_{i_0, \dots, i_k}, \ i_0 < \alpha_0, \dots, i_k < \alpha_k, \ k < n \}$$
 &
$$\bigwedge \{ \neg E_{n-k}(x_r, x_s) \mid r \in A_{i_0, \dots, i_k^r}, \ s \in A_{i_0, \dots, i_k^s},$$

$$i_0 < \alpha_0, \dots, i_k^r < i_k^s < \alpha_k, \ k < n \}.$$

Лемма 3.2. Пусть для последовательностей $\vec{x}^{\varepsilon} = \left\langle x_0^{\varepsilon}, \dots, x_{m-1}^{\varepsilon} \right\rangle \in \mathfrak{N}^{<\omega},$ $\varepsilon < 2$, справедливо

$$\mathfrak{N} \models \Phi_{\Xi}(\vec{x}^0) \& \Phi_{\Xi}(\vec{x}^1). \tag{23}$$

Тогда существует изоморфизм $\psi:\mathfrak{N}\to\mathfrak{N}$ такой, что $\psi(\vec{x}^0)=\vec{x}^1.$

ДОКАЗАТЕЛЬСТВО. Покажем, что отображение $x_r^0 \to x_r^1$, r < m, есть изоморфизм $\varphi : \langle \operatorname{sp} \vec{x}^0, \sigma \rangle \to \langle \operatorname{sp} \vec{x}^1, \sigma \rangle$, где $\sigma = \langle E_0, \dots, E_n \rangle$. Пусть

$$\mathfrak{N} \models E_{n-k}(x_r^0, x_s^0), \quad k \le n.$$

Тогда в силу (23) найдутся $i_0 < \alpha_0, \dots, i_k < \alpha_k$ такие, что $r, s \in A_{i_0, \dots, i_k}$, а потому $\mathfrak{N} \models E_{n-k}(x_r^1, x_s^1)$.

Если $\mathfrak{N} \models \neg E_{n-k}(x_r^0, x_s^0)$, то снова из (23) следует $r, s \notin A_{i_0, \dots, i_k}$ для любых i_0, \dots, i_k , а потому $\mathfrak{N} \models \neg E_{n-k}(x_r^1, x_s^1)$. Таким образом, φ — требуемый изоморфизм.

Пусть $\left[x_r^\varepsilon\right]_{E_k}$ обозначает E_k -класс, содержащий x_r^ε , $r < m, \ k \le n,$ и $X_k^\varepsilon \rightleftharpoons \bigcup_{r < m} \left[x_r^\varepsilon\right]_{E_k} = \left[x_{r_0}^\varepsilon\right]_{E_k} \sqcup \cdots \sqcup \left[x_{r_k}^\varepsilon\right]_{E_k}.$ Индукцией по k докажем, что φ можно продолжить до изоморфизма φ_k :

Индукцией по k докажем, что φ можно продолжить до изоморфизма $\varphi_k: X_k^0 \to X_k^1$. Если k=0, то $\varphi_0=\varphi$. Пусть изоморфизм φ_k определен. Класс $\left[x_{r_s}^\varepsilon\right]_{E_{k+1}},\ s< k$, является дизъюнктным объединением классов $\left[y_i^\varepsilon\right]_{E_k},\ i< k$

 π_{k+1} . Тогда существует изоморфизм $\varphi_{k+1,s}: \left[x_{r_s}^0\right]_{E_{k+1}} o \left[x_{r_s}^1\right]_{E_{k+1}}$ такой, что $\varphi_{k+1,s}(y_i^0) = y_i^1$ и $\varphi_{k+1,s}$ продолжает φ_k . Множество изоморфизмов $\varphi_{k+1,s}, \, s < r_k$, однозначно определяет изоморфизм $\varphi_{k+1}: X_{k+1}^0 o X_{k+1}^1$. Из определения модели $\mathfrak N$ легко следует, что φ_n можно продолжить до требуемого изоморфизма $\psi: \mathfrak N o \mathfrak N$. \square

Из этой леммы аналогично следствиям 2.3 и 2.4 выводятся

Следствие 3.1. Любая полная формула $\Phi(\vec{x})$, $\vec{x} = \langle x_0, \dots, x_{n-1} \rangle$, совместная с теорией $\text{Th}(\mathfrak{N})$, эквивалентна некоторой формуле вида $\Phi_{\Xi}(\vec{x})$ из леммы 3.2.

Следствие 3.2. Существует сильно вычислимая последовательность $F = \langle F_n \mid n \in \omega \rangle$ конечных множеств всех полных формул от переменных x_0, \ldots, x_{n-1} , совместных c теорией $\text{Th}(\mathfrak{N})$.

Из леммы 3.1 и следствия 3.2 следует, что \mathfrak{N} — модель c-простой теории, т. е. условие 1 определения 1.1 почти c-простой модели справедливо.

