О ПОСТРОЕНИИ ФОРМУЛ КАРЛЕМАНА С ПОМОЩЬЮ СМЕШАННЫХ ЗАДАЧ С ГРАНИЧНЫМИ УСЛОВИЯМИ, СОДЕРЖАЩИМИ ПАРАМЕТР

А. Н. Полковников, А. А. Шлапунов

Аннотация. Пусть D — открытое связное множество с достаточно гладкой границей ∂D на комплексной плоскости $\mathbb C$. Возмущением задачи Коши для системы Коши — Римана $\bar\partial u=f$ в D с граничными данными на замкнутом множестве $S\subset \partial D$ получено семейство смешанных задач типа Зарембы для уравнения Лапласа, зависящее от малого параметра $\varepsilon\in(0,1]$ в граничном условии. Несмотря на то, что смешанные задачи содержат некоэрцитивные граничные условия на $\partial D\setminus S$, каждая из них имеет единственное решение в подходящем гильбертовом пространстве $H^+(D)$, непрерывно вложенном в пространство Лебега $L^2(\partial D)$ и пространство Соболева — Слободецкого $H^{1/2-\delta}(D)$ при любом $\delta>0$. Соответствующее семейство решений $\{u_\varepsilon\}$ сходится в $H^+(D)$ к решению задачи Коши (если оно существует). Также доказано, что существование решения задачи Коши в $H^+(D)$ эквивалентно ограниченности семейства $\{u_\varepsilon\}$ в этом пространстве. Таким образом, получены условия разрешимости для задачи Коши и эффективный метод построения ее решения в виде формул карлемановского типа.

 $\rm DOI\,10.17377/smzh.2017.58.414$

Ключевые слова: оператор Коши — Римана, задача Коши, задача Зарембы, малый параметр, уравнение Лапласа.

Введение

Задача Коши для системы Коши — Римана (для голоморфных функций в классической версии) является давней проблемой, находящей свое применение в физике, электродинамике, механике жидкости и газа и т. д. (см. [1-3] и др.). На самом деле она является типичным примером некорректной задачи для более общего класса эллиптических систем (см., например, [3-5]) или даже эллиптических дифференциальных комплексов [6,7].

Как отмечалось еще в [8], метод регуляризации наиболее эффективен для изучения данной задачи. Книги [2, 3] дают достаточно полное описание условий разрешимости задачи, а также пути ее регуляризации. Недавно был разработан новый подход (см., например, [9–11]), основанный на простом наблюдении, что решение задачи Коши для эллиптических уравнений можно свести к решению

Работа выполнена при финансовой поддержке гранта правительства РФ для научных исследований под руководством ведущих ученых в Сибирском федеральном университете (контракт № 14.Y26.31.0006), а также Совета по грантам президента РФ и государственной поддержке ведущих научных школ (код проекта НШ—9149.2016.1).

смешанных задач (возможно, некоэрцитивных) для эллиптических уравнений с параметром.

Текущий прогресс в теории некоэрцитивных задач типа Зарембы [12, 13] позволяет упростить метод из [10] и получить новый критерий разрешимости задачи, а также построить ее точные и приближенные решения.

А именно, пусть D — открытое связное множество с достаточно гладкой границей ∂D в комплексной плоскости $\mathbb C$. Возмущая задачу Коши для системы Коши — Римана $\bar\partial u=f$ в D с граничными данными на замкнутом множестве $S\subset \partial D$, получим семейство смешанных задач типа Зарембы для уравнения Лапласа, зависящее от малого параметра $\varepsilon\in(0,1]$ в граничном условии. Несмотря на то, что смешанные задачи содержат некоэрцитивные граничные условия на $\partial D\setminus S$, каждая из них имеет единственное решение в подходящем гильбертовом пространстве $H^+(D)$, непрерывно вложенном в пространство Лебега $L^2(\partial D)$ и в пространство Соболева — Слободецкого $H^{1/2-\delta}(D)$ при любом $\delta>0$. Соответствующее семейство решений $\{u_\varepsilon\}$ сходится в $H^+(D)$ к решению задачи Коши (если оно существует). Также докажем, что существование решения задачи Коши в $H^+(D)$ эквивалентно ограниченности семейства $\{u_\varepsilon\}$ в этом пространстве. Таким образом, получим условия разрешимости для задачи Коши и эффективный метод построения ее решения в виде формул карлемановского типа.

