О ЛИНЕЙНОЙ ЛОГИКЕ ЗНАНИЯ И ВРЕМЕНИ С ИНТРАНЗИТИВНЫМ ОТНОШЕНИЕМ ВРЕМЕНИ В. Ф. Юн

Аннотация. В [1] введена линейная полимодальная логика знания и времени с интранзитивным отношением времени как множество формул, общезначимых в фреймах специального вида. В [2] введено исчисление AS_{LTK_r} , связанное с классом таких фреймов. В данной работе найдена формула линейной логики знания и времени с интранзитивным отношением времени, которая не выводится в исчислении AS_{LTK_r} .

 $DOI\,10.17377/smzh.2015.56.320$

Ключевые слова: полимодальная логика, фреймы Крипке, аксиоматизация, полнота.

Введение

В статье исследуется полимодальная линейная логика знания и времени с интранзитивным отношением времени. Более точно, в [1] рассмотрены LTK_r -фреймы $\langle \bigcup_{n \in J} C^n, R_T, R_\sim, R_1, \ldots, R_k \rangle$ с R_T -сгустками состояний C^n , интранзитивным на сгустках, праволинейным и рефлексивным R_T , и определена полимодальная логика LTK_r как множество формул, истинных во всех LTK_r -фреймах.

В [2] продолжено исследование логики LTK_r и был рассмотрен вопрос ее аксиоматизации. Авторами найдено исчисление AS_{LTK_r} , корректное относительно класса всех LTK_r -фреймов. Кроме того, в [2] доказана полнота найденного исчисления относительно класса фреймов, связанных с LTK_r -фреймами.

В данной работе найдена формула, не выводимая в исчислении AS_{LTK_r} и общезначимая во всех LTK_r -фреймах. Таким образом, доказано отсутствие полноты AS_{LTK_r} относительно класса всех LTK_r -фреймов.

1. Исчисление AS_{LTK_r} и теорема о корректности

Рассмотрим модальный язык с модальными операторами \Box_T , \Box_{\sim} , \Box_1 , . . . , \Box_k . Более точно, рассмотрим язык, состоящий из счетного множества пропозициональных переменных P, стандартных логических связок и модальных операторов \Box_T , \Box_{\sim} , \Box_1 , . . . , \Box_k . Формулы определяются, как обычно [3].

Будем рассматривать фреймы $\langle W, R_T, R_\sim, R_1, \ldots, R_k \rangle$ и модели вида $\langle W, R_T, R_\sim, R_1, \ldots, R_k, V \rangle$, где W — непустое множество, $R_T, R_\sim, R_1, \ldots, R_k$ — бинарные отношения на множестве W, V — означивание переменных, т. е. отображение $V: P \to \mathbb{P}(W)$. Означивание V можно расширить стандартным образом

Работа выполнена при финансовой поддержке Совета по грантам Президента РФ для государственной поддержки ведущих научных школ (код проекта HUI-860.2014.1).

В. Ф. Юн 716

[3] на множество формул рассматриваемого языка. В частности, для любого $x \in W$ имеем $x \models_V p \iff x \in V(p)$ для любой переменной $p \in P$ и

```
x \models_V \Box_T A \iff \forall y (x R_T y \Longrightarrow y \models_V A),
```

$$x \models_V \square_{\sim} A \iff \forall y (xR_{\sim}y \Longrightarrow y \models_V A),$$

$$x \models_V \Box_i A \iff \forall y (xR_i y \Longrightarrow y \models_V A), i \in \{1, \dots, k\}.$$

Формула A истинна в модели $M = \langle W, R_T, R_{\sim}, R_1, \dots, R_k, V \rangle$, если $x \models_V A$ для любого $x \in W$. Говорим, что формула A общезначима в фрейме, если она истинна в любой модели, основанной на этом фрейме.

Определение 1. Фрейм $\langle W, R_T, R_{\sim}, R_1, \dots, R_k \rangle$ называется LTK_r -фреймом [2], если выполняются следующие свойства:

- (a) $W=\bigcup_{i}C^{n},$ где $C^{n}\neq\varnothing,$ $J=\{1,\ldots,L\},$ $L\in\mathbb{N}$ или $J=\mathbb{N};$
- (b) $xR_Ty \iff \exists n \in J((x \in C^n \text{ и } y \in C^n) \text{ или } (x \in C^n \text{ и } y \in C^{n+1}));$
- (c) $xR_{\sim}y \iff \exists n \in J(x \in C^n \text{ if } y \in C^n);$
- (d) R_i некоторое отношение эквивалентности внутри любого C^n , т. е. такое, что из xR_iy следует $x \in C^n$ и $y \in C^n$ для некоторого $n \in J$.