2. Определим предикат $\mathfrak{B}(x,y)$ эквивалентностью

$$\mathbb{HF}(\mathfrak{N}) \models \mathfrak{B}(x,y) \Leftrightarrow x,y \subseteq N \ \& \ y \cap (\cup \{[z]_{E_n} \mid z \in x\}) \subseteq x.$$

Так как $x \in [y]_{E_n} - \Delta$ -отношение в $\mathbb{HF}(\mathfrak{N})$, то $\mathfrak{B} - \Delta$ -предикат. Легко проверить, что для предиката \mathfrak{B} справедлива формула из условия 2 определения 1.1 почти c-простой модели.

Пусть A — конечное подмножество M. Тогда замыкание [A] определим равенством $[A] = \bigcup \{[a]_{E_n} \mid a \in A\}$.

Для любого конечного подмножества $X \subseteq M$ введем множество $X^* = \{x_0, \dots, x_{l-1}\}$ такое, что $x_i \in X$, $\neg x_i E_n x_j$, i < j < n, $[X] = \bigcup_{i < l} [x_i]_{E_n}$.

Пусть $A^*=\{a_0,\dots,a_{l-1}\}$ и C_0,\dots,C_{l-1} — различные E_n -классы в $\mathfrak N$. Легко заметить, что существует вложение $\alpha:[A]\to\bigcup_{i< l}C_i$.

В дальнейшем нам потребуется

Лемма 3.3. Пусть даны конечные подмодели $A^0 \leq A^1 \leq \mathfrak{M}$ такие, что $[A^0] \cap (A^1 \setminus A^0) = \varnothing$. Тогда для любого вложения $\varphi : A^0 \to \mathfrak{M}(\mathfrak{N})$ существует вложение $\psi : A^1 \to \mathfrak{M}(\mathfrak{N})$, продолжающее φ . Кроме того, для вложений φ, ψ в \mathfrak{N} справедливо $\mathbb{HF}(\mathfrak{N}) \models \mathfrak{B}(\varphi A^0, \psi A^1)$.

Действительно, пусть $(A^1\backslash A^0)^*=\{a_0,\dots,a_{l-1}\}$ и C_0,\dots,C_{l-1} — различные E_n -классы из $\mathfrak N$ такие, что $B\cap\bigcup_{i< l}C_i=\varnothing$, где $\varphi A^0=B$.

Легко заметить, что существует вложение $\psi:A^1\to B\cup\bigcup_{i< l}C_i$, продолжающее φ , для которого справедливо $\mathbb{HF}(\mathfrak{N})\models\mathfrak{B}(\varphi A^0,\psi A^1)$. \square

Пусть $\alpha: A \to B$ — изоморфизм, где $A \leq \mathfrak{M}, B \leq \mathfrak{N}$.

3(а). Допустим, что множество A замкнуто и $A^1 \supseteq A$. Из замкнутости A следует, что $[A^0] \cap (A^1 \setminus A^0) = \emptyset$. По лемме 3.3 существует вложение $\psi : A^1 \to \mathfrak{N}$, продолжающее α , для которого $\mathbb{HF}(\mathfrak{N}) \models \mathfrak{B}(B, \psi A^1)$.

 $3(\mathrm{b}).$ Пусть даны $\varphi^{\varepsilon}:A^{\varepsilon}\to\mathfrak{N},\,\varepsilon<2,$ — изоморфизм, $A\leq A^{\varepsilon}\leq\mathfrak{M}$ и

$$\varphi^{\varepsilon} \upharpoonright A = \alpha, \quad \mathbb{HF}(\mathfrak{N}) \models \mathfrak{B}(B, \varphi^{\varepsilon} A^{\varepsilon}).$$
 (24)

Из (24) следует, что $[A] \cap ((A^0 \cup A^1) \setminus A) = \emptyset$. Действительно, допустим противное, т. е. существует $e \in [A] \cap ((A^0 \cup A^1) \setminus A)$. Пусть для определенности $e \in A^0$. Тогда $\varphi^0 e \in \bigcup \{[z]_{E_n} \mid z \in B\}$, но $\varphi^0 e \notin B$. Следовательно, $\mathbb{HF}(\mathfrak{N}) \models$

 $^{\neg}\mathfrak{B}(B,\varphi^0A^0)$; противоречие. Тогда по лемме 3.3 существует вложение $\psi:A^0\cup A^1\to\mathfrak{N}$, продолжающее α , для которого $\mathbb{HF}(\mathfrak{N})\models\mathfrak{B}(B,\psi(A^0\cup A^1))$.

3(c). Пусть $B^1 \supseteq B$ и $\mathbb{HF}(\mathfrak{N}) \models \mathfrak{B}(B, B^1)$.