По сравнению с [10] мы рассматриваем несколько другие пространства соболевского типа. Кроме того, вместо слабо сходящейся последовательности $\{u_{\varepsilon}\}$ в $L^2(D)$ при $\varepsilon \to +0$ получим последовательность, сходящуюся к решению по норме пространства $H^{1/2-\delta}(D)$ при любом $\delta > 0$.

1. Задача Коши

Пусть \mathbb{R}^n-n -мерное евклидово пространство, а \mathbb{C} — комплексная плоскость с точками $z=x_1+\sqrt{-1}x_2$. Здесь $\sqrt{-1}$ — мнимая единица, а $x=(x_1,x_2)$ суть координаты в \mathbb{R}^2 .

Обозначим через

$$ar{\partial} = rac{\partial}{\partial ar{z}} = rac{\partial}{\partial x_1} + \sqrt{-1} rac{\partial}{\partial x_2}$$

оператор Коши — Римана.

Пусть

$$\bar{\partial}^* = -\frac{\partial}{\partial \bar{z}} = -\left(\frac{\partial}{\partial x_1} - \sqrt{-1}\frac{\partial}{\partial x_2}\right)$$

обозначает формально сопряженный оператор для $\bar{\partial}$. Известно, что $\bar{\partial}^*\bar{\partial}=-\Delta$, где Δ — стандартный оператор Лапласа в \mathbb{R}^2 , $\Delta=\frac{\partial^2}{\partial x_1^2}+\frac{\partial^2}{\partial x_2^2}$.

Пусть D — открытое связное ограниченное множество (ограниченная область) с липшицевой границей ∂D в комплексной плоскости $\mathbb C$. Как обычно, под $L^2(D)$ понимаем гильбертово пространство измеримых функций в области D с конечной нормой, порожденной скалярным произведением

$$(u,v)_{L^2(D)} = \int\limits_D u\bar{v}\,dx.$$

Обозначим также через $H^s(D)$ пространство Соболева — Слободецкого функций в области $D, s \in \mathbb{R}_+$.

Для $u \in L^2(D)$ всегда будем понимать $\bar{\partial} u$ как распределение над D.

Рассмотрим некорректную задачу Коши для оператора Коши — Римана в области D с граничными данными на открытом непустом множестве $S \subset \partial D$. Всюду ниже будем считать это предположение относительно множества S выполненным.

Задача 1.1. Дано распределение f в D и распределение u_0 на S. Найти распределение u в D, удовлетворяющее в подходящем смысле условиям

$$\left\{egin{array}{ll} ar{\partial}u=f & ext{B }D,\ u=u_0 & ext{Ha }S. \end{array}
ight.$$

Если распределение u_0 обладает достаточной регулярностью, то можно свести задачу 1.1 к случаю, когда граничные условия равны нулю. Например, если граница ∂S множества S кусочно гладкая и $u_0 \in H^{1/2}(S)$, то можно найти $\tilde{u}_0 \in H^{1/2}(\partial D)$, совпадающую с u_0 на S, и затем использовать интеграл Пуассона P задачи Дирихле для оператора Лапласа:

$$P: H^{1/2}(\partial D) \to H^1(D),$$

где оператор P линейный, ограниченный и

$$\left\{egin{array}{ll} \Delta P u_0 = 0 & ext{B } D, \ t(P ilde u_0) = ilde u_0 & ext{Ha } \partial D \end{array}
ight.$$

(здесь $t: H^1(D) \to H^{1/2}(\partial D)$ — стандартный оператор следа).

