О КОНЕЧНЫХ ГРУППАХ, ИЗОСПЕКТРАЛЬНЫХ ГРУППЕ $U_3(3)$

Ю. В. Лыткин

Аннотация. Спектром конечной группы называется множество всех порядков ее элементов. Конечная группа G называется критической относительно подмножества ω натуральных чисел, если ω совпадает со спектром группы G и не совпадает со спектром любой собственной секции группы G. Исследуется строение групп, изоспектральных простой унитарной группе PSU(3,3). В частности, дается описание конечных групп, критических относительно спектра группы PSU(3,3).

 $DOI\,10.17377/smzh.2017.58.409$

Ключевые слова: конечная группа, спектр, критическая группа, неабелева простая группа.

Введение

В работе рассматриваются только конечные группы. Пусть G — группа. Обозначим через $\omega(G)$ спектр группы G, т. е. множество всех порядков элементов G. Группы с одинаковым спектром будем называть изоспектральными. Поскольку множество $\omega(G)$ замкнуто по отношению делимости, оно однозначно определяется своим подмножеством, состоящим из элементов, максимальных по делимости. Обозначим его через $\mu(G)$. Под секцией группы G будем понимать фактор-группу H/N, где $N,H\leq G$ и $N \leq H$.

Будем говорить, что группа G распознаваема (более точно, распознаваема по спектру в классе конечных групп), если любая конечная группа, изоспектральная G, изоморфна G. Группа G почти распознаваема, если существует лишь конечное число попарно не изоморфных групп, изоспектральных G. В противном случае она называется пераспознаваемой.

В [1] доказано, что группа нераспознаваема тогда и только тогда, когда она изоспектральна группе, содержащей нетривиальную разрешимую нормальную подгруппу. В этой же работе сформулировано определение критической группы. Пусть ω — некоторое подмножество множества натуральных чисел. Группа G называется критической относительно ω (или ω -критической), если ω совпадает со спектром группы G и не совпадает со спектром любой собственной секции группы G (т. е. секции, отличной от G).

В результате почти тридцатилетних исследований было установлено, что, как правило, конечные простые группы почти распознаваемы. Более точно, распознаваемы все неабелевы простые знакопеременные группы степени $n \neq 6, 10$ [2] и все простые спорадические группы, кроме J_2 [3]. Все простые группы

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований в рамках научного проекта № 16-31-00147 мол_а.

лиева типа достаточно большого лиева ранга почти распознаваемы [4]. Почти распознаваемы все исключительные группы лиева типа, кроме группы $^3D_4(2)$ [5].

Поэтому для решения проблемы распознавания простых групп по спектру актуальна задача описания групп, изоспектральных нераспознаваемым простым группам, которой и посвящена данная работа.

В [6,7] описаны все группы, критические относительно спектров групп A_6 , A_{10} и J_2 . Кроме того, в [8] доказано, что любая группа, изоспектральная группе $^3D_4(2)$, имеет секцию, изоморфную $^3D_4(2)$, поэтому сама группа $^3D_4(2)$ — единственная с точностью до изоморфизма критическая группа с таким спектром. По модулю уже известных результатов из этого следует, что все группы, критические относительно спектров неабелевых простых знакопеременных, спорадических и исключительных групп, известны. В каждом из перечисленных случаев количество таких попарно не изоморфных критических групп не превышает трех. Поэтому в дальнейшем будут рассматриваться только классические простые группы. В [6] дано полное описание критических групп, изоспектральных группе $L_3(3)$. Количество таких групп (с точностью до изоморфизма) равно двум.

В настоящей работе дается описание групп, изоспектральных простой унитарной группе $U_3(3) = PSU(3,3)$. Интерес к данной группе вызван, в первую очередь, работами [9,10], из которых следует, что группа $U_3(3)$ является единственной неабелевой простой группой, которая может быть изоспектральна и группе Фробениуса, и удвоенной группе Фробениуса.

Теорема. Пусть G — конечная группа, изоспектральная группе $U_3(3)$. Тогда $\mu(G)=\{7,8,12\}$ и G либо группа Фробениуса, либо удвоенная группа Фробениуса, либо расширение 2-группы N c помощью одной из следующих групп: $L_2(7)$, $PGL_2(7)$, $U_3(3)$ и $Aut(U_3(3))$.

Более того, справедливы следующие утверждения.

(1) Если G=FH — группа Фробениуса c ядром F и дополнением H, то F — элементарная абелева 7-группа, а H изоморфна либо

$$H_1 = \langle a, b, s \mid a^8 = b^4 = s^3 = 1; \ a^4 = b^2, \ a^b = a^{-1}, \ s^a = s^{-1}, \ s^b = s \rangle,$$

либо подгруппе $H_0 = \langle a,s \rangle$ группы H_1 индекса 2. Группа H_1 является полупрямым произведением $\langle s \rangle$ и обобщенной группы кватернионов $Q = \langle a,b \rangle$ порядка 16. Централизатор s в Q является группой кватернионов порядка 8, порожденной a^2 и b.

B обоих случаях H-модуль F представляет собой прямую сумму H-модулей, изоморфных модулю V размерности 4 над полем порядка 7, действие элементов a,b и s на котором в подходящем базисе задается матрицами

$$[a] = \begin{pmatrix} \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & \cdot & 1 \\ \cdot & 1 & \cdot & \cdot \\ -1 & \cdot & \cdot & \cdot \end{pmatrix}, \quad [b] = \begin{pmatrix} 5 & 4 & \cdot & \cdot \\ 4 & 2 & \cdot & \cdot \\ \cdot & \cdot & 4 & 2 \\ \cdot & \cdot & 2 & 3 \end{pmatrix}, \quad [s] = \begin{pmatrix} 2 & \cdot & \cdot & \cdot \\ \cdot & 2 & \cdot & \cdot \\ \cdot & \cdot & 4 & \cdot \\ \cdot & \cdot & \cdot & 4 \end{pmatrix}.$$

Единственная $\omega(U_3(3))$ -критическая группа такого типа изоморфна $V > H_0$.

(2) Если G — удвоенная группа Фробениуса, то G = ABC, где A — нормальная 2-подгруппа, а H = BC является группой Фробениуса порядка 21 или 42.