Напомним, что подмножество C_{R_T} ($C_{R_{\sim}}$) множества W называется C_{R_T} сгустком ($C_{R_{\sim}}$ -сгустком), если $\forall w \forall z \in C_{R_T}(wR_Tz\&zR_Tw)$ и $\forall z \in W \forall w \in$ $C_{R_T}((wR_Tz\&zR_Tw)\Longrightarrow z\in C_{R_T})$ $(\forall w\forall z\in C_{R_\sim}(wR_\sim z\&zR_\sim w)$ и $\forall z\in W\forall w\in S_T$ $C_{R_{\sim}}((wR_{\sim}z\&zR_{\sim}w)\Longrightarrow z\in C_{R_{\sim}})$ соответственно).

Таким образом, каждое множество C^n является R_T -сгустком (и R_{\sim} -сгустком), т. е. для $x \in C^n$ имеем $C^n = \{y \mid xR_T y \text{ и } yR_T x\}.$

Рассмотрим исчисление AS_{LTK_r} , введенное в [2].

Аксиомы AS_{LTK_r} . Тавтологии классической пропозициональной логики;

 $L_{\Box_T}: \Box_T(\Box_T A \longrightarrow B) \vee \Box_T(\Box_T B \longrightarrow A);$

$$K_{\square_{\xi}}: \square_{\xi}(A \longrightarrow B) \longrightarrow (\square_{\xi}A \longrightarrow \square_{\xi}B), \ \xi \in \{T, \sim, 1, \dots, k\};$$

 $T_{\square_{\varepsilon}}: \square_{\xi} A \longrightarrow A, \ \xi \in \{T, \sim, 1, \ldots, k\};$

 $\begin{array}{l} 4_{\square_{\xi}}: \square_{\xi}A \longrightarrow \square_{\xi}\square_{\xi}A, \, \xi \in \{\sim, 1, \dots, k\}; \\ 5_{\square_{\xi}}: \neg \square_{\xi}A \longrightarrow \square_{\xi} \neg \square_{\xi}A, \, \xi \in \{\sim, 1, \dots, k\}; \end{array}$

 $M.1: \square_T A \longrightarrow \square_{\sim} A;$

 $M.2: \square_{\sim} A \longrightarrow \square_i A, \ 1 \le i \le k;$

 $AL: (\square_{\sim} A \& \square_{\sim} B \& \lozenge_T (\neg A \& \square_{\sim} B)) \longrightarrow \square_T B.$

Правила вывода. MP : $\frac{A, A \longrightarrow B}{B}$, Nec : $\frac{A}{\Box \tau A}$.

Здесь и далее \diamondsuit_{ξ} — сокращение для $\neg \Box_{\xi} \neg (\xi \in \{T, \sim, 1, \dots, k\})$.

Введем класс фреймов, содержащий класс LTK_r -фреймов, и докажем, что исчисление AS_{LTK_r} корректно относительно этого класса.

Определение 2. Фрейм $\langle W, R_T, R_{\sim}, R_1, \dots, R_k \rangle$ будем называть LTK_r фреймом, если он удовлетворяет условиям:

 PL_{\Box_T} : если xR_Ty и xR_Tz , то yR_Tz или zR_Ty ;

 $\mathrm{PT}_{\square_{\mathcal{E}}}$: отношения $R_T, R_{\sim}, R_i \ (1 \leq i \leq k)$ рефлексивны;

 $P4_{\square_{\varepsilon}}$: отношения $R_{\sim}, R_i \ (1 \le i \le k)$ транзитивны;

 $P5_{\Box_{\varepsilon}}$: отношения $R_{\sim}, R_i \ (1 \le i \le k)$ симметричны;

PM. 1 : если $xR_{\sim}y$, то $xR_{T}y$;

 $PM.2: если xR_iy$, то $xR_{\sim}y$ для любого $i \in \{1,\ldots,k\}$;

PAL : если xR_TyR_Tz и x,y,z принадлежат различным R_{\sim} -сгусткам, то неверно, что xR_Tz .

Модель, основанную на $\widetilde{LTK_r}$ -фрейме, будем называть $\widetilde{LTK_r}$ -моделью.

Теорема 1. Для любой формулы A верно: если A выводима в AS_{LTK_r} , то A общезначима в любом $\widetilde{LTK_r}$ -фрейме.