С целью контролировать поведение решений задачи 1.1 введем следующие функциональные пространства.

Пусть $\varepsilon \geq 0$, рассмотрим эрмитову форму

$$(u,v)_{+,\varepsilon} = \varepsilon(u,v)_{L^2(\partial D)} + (\bar{\partial}u,\bar{\partial}v)_{L^2(D)}$$

на пространстве $C^{\infty}(\overline{D})$ (всех гладких функций в замыкании \overline{D} области D). В силу классической формулы Коши для голоморфных функций эта форма является скалярным произведением при любом $\varepsilon>0$. Тогда функционал $\|u\|_{+,\varepsilon}=\sqrt{(u,u)_{+,\varepsilon}}$ является нормой для каждого $\varepsilon>0$. Очевидно, нормы $\|u\|_{+,\varepsilon}$ и $\|u\|_{+,\delta}$ эквивалентны для любых положительных ε и δ . В частности,

$$\sqrt{\varepsilon} \|u\|_{+,1} \le \|u\|_{+,\varepsilon} \le \|u\|_{+,1}$$
 для всех $u \in H^+(D)$ и $0 < \varepsilon \le 1$. (1.1)

Обозначим через $H^+(D)$ пополнение пространства $C^\infty(\overline{D})$ по норме $\|\cdot\|_{+,\varepsilon}$ с некоторым $\varepsilon > 0$; из рассуждений выше следует, что пространство $H^+(D)$ не зависит от $\varepsilon > 0$. Заметим, что по построению

- 1) пространство $H^+(D)$ непрерывно вложено в $L^2(\partial D)$, в частности, каждый элемент $u \in H^+(D)$ имеет корректно определенный след t(u) на ∂D , а соответствующий оператор следа t непрерывно отображает $H^+(D)$ в $L^2(\partial D)$;
 - 2) оператор ∂ непрерывно отображает $H^+(D)$ в $L^2(D)$.

Дальнейшие свойства пространства $H^+(D)$ были описаны в [12] (см. также [13]).

Теорема 1.2. Если D — ограниченная область c липшицевой границей, то пространство $H^+(D)$ непрерывно вложено в $H^{1/2-\delta}(D)$ при любом $\delta>0$. Более того, если $\partial D\in C^2$, то пространство $H^+(D)$ непрерывно вложено в $H^{1/2}(D)$.

Доказательство. См. [12, теорема 1] (ср. [13, теорема
$$2.5$$
]). \square

Заметим, что вложение точное, т. е. пространство $H^+(D)$ не может быть непрерывно вложено в $H^s(D)$ для любого s > 1/2 (см. [12, пример 2] либо [13]).

Эти результаты позволяют рассмотреть следующую версию задачи Коши для оператора Коши — Римана.

Задача 1.3. По заданной функции $f \in L^2(D)$ найти $u \in H^+(D)$, удовлетворяющую условиям

 $\left\{egin{array}{ll} ar{\partial}u=f & ext{$\it B$}\ D, \ t(u)=0 & ext{$\it Ha$}\ S. \end{array}
ight.$

Известно, что задача 1.3 некорректна и имеет не более одного решения (см., например, [14-16; 17, теорема 2.8]).

Пусть дано непустое множество $S\subset \partial D$. Обозначим через $C^{\infty}(\overline{D},S)$ подмножество $C^{\infty}(\overline{D})$ всех функций, исчезающих на относительно открытом множестве $U\subset \overline{D}$, содержащем замыкание S в ∂D . В частности, $C^{\infty}(\overline{D},\partial D)$ совпадает с пространством гладких функций с компактным носителем $C_0^{\infty}(D)$.

Обозначим также через $H^+(D,S)$ множество, состоящее из всех $u \in H^+(D)$, удовлетворяющих условию t(u) = 0 на S. Очевидно, что $H^+(D,S)$ является замкнутым подпространством $H^+(D)$.

Теперь задача 1.3 сводится к исследованию инъективного ограниченного оператора

$$\bar{\partial}: H^+(D,S) \to L^2(D).$$
 (1.2)

Опишем основные свойства области определения и образа этого оператора.