В первом случае $H \simeq \langle r, s \mid r^7 = s^3 = r^s r^5 = 1 \rangle$ и порядок любого G-главного фактора V из A равен 2^3 . Если рассмотреть V как H-модуль над

полем порядка 2, то существует базис в V, в котором действие H на V задается матрицами

$$[r] = \left(egin{array}{ccc} \cdot & 1 & \cdot \ \cdot & \cdot & 1 \ 1 & 1 & \cdot \end{array}
ight), \quad [s] = \left(egin{array}{ccc} 1 & \cdot & \cdot \ \cdot & \cdot & 1 \ \cdot & 1 & 1 \end{array}
ight).$$

Во втором случае $H \simeq \langle r, s \mid r^7 = s^6 = r^s r^4 = 1 \rangle$ и порядок любого G-главного фактора V из A равен 2^6 . Если рассмотреть V как H-модуль над полем порядка 2, то существует базис в V, в котором действие H на V задается матрицами

$$[r] = egin{pmatrix} \cdot & 1 & \cdot & \cdot & \cdot & \cdot \ \cdot & \cdot & 1 & \cdot & \cdot & \cdot \ \cdot & \cdot & 1 & \cdot & \cdot \ \cdot & \cdot & \cdot & 1 & \cdot & \cdot \ \cdot & \cdot & \cdot & 1 & 1 \ \cdot & \cdot & \cdot & \cdot & \cdot & 1 \ 1 & 1 & 1 & 1 & 1 \end{pmatrix}, \quad [s] = egin{pmatrix} 1 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \ \cdot & \cdot & \cdot & 1 & \cdot & \cdot \ \cdot & \cdot & \cdot & \cdot & \cdot & 1 \ \cdot & 1 & \cdot & \cdot & \cdot & \cdot \end{pmatrix}.$$

В каждом из двух случаев существует по меньшей мере одна группа, критическая относительно $\omega(U_3(3))$.

(3) Если $G/N \simeq PGL_2(7)$, то N дополняется в G подгруппой H, изоморфной $PGL_2(7)$, и каждый G-главный фактор группы N как H-модуль изоморфен абсолютно неприводимому H-модулю V над полем порядка 2. Рассмотрим матрицы над полем порядка 2:

$$a = egin{pmatrix} 1 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot & \cdot & \cdot & \cdot \\ 1 & \cdot & 1 & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & 1 & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 & \cdot & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 & \cdot & \\ \cdot & \cdot & \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot &$$

Тогда $\langle a,b,c\rangle\simeq PGL_2(7)$ и соответствующее естественное представление эквивалентно действию H на V. Полупрямое произведение V > H изоспектрально $U_3(3)$ и c точностью до изоморфизма является единственной группой, критической относительно $\omega(U_3(3))$.

- (4) Если $G/N \simeq L_2(7) \simeq GL_3(2)$, то каждый G-главный фактор группы N изоморфен естественному трехмерному $GL_3(2)$ -модулю V или модулю, контраградиентному V. Кроме того, экспонента группы $C_N(s)$ равна четырем, где s элемент порядка 3 из G. Существуют по крайней мере две неизоморфные $\omega(U_3(3))$ -критические группы такого типа. Обе являются расширениями прямого произведения трех циклических групп порядка 4 c помощью $L_2(7)$, однако одно из этих расширений расщепляемое, другое нерасщепляемое.
- (5) Если $G/N \simeq U_3(3)$ или $G/N \simeq \operatorname{Aut}(U_3(3))$, то каждый G-главный фактор группы N изоморфен единственному c точностью до эквивалентности абсолютно неприводимому шестимерному $\operatorname{Aut}(U_3(3))$ -модулю над полем порядка 2 (или его ограничению на $U_3(3)$). Существуют примеры расширений N c помощью $U_3(3)$ и $\operatorname{Aut}(U_3(3))$, в которых N нетривиальна. Группа $U_3(3)$ является

единственной с точностью до изоморфизма $\omega(U_3(3))$ -критической группой такого типа.

Из данной теоремы следует, что существует не менее семи групп, критических относительно спектра группы $U_3(3)$. В пп. (1), (3) и (5) теоремы описание критических групп полное. В оставшихся двух случаях приведено по два примера неизоморфных критических групп соответствующих типов, однако вопрос о точном количестве критических групп в этих случаях остается открытым.

Вступительная часть теоремы доказывается в предложении 1.1. Пп. (1)–(5) теоремы доказываются в § 2–6 соответственно.

§ 1. Предварительные результаты

Спектр $\omega(G)$ группы G определяет $\mathit{граф}$ $\mathit{Грюнберга}$ — $\mathit{Кегеля}$ (или $\mathit{граф}$ $\mathit{простых}$ $\mathit{чисел}$) $\mathit{GK}(G)$ группы G . Вершинами этого графа служат элементы из множества $\pi(G)$ простых делителей порядка группы G . Две различные вершины p и q смежны, если $\mathit{pq} \in \omega(G)$. Обозначим через $\mathit{s}(G)$ число компонент связности графа $\mathit{GK}(G)$, а через $\pi_i(G)-i$ -ю компоненту связности, $i=1,\ldots,s$. Если порядок группы четен, то будем считать, что $2\in\pi_1(G)$. Обозначим через $\omega_i(G)$ множество, состоящее из таких $n\in\omega(G)$, что каждый простой делитель числа n принадлежит $\pi_i(G)$.

Лемма 1.1 (Грюнберг, Кегель [11]). Если G — конечная группа c несвязным графом GK(G), то верно одно из следующих утверждений.

- (1) s(G)=2 и G группа Фробениуса, т. е. G содержит нетривиальную нормальную нильпотентную холлову подгруппу A и $C_G(a) \leq A$ для любого неединичного $a \in A$.
- (2) s(G)=2 и G удвоенная группа Фробениуса, т. е. G=ABC, где A, AB нормальные подгруппы в G, B нормальная подгруппа в BC и AB, BC группы Фробениуса.
 - (3) Существует такая неабелева простая группа P, что

$$P \le \overline{G} = G/K \le \operatorname{Aut}(P)$$

для некоторой нильпотентной нормальной $\pi_1(G)$ -подгруппы K из G и \overline{G}/P является $\pi_1(G)$ -группой. Более того, граф GK(P) несвязен, $s(P) \geq s(G)$, и для любого числа $i, \ 2 \leq i \leq s(G)$, существует $j, \ 2 \leq j \leq s(P)$, такое, что $\omega_i(G) = \omega_i(P)$.

В частности, G обладает самое большее одним неабелевым композиционным фактором.

Лемма 1.2 [12–14]. Пусть G — группа Фробениуса c ядром N и дополнением H. Тогда верны следующие утверждения.

- (1) N нильпотентная группа; в частности, GK(N) полный граф, и $|\mu(N)|=1.$
- (2) Если U подгруппа порядка rs из H, где r и s простые числа (не обязательно различные), то U циклическая группа; в частности, силовские r-подгруппы группы H для нечетных r циклические.
- (3) Если порядок группы H четен, то в H есть единственный элемент z порядка 2; в частности, силовская 2-подгруппа группы H является циклической группой или (обобщенной) группой кватернионов, подгруппа N коммутативна, и $n^z = n^{-1}$ для любого элемента $n \in N$.