Доказать, что аксиомы исчисления AS_{LTK_r} общезначимы в любом $\widetilde{LTK_r}$ -фрейме.

Докажем общезначимость аксиомы L_{\square_T} . Предположим, что формула

$$\Box_T(\Box_T A \longrightarrow B) \lor \Box_T(\Box_T B \longrightarrow A)$$

не общезначима. Тогда она опровергается в некоторой $\widetilde{LTK_r}$ -модели $\langle W, R_T, R_\sim, R_1, \ldots, R_k, V \rangle$, т. е. $x \not\models_V \Box_T(\Box_T A \longrightarrow B) \lor \Box_T(\Box_T B \longrightarrow A)$ для некоторого $x \in W$. Тогда $x \models_V \Diamond_T(\Box_T A \& \neg B) \& \Diamond_T(\Box_T B \& \neg A)$. Следовательно, существует $y \in W$ такой, что $xR_T y$ и $y \models_V \Box_T A \& \neg B$, и существует $z \in W$ такой, что $xR_T z$ и $z \models_V \Box_T B \& \neg A$.

Так как xR_Ty и xR_Tz , по свойству PL_{\Box_T} имеем yR_Tz или zR_Ty . Если yR_Tz , то $z\models_V A$, поскольку $y\models_V \Box_T A$. Это противоречит тому, что $z\models_V \neg A$. Случай, когда zR_Ty , доказывается аналогично.

Общезначимость формул $T_{\Box_{\xi}},\,4_{\Box_{\xi}},\,5_{\Box_{\xi}},\,M.1,\,M.2$ легко следует из соответствующих свойств $\widetilde{LTK_r}$ -фреймов.

Докажем общезначимость во всех $\widehat{LTK_r}$ -фреймах формулы AL. Пусть $\langle W, R_T, R_\sim, R_1, \ldots, R_k \rangle$ — произвольный $\widehat{LTK_r}$ -фрейм, $V: P \to \mathbb{P}(W)$ — означивание, $x \in W$ и $x \models_V \square_\sim A\&\square_\sim B\&\lozenge_T(\neg A\&\square_\sim B)$. Докажем, что $x \models_V \square_T B$.

Предположим, что это неверно, т. е. $x\not\models_V\Box_T B$. Тогда существует $u\in W$ такой, что xR_Tu и $u\not\models_V B$.

Так как $x \models_V \square_{\sim} A \& \square_{\sim} B \& \lozenge_T (\neg A \& \square_{\sim} B)$, верно

- $(1) \ \forall y \in W(xR_{\sim}y \Longrightarrow y \models_V A\&B),$
- (2) $\exists z (xR_Tz \bowtie z \models_V \neg A \bowtie \forall v (zR_\sim v \Longrightarrow v \models_V B)).$

Поскольку $z\models_V \neg A$, из (1) получаем, что верно $\neg(xR_\sim z)$. В силу того, что $u\not\models_V B$, из (1) получаем, что $\neg(xR_\sim u)$. Кроме того, из п. (2) следует, что выполняется $\neg(zR_\sim u)$. Таким образом, x,z,u принадлежат различным R_\sim -сгусткам.

Так как xR_Tz и xR_Tu , по свойству PL_{\Box_T} имеем zR_Tu или uR_Tz . Если zR_Tu , то для x,z,u, принадлежащих различным R_{\sim} -сгусткам, верно xR_TzR_Tu и xR_Tu . Это противоречит свойству PAL.

Если uR_Tz , то для x,z,u, принадлежащих различным R_{\sim} -сгусткам, верно xR_TuR_Tz и xR_Tz . Получили противоречие со свойством PAL.

Таким образом, предположение $x\not\models_V\Box_T B$ неверно, и общезначимость формулы AL доказана. \Box

2. Контрпример

В этом разделе докажем отсутствие полноты исчисления AS_{LTK_r} относительно класса LTK_r -фреймов.

Теорема 2. Существует формула A_0 такая, что A_0 общезначима во всех LTK_r -фреймах, и она не выводится в AS_{LTK_r} .

ДОКАЗАТЕЛЬСТВО. Рассмотрим формулу $\diamondsuit_T \diamondsuit_\sim p \longrightarrow \diamondsuit_T p$. Докажем сначала, что она общезначима во всех LTK_r -фреймах.

718 В. Ф. Юн

Предложение 1. Формула $\diamondsuit_T \diamondsuit_{\sim} p \longrightarrow \diamondsuit_T p$ общезначима в любом LTK_r -фрейме.