Используя неравенство Гординга, видим, что для $S=\partial D$ пространство $H^+(D,\partial D)$ совпадает с $H^1_0(D)$, т. е. с замкнутым подпространством пространства Соболева $H^1(D)$, состоящего из всех $u\in H^1(D)$, удовлетворяющих условию t(u)=0 на ∂D .

Лемма 1.4. Для всех
$$u \in H^+(D,S)$$
 имеем $u \in H^1_{loc}(D \cup S)$.

Доказательство. Зафиксируем произвольный элемент $u\in H^+(D,S)\subset H^+(D)$. Так как оператор Коши — Римана $\bar\partial$ эллиптический и $\bar\partial u\in L^2(D)$, заключаем, что $u\in H^1_{\rm loc}(D)$.

Возьмем область $G\subset D$ такую, что $\overline{G}\cap \overline{D}=S_1\subset S$, и функцию $\varphi\in C^\infty(\overline{D})$ с компактным носителем в $G\cup S_1$. Тогда

$$\bar{\partial}(\varphi u) = (\bar{\partial}u)\varphi + (\bar{\partial}\varphi)u \in L^2(D)$$

и $t(\varphi u) = 0$ на ∂D .

Обозначим через $H^{-1}(D)$ пространство, двойственное к $H^1(D,\partial D)$ относительно спаривания, задаваемого скалярным произведением в $L^2(D)$. Тогда распределение $F = \bar{\partial}^* \bar{\partial}(\varphi u)$ принадлежит $H^{-1}(D)$, так как

$$|(\bar{\partial}(\varphi u),\bar{\partial}v)_{L^2(D)}|=|((\bar{\partial}u)\varphi+(\bar{\partial}\varphi)u,\bar{\partial}v)_{L^2(D)}|\leq c(u,\varphi)\|v\|_{H^1(D)}$$

с некоторой константой $c(u,\varphi)$, не зависящей от $v\in H^1(D,\partial D)$.

В частности,

$$(\bar{\partial}(\varphi u), \bar{\partial}v)_{L^2(D)} = \langle F, v \rangle$$
 для всех $v \in H^1(D, \partial D),$

где $\langle F,v \rangle$ обозначает действие распределения F на тестовую функцию v. Это означает, что функция φu является единственным решением задачи Дирихле для оператора Лапласа $\Delta = -\bar{\partial}^*\bar{\partial}$ с данными $F \in H^{-1}(D)$ и граничными данными $t(\varphi u) = 0$ на ∂D (см., например, [18]). Следовательно, в силу произвольности области G и функции φ (обладающими описанными выше свойствами), $\varphi u \in H^1(D)$ и $u \in H^1_{loc}(D \cup S)$, что и следовало доказать. \square

Как отмечено ранее, $H^+(D,\partial D)=H^1_0(D)$. В частности, $H^+(D,\partial D)$ есть замыкание пространства гладких функций с компактным носителем $C_0^\infty(D)$. Опишем подобным образом пространство $H^+(D,S)$.

Теорема 1.5. Пусть $\partial D \setminus S$ имеет непустую внутренность на ∂D . Если $\partial D \in C^{\infty}$, то $H^+(D,S)$ есть замыкание $C^{\infty}(\overline{D},S)$ в пространстве $H^+(D)$.

ДОКАЗАТЕЛЬСТВО. По определению замыкание H пространства $C^{\infty}(\overline{D},S)$ в $H^+(D)$ есть замкнутое подпространство $H^+(D,S)$. Для доказательства теоремы достаточно показать, что ортогональное дополнение H^{\perp} пространства H в $H^+(D,S)$ тривиально.