- (4) Либо группа H разрешима и граф GK(H) полный, либо H содержит нормальную подгруппу $L \simeq SL_2(5)$ такую, что $(|L|, |H:L|) \le 2$ и GK(H) может быть получен из полного графа на $\pi(H)$ удалением ребра $\{3,5\}$.
- **Лемма 1.3** (Машке [15, с. 123]). Если характеристика поля $\mathbb F$ равна нулю или не делит порядок конечной группы G, то любое конечномерное представление группы G над полем $\mathbb F$ раскладывается в прямую сумму неприводимых представлений.

Лемма 1.4. Конечная группа G критическая относительно множества $\omega(G)$ тогда и только тогда, когда выполняются следующие условия.

- (1) Если M максимальная подгруппа группы G, то $\omega(M) \neq \omega(G)$.
- (2) Если S минимальная нормальная подгруппа группы G, то $\omega(G/S) \neq \omega(G)$.

ДОКАЗАТЕЛЬСТВО. Если группа G критическая относительно $\omega(G)$, то данные условия выполняются по определению.

Пусть для группы G выполняются условия (1) и (2). Рассмотрим собственную секцию H/N группы G. Если H < G, то для некоторой максимальной подгруппы M < G выполняется цепочка включений

$$\omega(H/N) \subseteq \omega(H) \subseteq \omega(M) \neq \omega(G)$$
.

Если H=G, то N содержит некоторую минимальную нормальную подгруппу S группы G. В этом случае $\omega(G/N)\subseteq\omega(G/S)\neq\omega(G)$. Таким образом, группа G критическая. \square

Лемма 1.5 (Гашютц [15, с. 121]). Пусть G — конечная группа, A — нормальная абелева p-подгруппа G. Если A дополняется в силовской p-подгруппе группы G, то A дополняется в G.

Предложение 1.1. Пусть G — конечная группа, изоспектральная группе $U_3(3)$. Тогда G является либо группой Фробениуса, либо удвоенной группой Фробениуса, либо расширением 2-группы N c помощью одной из следующих групп: $L_2(7)$, $PGL_2(7)$, $U_3(3)$ и $Aut(U_3(3))$.

Доказательство. Поскольку у графа $GK(U_3(3))$ число компонент связности равно двум, для группы G выполняется одно из утверждений леммы 1.1. Если G не является группой Фробениуса или удвоенной группой Фробениуса, то существует такая неабелева простая группа P, что

$$P \le G/N \le \operatorname{Aut}(P)$$

для некоторой нильпотентной нормальной $\{2,3\}$ -группы N. Очевидно, что $\omega(P)\subseteq\omega(G)$ и $7\in\omega(P)$. Из [16] следует, что P изоморфна $L_2(7)$ или $U_3(3)$. В обоих случаях индекс группы $\operatorname{Aut}(P)$ по P равен двум. Таким образом, $G/N\simeq H$, где H является одной из следующих групп: $L_2(7)$, $\operatorname{Aut}(L_2(7))\simeq PGL_2(7)$, $U_3(3)$ и $\operatorname{Aut}(U_3(3))$.

Докажем, что N является 2-группой. Пусть $P_1\in \mathrm{Syl}_2(N)$ и $P_2\in \mathrm{Syl}_3(N)$. Предположим, что $P_2>1$. Введем обозначение: \overline{X} — образ X при факторизации по P_1 . Тогда \overline{N} — 3-группа и $\overline{G}/\overline{N}\simeq H$.

Группа H содержит подгруппу K, изоморфную $L_2(7)$. Обозначим через S подгруппу порядка 7 группы K. Тогда порядок нормализатора $N_K(S)$ равен $7 \cdot 3$ (см. [17]). Пусть F — полный прообраз группы $N_K(S)$ в группе \overline{G} . По лемме 1 из [18] группа F содержит элемент порядка 9, что противоречит изоспектральности групп G и $U_3(3)$. Таким образом, N-2-группа. \square

\S 2. Группы Фробениуса, изоспектральные $U_3(3)$

Пусть $G = F \setminus H$ — группа Фробениуса с ядром F и дополнением H и $\omega(G) = \omega(U_3(3))$. По лемме 1.2 группа F нильпотентна, а множество $\mu(F)$ одноэлементно. Далее, группа H разрешима, граф GK(H) полный.

Покажем, что F — элементарная абелева 7-группа. Действительно, если 7 делит порядок группы H, то H — 7-группа, а F — $\{2,3\}$ -группа. Тогда F содержит элементы порядков 8 и 12. Но тогда из одноэлементности множества $\mu(F)$ следует, что F содержит элемент порядка 24; противоречие. Значит, 7 делит порядок группы F. Поскольку G не содержит элементов порядка 49, а порядок группы H четен, из леммы 1.2 следует, что F элементарная абелева.

Из леммы 1.2 также вытекает, что в H существует единственная инволюция z, силовские 2-подгруппы в H — циклические или (обобщенные) группы кватернионов, а силовские 3-подгруппы в H циклические порядка 3. Обозначим через $\Omega(H)$ подгруппу группы H, порожденную всеми элементами простых порядков из H. Тогда по теореме 2 из [19] группа $\Omega(H)$ является прямым произведением холловых подгрупп Z и K, где Z циклическая и ее порядок свободен от квадратов, а K либо тривиальна, либо изоморфна $SL_2(5)$ или $SL_2(3)$. Ясно, что $K \not\simeq SL_2(5)$.

Предположим, что $K\simeq SL_2(3)$. Тогда Z=1 и $\Omega(H)=K$, поэтому индекс H по K равен двум и порядок H равен 48. Введем обозначение: \overline{X} — образ X при факторизации по $\langle z \rangle$. Тогда порядок \overline{H} равен 24 и в \overline{H} есть подгруппа индекса 2, изоморфная A_4 . Поскольку $H \neq K \times \langle z \rangle$, получаем $\overline{H} \simeq S_4$. Но $\mu(S_4)=\{3,4\}$, следовательно, в H нет элементов порядка 12; противоречие. Таким образом, K=1, и $\Omega(H)$ циклическая порядка 6. Поэтому силовские 2-подгруппы группы H либо циклические порядка 8, либо обобщенные группы кватернионов порядка 16.