ДОКАЗАТЕЛЬСТВО. Пусть $\langle W, R_T, R_{\sim}, R_1, \dots, R_k \rangle$ — произвольный LTK_r -фрейм, V — означивание, $x \in W$ и $x \models_V \Diamond_T \Diamond_{\sim} p$. Докажем, что $x \models_V \Diamond_T p$.

Из $x\models_V \diamondsuit_T \diamondsuit_\sim p$ следует, что существуют $y,z\in W$ такие, что $xR_Ty,\,yR_\sim z$ и $z\models_V p.$

Так как $xR_{T}y$, то $\exists n \in J((x \in C^{n} \text{ и } y \in C^{n})$ или $(x \in C^{n} \text{ и } y \in C^{n+1}))$. Если $x \in C^{n}$ и $y \in C^{n}$ для некоторого $n \in J$, то $z \in C^{n}$, так как $yR_{\sim}z$. Следовательно, $xR_{T}z$. Если $x \in C^{n}$ и $y \in C^{n+1}$ для некоторого $n \in J$, то $z \in C^{n+1}$, поскольку $yR_{\sim}z$. Стало быть, и в этом случае верно $xR_{T}z$. Таким образом, найдется $z \in W$ такой, что $xR_{T}z$ и $z \models_{V} p$. Следовательно, $x \models_{V} \diamondsuit_{T}p$, и предложение доказано. \square

Для краткости обозначим формулу $\Diamond_T \Diamond_\sim p \longrightarrow \Diamond_T p$ через A_0 . Покажем, что формула A_0 не выводима в исчислении AS_{LTK_r} . Для этого сначала докажем, что A_0 не общезначима во всех $\widetilde{LTK_r}$ -фреймах.

Предложение 2. Формула A_0 опровергается в некоторой $\widetilde{LTK_r}$ -модели.

Доказательство. Рассмотрим фрейм $\mathbb{F}=\langle W,R_T,R_\sim,R_1,\ldots,R_k \rangle$, где

- (a) $W=C^0\cup C^1$, где $C^0=\{x\},\, C^1=\{y,z\}$ и $C^0\cap C^1=\varnothing;$
- (b) $uR_T w \iff [(u = x \text{ и } w = y) \text{ или } \exists n \in \{0,1\} (u \in C^n \text{ и } w \in C^n)];$
- (c) $uR_{\sim}w \iff \exists n \in \{0,1\}(u \in C^n \text{ if } w \in C^n);$
- (d) $R_i = R_{\sim}, 1 \le i \le k$.

Нетрудно заметить, что данный фрейм является \widehat{LTK}_r -фреймом. Пусть означивание $V:P\to \mathbb{P}(W)$ переменных в нем таково, что $V(p)=\{z\}$. Тогда

$$x \not\models_V p$$
, $y \not\models_V p$, $z \models_V p$.

Тем самым $y\models_V\diamondsuit_\sim p$, следовательно, $x\models_V\diamondsuit_T\diamondsuit_\sim p$. Кроме того, верно $x_V\models\Box_T\neg p$. Таким образом, $x\models_V\diamondsuit_T\diamondsuit_\sim p\&\Box_T\neg p$, т. е. формула A_0 опровергается в $\widehat{LTK_r}$ -модели $\langle\mathbb{F},V\rangle$. \square

Из теоремы 1 и предложения 2 получаем

Предложение 3. Формула A_0 не выводима в исчислении AS_{LTK_r} .

Из предложения 3 и общезначимости формулы A_0 в всех LTK_r -фреймах сразу следует, что исчисление AS_{LTK_r} не является полным относительно класса LTK_r -фреймов. \square

Автор выражает огромную признательность и благодарность Л. Л. Максимовой.

ЛИТЕРАТУРА

- 1. Lukyanchuk A. Decidability of multi-modal logic LTK of linear time and knowledge // J. Sib. Federal Univ. 2013. V. 6, N 2. P. 220–226.
- **2.** Лукьянчук А. Н., Римацкий В. В. Аксиоматизация линейной логики знания и времени LTK_r с интранзитивным отношением времени // Сиб. мат. журн. 2013. Т. 54, № 6. С. 1304—1314.

3. Chagrov A., Zakharyaschev M. Modal logic. Oxford: Clarendon Press, 1997. (Oxford Logic Guides; Book 35).

Cтатья поступила 9 декабря 2014 г.

Юн Вета Федоровна Институт математики им. С. Л. Соболева СО РАН, пр. Академика Коптюга, 4, Новосибирск 630090; Новосибирский гос. университет, ул. Пирогова, 2, Новосибирск 630090 veta_v@mail.ru