С этой целью зафиксируем $\varepsilon > 0$ и выберем $u \in H^+(D,S)$, удовлетворяющее $(u,v)_{+,\varepsilon} = 0$ для всех $v \in C^{\infty}(\overline{D},S)$. В силу того, что $C^{\infty}(\overline{D},\partial D) \subset C^{\infty}(\overline{D},S)$, имеем

$$(\bar{\partial}u, \bar{\partial}v)_{L^2(D)} = 0$$
 для всех $v \in C^{\infty}(\overline{D}, \partial D),$ (1.3)

т. е. $-\bar{\partial}^*(\bar{\partial}u)=0$ в D в смысле распределений. Так как оператор $\bar{\partial}^*$ эллиптический, решения для этого уравнения являются гладкими функциями над D; действительно, $\bar{\partial}u$ является антиголоморфной в D функцией класса $L^2(D)$ (т. е. $\overline{\bar{\partial}u}$ голоморфна).

Пусть ρ — порождающая функция области $D=\{z\in\mathbb{C}: \rho(z)<0\}$. Поскольку $\partial D\in C^\infty$, можно выбрать $\rho\in C^\infty(U)$ для окрестности U границы ∂D с $|\nabla\rho|\neq 0$ на ∂D такое, что $\nu=\frac{\nabla\rho}{|\nabla\rho|}$ является векторным полем единичных нормалей к ∂D . При достаточно малых $\delta>0$ рассмотрим области

$$D_{\delta} = \{ z \in \mathbb{C} : \rho(z) < -\delta \}.$$

Ясно, что $D_{\delta} \in D$ и $\rho_{\delta} = \rho + \delta$ является порождающей функцией области D_{δ} с $\nabla \rho = \nabla \rho_{\delta}$, а $\nu_{\delta} = \frac{\nabla \rho}{|\nabla \rho|}$ есть векторное поле единичных нормалей к ∂D_{δ} . Тогда голоморфная функция $g = \overline{\overline{\partial} u}$ имеет слабое граничное значение $g_0 \in \mathscr{D}'(\partial D)$ на ∂D в том смысле, что

$$\lim_{\delta o +0} \int\limits_{\partial D_\delta} g(\zeta) v(\zeta) \, ds_\delta(\zeta) = \langle g_0,v
angle$$
 для всех $v \in C^\infty(\overline{D})$

(см. [15, следствие 2.3] либо [17, теорема 4.4]). Здесь $\mathcal{D}'(\partial D)$ — пространство распределений на ∂D , а $\langle g_0, v \rangle$ обозначает действие распределения g_0 на тестовую функцию v.

Пользуясь свойствами интеграла Пуассона P и тем фактом, что $|\nu_1+\sqrt{-1}\nu_2|=1$ на ∂D , заключаем, что функция $w=P(v/(\nu_1+\sqrt{-1}\nu_2))$ принадлежит $C^{\infty}(\overline{D},S)$ для каждого $v\in C^{\infty}(\overline{D},S)$. Применяя формулу интегрирования по частям и (1.3), получаем

$$0 = (\bar{\partial}w, \bar{\partial}u)_{L^{2}(D)} = (\bar{\partial}w, \bar{g})_{L^{2}(D)}$$

$$= \lim_{\delta \to +0} (\bar{\partial}w, \bar{g})_{L^{2}(D_{\delta})} = -\sqrt{-1} \lim_{\delta \to +0} \int_{\partial D_{\delta}} g(\zeta)w(\zeta) \, d\zeta$$

$$= -\sqrt{-1} \lim_{\delta \to +0} \int_{\partial D_{\delta}} g(\zeta)(\nu_{\delta,1} + \sqrt{-1}\nu_{\delta,2})(\zeta)w(\zeta) \, ds_{\delta}(\zeta)$$

$$= \lim_{\delta \to +0} \int_{\partial D_{\delta}} g(\zeta)v(\zeta) \, ds_{\delta}(\zeta) = \langle g_{0}, v(\zeta) \rangle \quad \text{для всех } v \in C^{\infty}(\overline{D}, S), \quad (1.4)$$

где $\nu_{\delta,j}$ — компоненты вектора нормали ν_{δ} . Так как для любой функции $w \in C^{\infty}(\overline{D},S)$ ее сужение $w_{|\partial D}$ на ∂D имеет компактный носитель в $\partial D \setminus S$, видим, что g_0 равняется нулю на $\partial D \setminus S$. Следовательно, g исчезает на $\partial D \setminus S$

в смысле слабых граничных значений. В силу того, что g голоморфна (т. е. является решением эллиптического оператора $\bar{\partial}$), из [17, теорема 2.8] следует, что g тождественно равна нулю в D.