Пусть $S \in \mathrm{Syl}_3(H)$. Тогда $S < \Omega(H)$ и из цикличности $\Omega(H)$ следует, что $S \subseteq H$. Таким образом, группа H является полупрямым произведением группы S на силовскую 2-подгруппу группы H.

Рассмотрим случай, когда силовские 2-подгруппы в H изоморфны Q_{16} , и пусть Q — одна из таких подгрупп. Тогда $H=S\leftthreetimes Q$ и $\overline{H}=\overline{S}\leftthreetimes \overline{Q}$, причем $\overline{Q}\simeq D_8$. Пусть $\overline{Q}=\langle \bar{a},\bar{b}\mid \bar{a}^4=\bar{b}^2=1,\ \bar{a}^{\bar{b}}=\bar{a}^{-1}\rangle$. Поскольку группа \overline{S} циклическая порядка 3, задан гомоморфизм $\varphi:\overline{Q}\to\mathbb{Z}_2$. Ядро φ имеет порядок 4, но не содержит элементов порядка 4, так как элементы порядка 8 из Q действуют на S без неподвижных точек. Таким образом, $\ker\varphi$ изоморфно четверной группе Клейна K_4 . Группа \overline{Q} содержит две подгруппы, изоморфные K_4 , и они переводятся друг в друга автоморфизмом группы \overline{Q} , поэтому можно считать, что $\ker\varphi=\langle \bar{a}^2,\bar{b}\rangle$. С помощью [20] проверяется, что

$$\overline{H} \simeq \langle \bar{a}, \bar{b}, \bar{s} \mid \bar{a}^4 = \bar{b}^2 = \bar{s}^3 = 1, \ \bar{a}^{\bar{b}} = \bar{a}^{-1}, \ \bar{s}^{\bar{a}} = \bar{s}^{-1}, \ \bar{s}^{\bar{b}} = \bar{s} \rangle.$$

Поскольку H содержит единственную инволюцию, получаем

$$H \simeq \langle a, b, s \mid a^8 = b^4 = s^3 = 1, \ a^4 = b^2, \ a^b = a^{-1}, \ s^a = s^{-1}, \ s^b = s \rangle \simeq H_1.$$

Из строения группы H_1 следует, что $\mu(H_1) = \{8, 12\}.$

Таким образом, с точностью до изоморфизма существует единственная группа H с силовской 2-подгруппой, изоморфной обобщенной группе кватернионов порядка 16, такая, что группа Фробениуса $F \leftthreetimes H$ изоспектральна $U_3(3)$ и |H|=48.

Рассмотрим случай, когда силовские 2-подгруппы в H циклические порядка 8, т. е. $H=S \leftthreetimes \langle c \rangle$, c — элемент порядка 8 из H. Очевидно, должно выполняться $s^c=s^{-1}$, поэтому такая группа единственна с точностью до изоморфизма. Рассмотрим подгруппу $H_0=\langle a,s \rangle$ индекса 2 группы H_1 из предыдущего случая. Она является полупрямым произведением группы S на группу $\langle a \rangle$ порядка 8. Более того, $\mu(H_0)=\{8,12\}$.

Итак, если группа H такова, что группа Фробениуса $F \leftthreetimes H$ изоспектральна $U_3(3)$, то H изоморфна либо H_1 , либо H_0 . Осталось в обоих случаях задать действие группы H на группе F. Напомним, что F — элементарная абелева 7-группа, поэтому на F можно смотреть как на H-модуль над полем порядка T. Поскольку порядки F и H взаимно просты, по лемме T группа T как T найти все неприводимые T над полем порядка T действие группы T на которых свободно. Отметим, что размерность любого такого модуля четна, поскольку число T — T должно делиться на T на T группа T на модуля.

Рассмотрим сначала случай, когда $H\simeq H_1$. В группе H содержится подгруппа $K=\langle a^2,b,s\rangle$ индекса 2, изоморфная прямому произведению группы кватернионов порядка 8 и циклической группы порядка 3. Для группы K существует представление размерности 2 над полем порядка 7, задаваемое матрицами

$$[a^2] = \begin{pmatrix} \cdot & 1 \\ -1 & \cdot \end{pmatrix}, \quad [b] = \begin{pmatrix} 5 & 4 \\ 4 & 2 \end{pmatrix}, \quad [s] = \begin{pmatrix} 2 & \cdot \\ \cdot & 2 \end{pmatrix}.$$

Обозначим через W K-модуль, на котором группа K действует в соответствии с данными матрицами. Легко проверить, что данное действие свободно, поэтому модуль W неприводим. Рассмотрим H-модуль V размерности 4, индуцированный с модуля W. Непосредственно проверяется, что группа H действует на V в соответствии с матрицами

$$[a] = \left(egin{array}{cccc} \cdot & \cdot & 1 & \cdot \ \cdot & \cdot & \cdot & 1 \ \cdot & 1 & \cdot & \cdot \ -1 & \cdot & \cdot & \cdot \end{array}
ight), \quad [b] = \left(egin{array}{cccc} 5 & 4 & \cdot & \cdot \ 4 & 2 & \cdot & \cdot \ \cdot & \cdot & 4 & 2 \ \cdot & \cdot & 4 & 2 \ \cdot & \cdot & 2 & 3 \end{array}
ight), \quad [s] = \left(egin{array}{cccc} 2 & \cdot & \cdot & \cdot \ \cdot & 2 & \cdot & \cdot \ \cdot & 2 & \cdot & \cdot \ \cdot & 2 & 3 \end{array}
ight).$$

Покажем, что модуль V неприводим. Непосредственно проверяется, что действие группы H на V свободно, поэтому размерность любого подмодуля модуля V четна. Покажем, что в V нет подмодулей размерности 2. Действительно, если они есть, то группа H изоморфна некоторой подгруппе группы $GL_2(7)$. Поскольку в $GL_2(7)$ все элементы порядка 4 сопряжены, можно считать, что образом элемента a^2 порядка 4 из H служит матрица $\begin{pmatrix} & & 1 \\ -1 & & \end{pmatrix}$. Легко проверить, что единственными элементами порядка 3 из $GL_2(7)$, которые централизуют данную матрицу, являются матрицы $\begin{pmatrix} 2 & & \\ & & 2 \end{pmatrix}$ и $\begin{pmatrix} 4 & & \\ & & 4 \end{pmatrix}$. Но они лежат в центре группы $GL_2(7)$, а в группе H элементы порядка 8 не перестановочны с элементами порядка 3. Таким образом, H не может быть изоморфна подгруппе группы $GL_2(7)$, следовательно, модуль V неприводим. В таблице характеров группы H_1 (см. [20]) существует лишь один характер такой, что соответствующее действие группы H_1 свободно, и степень этого характера равна четырем. Следовательно, представление с данным характером эквивалентно действию H_1 на модуле V. Итак, группа F как H_1 -модуль является прямой суммой H_1 -модулей, изоморфных V.