Докажем, что существует вложение $\psi: B^1 \to \mathfrak{M}$, продолжающее α^{-1} . Так же, как в доказательстве условия 3(b), можно показать, что $[B] \cap (B^1 \setminus B) = \varnothing$. Тогда по лемме 3.3 существует вложение $\psi: B^1 \to \mathfrak{M}$, продолжающее α^{-1} .

Таким образом, \mathfrak{M} — почти c-простая модель. Теорема доказана. \square

Из теорем 3.1 и 1.1 вытекает

Следствие 3.3. В наследственно конечном допустимом множестве $\mathbb{HF}(\mathfrak{M})$ существует универсальная Σ -функция.

В заключение автор выражает сердечную благодарность С. С. Гончарову за постановку задачи и полезные советы, а также рецензенту за замечания, которые помогли улучшить изложение работы.

ЛИТЕРАТУРА

- 1. Гончаров С. С., Свириденко Д. И. Математические основы семантического программирования // Докл. АН СССР. 1986. Т. 289, № 6. С. 1324–1328.
- Ershov Yu. L., Goncharov S. S., Sviridenko D. I. Semantic programming. Information processing // Proc. IFIP 10th World comput. congress, Dublin. Dublin: Elsevier Sci., 1986. P. 1093–1100.
- 3. Ершов Ю. Л. Определимость и вычислимость. Изд. 2-е. Новосибирск: Науч. книга; М.: Экономика. (Сибирская школа алгебры и логики), 2000.
- Руднев В. А. Об универсальной рекурсивной функции на допустимых множествах // Алгебра и логика. 1986. Т. 25, № 4. С. 425–436.
- 5. Морозов А. С., Пузаренко В. Г. О Σ-подмножествах натуральных чисел // Алгебра и логика. 2004. Т. 43, № 3. С. 291–320.
- 6. Калимулин И. Ш., Пузаренко В. Г. О вычислимости на структурах // Мат. тр. 2004. Т. 7, N² 2. С. 35–72.
- Пузаренко В. Г. К вычислимости на специальных моделях // Сиб. мат. журн. 2005. Т. 46, № 1. С. 185–208.
- Александрова С. А. Проблема униформизации для Σ-предикатов в наследственно конечной списочной надстройке над полем действительных чисел с экспонентой // Алгебра и логика. 2014. Т. 53, № 1. С. 3–14.
- Коровина М. В. Об универсальной рекурсивной функции и абстрактных машинах на вещественных числах со списочной надстройкой. Структурные алгоритмические свойства вычислимости // Вычисл. системы. Новосибирск, 1996. С. 24–43.
- Стукачев А. И. Теорема об униформизации в наследственно конечных надстройках, Обобщенная вычислимость и определимость // Вычисл. системы. Новосибирск, 1998. С. 3–14.
- Хисамиев А. Н. О ∑-подмножествах натуральных чисел над абелевыми группами // Сиб. мат. журн. 2006. Т. 47, № 3. С. 695–706.
- 12. Xисамиев А. Н. Σ -ограниченные алгебраические системы и универсальные функции. I // Сиб. мат. журн. 2010. Т. 51, № 1. С. 217–235.
- Хисамиев А. Н. Σ-ограниченные алгебраические системы и универсальные функции.
 II // Сиб. мат. журн. 2010. Т. 51, № 3. С. 676–693.
- 14. *Хисамиев А. Н.* Σ -однородные алгебраические системы и Σ -функции. I // Алгебра и логика. 2011. Т. 50, № 5. С. 659–684.
- **15.** *Хисамиев А. Н.* Σ -однородные алгебраические системы и Σ -функции. II // Алгебра и логика. 2012. Т. 51, № 1. С. 129–147.
- 16. *Хисамиев А. Н.* Об универсальной Σ -функции над деревом // Сиб. мат. журн. 2012. Т. 53, № 3. С. 687–690.
- Ershov Yu. L., Puzarenko V. G., Stukachev A. I. HF-computability // Computability in context. Computation and logic in the real world (ed. S. B. Cooper and A. Sorbi). London: World Sci., 2011. P. 169–242.

- **18.** Когабаев Н. Т., Кудинов О. В., Миллер Р. Вычислимая размерность I-деревьев бесконечной высоты // Алгебра и логика. 2004. Т. 43, № 6. С. 702–729.
- **19.** Кейслер Г., Чэн Ч. Ч. Теория моделей. М.: Мир, 1977.

 $\it Cmamья$ поступила 27 мая 2013 г., окончательный вариант — 18 сентября 2014 г.

Хисамиев Асылхан Назифович Институт математики им. С. Л. Соболева СО РАН, пр. Академика Коптюга, 4, Новосибирск 630090 hisamiev@math.nsc.ru