Рассмотрим модуль V как H_0 -модуль. По лемме 1.3 если он приводим, то является прямой суммой неприводимых модулей. В этом случае V может быть только суммой двух подмодулей размерности 2. Однако, как уже установлено, в группе $GL_2(7)$ среди элементов порядка 3 элементы порядка 4 централизуют лишь матрицы $\begin{pmatrix} 2 & \cdot \\ \cdot & 2 \end{pmatrix}$ и $\begin{pmatrix} 4 & \cdot \\ \cdot & 4 \end{pmatrix}$, а они централизуют и элементы порядка 8. Отсюда получаем, что V как H_0 -модуль также неприводим.

Итак, действие групп H_1 и H_0 на F задано. Остается лишь отметить, что единственной с точностью до изоморфизма $\omega(U_3(3))$ -критической группой такого типа является группа $V > H_0$.

§ 3. Удвоенные группы Фробениуса, изоспектральные $U_3(3)$

В [21] описана структура таких групп и приведены примеры. Наша цель — доказать, что группы из этих примеров критические относительно $\omega(U_3(3))$.

Рассмотрим первый пример из [21], т. е. G = AH, где H — группа Фробениуса порядка 21, а A — группа из следующей леммы.

Лемма 3.1 [21, лемма 4]. Пусть группа A порождена элементами x_1 , x_2 , x_3 , y_1 , y_2 , y_3 со следующими соотношениями:

$$\begin{aligned} x_i^4 &= y_i^4 = 1, \quad i \in \{1,2,3\}, \\ [x_i,x_j] &= [y_i,y_j] = 1, \quad i,j \in \{1,2,3\}, \\ [x_i,y_i] &= 1, \quad i \in \{1,2,3\}, \\ [x_i,y_j][x_j,y_i] &= 1, \quad 1 \leq i < j \leq 3, \\ [[x_i,y_j],x_k] &= [[x_i,y_j],y_k] = 1, \quad i,j,k \in \{1,2,3\}. \end{aligned}$$

Тогда выполняются следующие утверждения.

- (1) Ступень нильпотентности группы A равна двум, и A-2-группа.
- (2) Подгруппы $X = \langle x_1, x_2, x_3 \rangle$ и $Y = \langle y_1, y_2, y_3 \rangle$ изоморфны прямому произведению трех циклических групп порядка 4, и $A = \langle X, Y \rangle$.
- (3) Коммутант Z группы A порождается элементами $z_1 = [x_1, y_2], z_2 = [x_1, y_3]$ и $z_3 = [x_2, y_3]$ порядка 4 и изоморфен прямому произведению трех циклических групп порядка 4.
 - (4) Порядок A равен 2^{18} .
 - (5) Экспонента A равна 8.

Докажем, что в этом случае группа G критическая, используя лемму 1.4. Предположим, что M — максимальная подгруппа группы G и $\omega(M)=\omega(G)$. Поскольку $\omega(G)$ содержит 3 и 7, имеем AM=G, т. е. M изоморфна полупрямому произведению $M_1 \leftthreetimes H$, где M_1 — максимальная H-инвариантная подгруппа группы A.

Введем обозначение: \overline{X} — образ X при факторизации по подгруппе Фраттини $\Phi(A)$ группы A. Тогда \overline{A} — прямая сумма двух неприводимых H-модулей \overline{X} и \overline{Y} , а $\overline{M_1}$ является максимальной подгруппой группы \overline{A} . Централизатор элемента $s \in H$ порядка 3 в группе \overline{A} содержит ровно 3 ненулевых элемента: $\overline{x_1}$, $\overline{y_1}$ и $\overline{x_1}$ + $\overline{y_1}$. Поэтому $\overline{M_1}$ — одна из следующих групп:

$$\langle \overline{x_1}, \overline{x_2}, \overline{x_3} \rangle$$
, $\langle \overline{y_1}, \overline{y_2}, \overline{y_3} \rangle$, $\langle \overline{x_1} + \overline{y_1}, \overline{x_2} + \overline{y_2}, \overline{x_3} + \overline{y_3} \rangle$.

С помощью [20] проверяется, что полные прообразы этих групп в A не содержат элементов порядка 8; противоречие. Следовательно, в G нет изоспектральных ей максимальных подгрупп.

Предположим, что S — минимальная нормальная подгруппа группы G такая, что $\omega(G/S)=\omega(G)$. Тогда S элементарная абелева и является подгруппой группы Z, поэтому $S=\left\langle z_1^2,z_2^2,z_3^2\right\rangle$. Но в этом случае группа G/S не содержит элементов порядка 8; противоречие. Таким образом, группа G критическая.

Рассмотрим второй пример из [21], т. е. G=AH, где A — группа порядка 2^{18} , а H — группа Фробениуса порядка 42. Воспользуемся построением этой группы, описанным в следующей лемме.

Лемма 3.2 [21, замечание после теоремы 3]. Пусть W — векторное пространство размерности 12 над полем порядка 2, а a_1 , b и c — линейные преобразования W, матрицы которых в базисе $\{v_1, v_2, \ldots, v_{12}\}$ имеют вид

$$[a_1] = \begin{pmatrix} 1 & \cdot \\ \cdot & 1 & \cdot & \cdot & \cdot & 1 & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot & \cdot & \cdot & 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot & \cdot & \cdot & 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 & \cdot & 1 & 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & 1 & \cdot & 1 & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & 1 & \cdot & \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & 1 & \cdot & \cdot \\ \cdot & 1 & \cdot \\ \cdot & 1 \\ \cdot & \cdot & 1 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & 1 & 1 & 1 & 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1 & 1 & 1 & 1 & 1 & 1 \\ \cdot & \cdot & \cdot & \cdot & 1 & 1 & 1 & 1 & 1 \\ \cdot & \cdot & \cdot & \cdot & \cdot & 1 & 1 & 1 & 1 \\ \cdot & \cdot & \cdot & \cdot & \cdot & 1 & 1 & 1 & 1 & 1 \\ \cdot & \cdot$$

Пусть $L = \langle a_1, b, c \rangle$. Тогда

- (1) Порядки a_1 , b и c равны соответственно двум, семи и шести.
- (2) Подгруппа $K = \langle b, c \rangle$ является группой Фробениуса порядка 42.
- (3) Подгруппа $A_1 = \left\langle a_1^K \right\rangle$ является элементарной абелевой группой порядка 2^6 .
- (4) Группы L и $W \leftthreetimes L$ являются удвоенными группами Фробениуса и $\omega(W \leftthreetimes L) = \omega(U_3(3)).$

Зафиксируем обозначения из леммы 3.2 до конца параграфа. В этих обозначениях $A=W \leftthreetimes A_1$ и H=K. Пользуясь леммой 1.4, докажем, что группа G критическая.

Пусть M < G — максимальная подгруппа, изоспектральная G. Сначала покажем, что AM = G. Если AM < G, то $A \leq M$. Кроме того, M содержит элементы порядков 3 и 7, поэтому индекс G по M равен двум и можно считать, что $c^2 \in M$ и $c \notin M$. Но тогда в M нет элементов порядка 8; противоречие. Итак, M изоморфна полупрямому произведению $M_1 \leftthreetimes H$, где M_1 — максимальная H-инвариантная подгруппа группы A.

Рассмотрим в A подгруппу $V=\langle v_7,v_8,\ldots,v_{12}\rangle$. Из строения матрицы $[a_1]$ видно, что V нормальна в A и фактор-группа A/V элементарная абелева. Поэтому $\Phi(A)\leq V$. Кроме того, из теоремы 1 в [21] следует, что порядок $\Phi(A)$ делится на 2^6 , поэтому $\Phi(A)$ совпадает с V.

Пусть \overline{X} означает образ X при факторизации по $\Phi(A)$. Тогда \overline{A} является прямой суммой неприводимых H-модулей \overline{W} и $\overline{A_1}$. Для $i=\overline{2,6}$ обозначим $a_i=a_{i-1}^b$. Легко проверить, что H действует на базисах $\{\overline{v_1},\overline{v_2},\ldots,\overline{v_6}\}$ и $\{\overline{a_1},\overline{a_2},\ldots,\overline{a_6}\}$ одинаково. Централизатор элемента c в группе \overline{A} содержит ровно 3 ненулевых элемента: $\overline{v_1}$, $\overline{a_1}$ и $\overline{v_1}+\overline{a_1}$. Поэтому $\overline{M_1}$ — одна из следующих групп:

$$\langle \overline{v_1}, \overline{v_2}, \dots, \overline{v_6} \rangle$$
, $\langle \overline{a_1}, \overline{a_2}, \dots, \overline{a_6} \rangle$, $\langle \overline{v_1} + \overline{a_1}, \overline{v_2} + \overline{a_2}, \dots, \overline{v_6} + \overline{a_6} \rangle$.

Непосредственно проверяется, что полные прообразы этих групп элементарные абелевы, откуда получаем, что в M нет элементов порядка 8; противоречие. Следовательно, в G нет изоспектральных ей максимальных подгрупп.

Предположим, что S — минимальная нормальная подгруппа группы G такая, что $\omega(G/S)=\omega(G)$. Тогда $S\leq W$ и из теоремы 1 в [21] следует, что порядок S равен 2^6 . Получаем, что $S=\Phi(A)$, откуда вытекает, что G/S элементарная абелева. Поскольку в этом случае G/S не содержит элементов порядка 8, данное противоречие завершает доказательство этой части теоремы.

$\S 4$. Расширения с помощью $PGL_2(7)$, изоспектральные $U_3(3)$

Отметим, что $\mu(PGL_2(7))=\{6,7,8\},\ \mu(L_2(7))=\{3,4,7\}$ (см. [17]). Кроме того, положим $H=PGL_2(7)$ и $K\leq H,\ K\simeq L_2(7)$ и зафиксируем эти обозначения до конца параграфа.

Пусть G — группа, изоспектральная $U_3(3)$ и содержащая нормальную подгруппу N, для которой $G/N \simeq H$.

Лемма 4.1. Выполняются следующие утверждения.

- (1) $H \simeq \langle a, b, c \mid a^2 = b^3 = c^2 = (ab)^7 = (ac)^2 = (bc)^2 = [a, b]^4 = 1 \rangle$.
- (2) Силовские 2-подгруппы группы H изоморфны группе D_{16} , и каждая из них порождается некоторыми инволюциями $x \in K$ и $y \in H \setminus K$.

(3) C точностью до подобия существует единственный неприводимый H-модуль V над полем порядка 2 такой, что элементы порядка 7 из H действуют на V без неподвижных точек. Его размерность равна шести, и действие H на V при подходящем выборе базиса определяется следующими матрицами:

- (4) $\omega(V \times H) = \omega(U_3(3))$.
- (5) Любое расширение V с помощью H, изоспектральное $U_3(3)$, расщепляется, т. е. является полупрямым произведением $V \times H$.
 - (6) Группа V > H критическая относительно $\omega(U_3(3))$.

ДОКАЗАТЕЛЬСТВО ЛЕММЫ 4.1. Утверждения (1) и (3) проверяются с помощью [20,22].

(2) Из [17] известно, что в K и $H \setminus K$ ровно по одному классу сопряженных инволюций. Пусть $y \in H \setminus K$ — инволюция, S — силовская 2-подгруппа группы H, содержащая y, а $D \leq S$ — силовская 2-подгруппа группы K. Таким образом, D изоморфна группе D_8 , и индекс группы S по D равен двум.

Следовательно, группа S является полупрямым произведением $D \leftthreetimes \langle y \rangle$. Пусть $D \simeq \langle r,s \mid r^2 = s^2 = (rs)^4 = 1 \rangle$. Если $r^y = r$ или $r^y = r^s$, то $\mu(S) = \{4\}$, что невозможно. Поэтому $r^y = s$ или $r^y = s^r$. В первом случае $(ry)^2 = rr^y = rs$, во втором случае $(ry)^2 = rr^y = rrsr = sr = (rs)^{-1}$. Так или иначе |ry| = 8. Таким образом, $S = \langle r, y \rangle \simeq D_{16}$.

(4) Поскольку элементы порядка 7 из H действуют на V без неподвижных точек и $\dim V < 8$, множество $\mu(V \leftthreetimes H)$ содержит 7 и 8. Докажем, что $12 \in \mu(V \leftthreetimes H)$. Пусть x — элемент порядка 6 из H и v — произвольный элемент из V. Непосредственно проверяется, что

$$(vx^{-1})^6 = vv^x v^{x^2} v^{x^3} v^{x^4} v^{x^5}.$$

Элемент справа лежит в группе V. Запишем его в аддитивной форме (это можно сделать, поскольку на V можно смотреть как на H-модуль):

$$v + vx + vx^2 + vx^3 + vx^4 + vx^5$$
,

где запись vx означает образ v под действием x. Далее, запишем этот элемент в виде

$$v(E + [x] + [x]^2 + [x]^3 + [x]^4 + [x]^5),$$

где E — единичная матрица, [x] — матричное представление элемента x. Можно проверить (например, с помощью [20]), что матрица $E+[x]+[x]^2+[x]^3+[x]^4+[x]^5$ отлична от нуля, следовательно, существует $v_1 \in V$ такой, что

$$v_1(E + [x] + [x]^2 + [x]^3 + [x]^4 + [x]^5) \neq 0.$$

Таким образом, $(v_1x^{-1})^6 = v_2 \in V$, где $|v_2| = 2$, поэтому порядок v_1x^{-1} равен 12. Наконец, с помощью [20] проверяется, что если y — элемент порядка 8 из H, то матрица $E + [y] + [y]^2 + [y]^3 + [y]^4 + [y]^5 + [y]^6 + [y]^7$ нулевая, откуда следует, что в группе V > H нет элементов порядка 16.

(5) Пусть G — группа, изоспектральная $U_3(3)$ и содержащая нормальную элементарную абелеву подгруппу V, для которой $G/V \simeq H$. Пусть T — полный прообраз группы K в G, т. е. индекс G по T равен $2, V \leq T$. Докажем, что G является расщепляемым расширением группы V с помощью $G/V \simeq H$. Для этого воспользуемся леммой 1.5, показав, что группа V дополняется в силовской 2-подгруппе группы G.

Пусть S — подгруппа порядка 7 группы G. Докажем, что $V \cap N_G(S) = 1$. Пусть $g \in V$ нормализует S. Тогда $g^{-1}sg \in S$ для любого $s \in S$. С другой стороны, $V \leq G$, поэтому $s^{-1}g^{-1}s \in V$. Тогда $s^{-1}g^{-1}sg \in S \cap V = 1$, следовательно, $g^{-1}sg = s$. Если g нетривиален, то |sg| = 14, что невозможно.

Отсюда, пользуясь [17], получаем, что $|N_G(S)|=7\cdot 6$, а $|N_T(S)|=7\cdot 3$, следовательно, в $G\setminus T$ есть инволюция y.

Пусть запись \overline{X} обозначает образ X при факторизации по V. Тогда \overline{y} — инволюция из $H \setminus K$. Поскольку в K и $H \setminus K$ ровно по одному классу сопряженных инволюций, найдется инволюция $\overline{r} \in K$, для которой $|\overline{y}\overline{r}| = 8$ и $\langle \overline{y}, \overline{r} \rangle \simeq D_{16}$.

Покажем, что в $T \setminus V$ также есть инволюция. Возьмем элемент k порядка 8 из H. Так как $16 \not\in \omega(U_3(3))$, порядок k также равен восьми. Элемент k^4 содержится в T, ибо |G:T|=2. Но он не содержится в V, поскольку тогда порядок элемента \bar{k} был бы равен 4.

Обозначим $x=k^4$. Тогда $\bar{x}\in K$, значит, существует элемент $\bar{g}\in K$ такой, что $\bar{x}^{\bar{g}}=\bar{r}$. Пусть g — прообраз \bar{g} . Тогда $x^g\in T\setminus V$ — инволюция и $\overline{x^g}=\bar{r}$. Имеем $\langle y,x^g\rangle\simeq D_{16}$ и $\langle y,x^g\rangle\cap V=1$, поэтому V дополняется в силовской 2-подгруппе группы G.

(6) Пусть G_1 — секция в $V \leftthreetimes H$ и $\omega(G_1) = \omega(V \leftthreetimes H)$. Поскольку V — неприводимый H-модуль и K — единственная нормальная подгруппа в H, группа G_1 имеет вид $V \leftthreetimes H_1$, где $H_1 \le H$ и порядок H_1 делится на 7. В H есть с точностью до сопряжения всего две максимальные подгруппы, содержащие элемент порядка 7. Это K и $N_H(S)$, где S — подгруппа порядка 7 группы H. Если $H_1 = K$, то G_1 не содержит элементов порядка 12; противоречие. Если $G_1 = N_H(S)$, то $|G_1| = 7 \cdot 6$, в этом случае G_1 не содержит элементов порядка 8, что также противоречит предположению, что $\omega(G_1) = \omega(V \leftthreetimes H)$. Поэтому $H_1 = H$ и $G_1 = V \leftthreetimes H$. \square

Итак, пусть G — группа, изоспектральная $U_3(3)$ и содержащая нормальную 2-подгруппу N, для которой $G/N \simeq PGL_2(7)$. Пусть, кроме того, G критическая. Рассмотрим в N G-главный ряд

$$N > V_1 > V_2 > V_3 > \dots > V_k > 1.$$

Тогда фактор-группа N/V_1 является неприводимым H-модулем, поэтому из леммы 4.1 следует, что N/V_1 изоморфна модулю V из леммы 4.1. Следовательно, группа G/V_1 изоморфна полупрямому произведению $V \leftthreetimes H$. Это полупрямое произведение, в свою очередь, изоспектрально $U_3(3)$, тем самым из критичности G вытекает, что $V_1=1$ и $G=V \leftthreetimes H$.

Опустим условие критичности группы G и докажем, что и в общем случае подгруппа N дополняется в группе G. Рассмотрим тот же G-главный ряд. Выше доказали, что $G/V_1 \simeq V \supset H$, поэтому существует подгруппа H_1 группы G

такая, что $H_1/V_1\simeq H$. Далее, фактор-группа H_1/V_2 тоже изоморфна $V \leftthreetimes H$, следовательно, существует подгруппа H_2 группы H_1 такая, что $H_2/V_2\simeq H$. Продолжая этот процесс, аналогично получим подгруппу H_{k+1} группы H_k , изоморфную $PGL_2(7)$. Таким образом, подгруппа N дополняется в G подгруппой H_{k+1} .

$\S \, 5$. Расширения с помощью $L_2(7)$, изоспектральные $U_3(3)$

Пусть G — конечная группа, изоспектральная $U_3(3)$ и содержащая нормальную подгруппу N, для которой $G/N \simeq L_2(7)$. С помощью [22] проверяется, что существует лишь два неприводимых представления группы $L_2(7)$ над полем порядка 2 таких, что элементы порядка 7 из $L_2(7)$ на соответствующем модуле не имеют нетривиальных неподвижных точек. Первое представление является естественным представлением для $GL_3(2) \simeq L_2(7)$, второе — контраградиентным к нему.

Пусть s — элемент порядка 3 из G. Поскольку $12 \in \omega(G)$ и $24 \notin \omega(G)$, централизатор элемента s в группе N должен иметь экспоненту 4.

Существует по крайней мере два примера групп такого типа. Обе группы совершенны, т. е. совпадают со своими коммутантами. Подробное описание строения этих групп приведено в [23, с. 177, 178]. Отметим лишь, что обе группы являются расширениями прямого произведения трех циклических групп порядка 4 с помощью $L_2(7)$, однако одно из этих расширений расщепляемое, другое — нерасщепляемое. С помощью леммы 1.4 проверяется (например, используя вычисления в GAP [20]), что эти группы критические относительно $\omega(U_3(3))$.

\S 6. Расширения с помощью $U_3(3)$ и $\mathrm{Aut}(U_3(3))$, изоспектральные $U_3(3)$

Для каждой из групп $U_3(3)$ и $\mathrm{Aut}(U_3(3))$ существует единственное неприводимое представление над полем порядка 2 такое, что элементы порядка 7 на соответствующем модуле не имеют нетривиальных неподвижных точек (см. [22]). В обоих случаях порядок модуля равен 2^6 . Обозначим данный $\mathrm{Aut}(U_3(3))$ -модуль через V. Поскольку в $\mathrm{Aut}(U_3(3))$ есть подгруппа, изоморфная $U_3(3)$, модуль V является также неприводимым модулем для $U_3(3)$. Рассмотрим следующие матрицы над полем порядка 2:

Тогда $\langle a,b\rangle\simeq U_3(3),\ \langle c,d\rangle\simeq {\rm Aut}(U_3(3))$ и действие групп $U_3(3)$ и ${\rm Aut}(U_3(3))$ на V определяется как естественное действие соответствующих групп матриц. С помощью [20] проверяется, что $\omega(V \leftthreetimes U_3(3)) = \omega(V \leftthreetimes {\rm Aut}(U_3(3))) = \omega(U_3(3)).$

Покажем, что группа $U_3(3)$ критическая. Поскольку 7^2 не делит порядок группы $U_3(3)$, достаточно рассмотреть максимальные подгруппы в $U_3(3)$, порядок которых делится на 7. С помощью [17] проверяется, что все такие подгруппы изоморфны группе $L_2(7)$, а $\omega(L_2(7)) \neq \omega(U_3(3))$.

Осталось отметить, что если группа G является расширением N с помощью $U_3(3)$ или $\mathrm{Aut}(U_3(3))$, то G содержит секцию, изоморфную $U_3(3)$. Поэтому $U_3(3)$ — единственная с точностью до изоморфизма $\omega(U_3(3))$ -критическая группа такого типа. Теорема доказана.

Автор выражает благодарность В. Д. Мазурову за помощь в работе.

ЛИТЕРАТУРА

- 1. Мазуров В. Д., Ши В. Дж. Признак нераспознаваемости конечной группы по спектру // Алгебра и логика. 2012. Т. 51, № 2. С. 239–243.
- 2. Горшков И. Б. Распознаваемость знакопеременных групп по спектру // Алгебра и логика. 2013. Т. 52, № 1. С. 57–63.
- Mazurov V. D., Shi W. J. A note to the characterization of sporadic simple groups // Algebra Colloq. 1998. V. 5, N 3. P. 285–288.
- 4. Grechkoseeva M. A., Vasil'ev A. On the structure of finite groups isospectral to finite simple groups // J. Group Theory. 2015. V. 18, N 5. P. 741–759.
- **5.** Васильев А. В., Старолетов А. М. Почти распознаваемость по спектру простых исключительных групп лиева типа // Алгебра и логика. 2014. Т. 53, № 6. С. 669–692.
- Lytkin Y. On groups critical with respect to a set of natural numbers // Sib. Electron. Math. Rep. 2013. V. 10. P. 666–675.
- 7. Лыткин O. B. Группы, критические относительно спектров знакопеременных и спорадических групп // Сиб. мат. журн. 2015. Т. 56, N2 1. С. 122–128.
- 8. Мазуров В. Д. Нераспознаваемость конечной простой группы $^3D_4(2)$ по спектру // Алгебра и логика. 2013. Т. 52, № 5. С. 601–605.
- Алеева М. Р. О конечных простых группах с множеством порядков элементов, как у группы Фробениуса или двойной группы Фробениуса // Мат. заметки. 2003. Т. 73, № 3. С. 323–339.
- Lucido M. S., Moghaddamfar A. R. Groups with complete prime graph connected components // J. Group Theory. 2004. V. 73, N 3. P. 373–384.
- 11. Williams J. S. Prime graph components of finite groups $/\!/$ J. Algebra. 1981. V. 69, N 2. P. 487–513.
- Thompson J. G. Normal p-complements for finite groups // Math. Z. 1960. Bd 72, Heft 2. S. 332–354.
- 13. Zassenhaus H. Kennzeichnung endlicher lineare
an Gruppen als Permutationsgruppen // Abh. Math. Sem. Univ. Hamburg. 1936. B
d 11. S. 17–40.
- Zassenhaus H. Über endliche Fastkörper // Abh. Math. Sem. Univ. Hamburg. 1936. Bd 11. S. 187–220.
- 15. Huppert B. Endliche Gruppen. Berlin: Springer-Verl., 1979.
- 16. Zavarnitsine A. Finite simple groups with narrow prime spectrum // Siberian Electron. Math. Rep. 2009. V. 6. P. 1–12.
- 17. Conway J. H., etc. Atlas of finite groups. Oxford: Clarendon Press, 1985.
- **18.** *Мазуров В. Д.* Характеризации конечных групп множествами порядков их элементов // Алгебра и логика. 1997. Т. 36, N 1. С. 37–53.
- **19.** *Мазуров В. Д.* Обобщение теоремы Цассенхауза // Владикавк. мат. журн. 2008. Т. 10, № 1. С. 40–52.
- $\textbf{20.} \ \ \text{GAP: Groups, algorithms, and programming (http://www/gap-system.org)}.$
- **21.** *Мазуров В. Д.* Удвоенные группы Фробениуса, изоспектральные простой группе $U_3(3)$ // Сиб. мат. журн. 2015. Т. 56, № 6. С. 1384–1390.
- $\textbf{22.} \ \, ATLAS \ of \ finite \ group \ representations \ (http://brauer.maths.qmul.ac.uk/Atlas/v3/).$

23. Holt D., Plesken W. Perfect groups. Oxford: Clarendon Press, 1989.

Cтатья поступила 25 июля 2016 г.

Лыткин Юрий Всеволодович Новосибирский гос. университет, ул. Пирогова, 2, Новосибирск 630090; Сибирский гос. университет телекоммуникаций и информатики, ул. Кирова, 86, Новосибирск 630102 jurasicus@gmail.com