Таким образом, заключаем, что $g=\overline{\partial u}=0$ в D, т. е. функция $u\in L^2(D)$ голоморфна в D. По предположению она исчезает на непустом относительно открытом множестве $S\subset \partial D$. Наконец, так как оператор первого порядка $\bar{\partial}$ эллиптичен, из [17, теорема 2.8] следует, что u тождественно равна нулю в D. \square

Лемма 1.6. Пусть $\partial D \setminus S$ имеет непустую внутренность на ∂D . Если $\partial D \in C^{\infty}$, то образ оператора (1.2) плотен в $L^2(D)$.

Доказательство. Пусть $g \in L^2(D)$ удовлетворяет условию

$$(g, \bar{\partial}v)_{L^2(D)} = 0$$
 для всех $v \in H^+(D, S)$.

Рассуждая, как в доказательстве теоремы 1.5, заключаем, что $\bar{\partial}^* g = 0$ в D и g = 0 на $\partial D \setminus S$ в смысле слабых граничных значений. Так как g антиголоморфна (т. е. является решением эллиптического оператора $\bar{\partial}^*$), из [17, теорема 2.8] следует, что g тождественно равна нулю в D. \square

Таким образом, мы описали замыкание образа отображения (1.2). Более сложной задачей является описание самого образа отображения (1.2). Следующая лемма делает первый шаг в данном направлении.

Для распределения f, определенного около ∂D , положим $\nu(f)=(\nu_{\delta,1}+\sqrt{-1}\nu_{\delta,2})f$, а для распределения u, определенного около ∂D , положим $\bar{\partial}_{\nu}u=(\nu_{\delta,1}+\sqrt{-1}\nu_{\delta,2})\bar{\partial}u$. На самом деле $\bar{\partial}_{\nu}u$ — так называемая комплексная нормальная производная функции u.

Лемма 1.7. Пусть $\partial D \in C^{\infty}$. Если $f \in L^2(D)$, то функция $u \in H^+(D,S)$ является решением задачи 1.3 в том и только в том случае, когда

$$(\bar{\partial}u,\bar{\partial}v)_{L^2(D)} = (f,\bar{\partial}v)_{L^2(D)}$$

$$(1.5)$$

для всех $v \in H^+(D, S)$.

ДОКАЗАТЕЛЬСТВО. Если задача 1.3 разрешима и u — одно из ее решений, то (1.5), очевидно, выполнено. Обратно, если (1.5) выполнено для любого элемента $u \in H^+(D,S)$, то $\bar{\partial}^*(\bar{\partial}u-f)=0$ в D, так как пространство $H^+(D,S)$ содержит все гладкие функции с компактным носителем в D. В частности, функция $(\bar{\partial}u-f)$ голоморфна в D. Интегрируя, как в (1.4), получаем

$$\lim_{\delta \to +0} \int_{\partial D_{\delta}} \overline{(\bar{\partial}u - f)(\zeta)} v(\zeta) \, ds_{\delta}(\zeta) = -\sqrt{-1} \lim_{\delta \to +0} \int_{\partial D_{\delta}} \overline{(\bar{\partial}u - f)(\zeta)} w(\zeta) \, d\zeta$$

$$= (w, (\overline{\partial}^{*}(\bar{\partial}u - f)))_{L^{2}(D)} - (\bar{\partial}w, \bar{\partial}u - f)_{L^{2}(D)} = -(\bar{\partial}w, \bar{\partial}u - f)_{L^{2}(D)} = 0 \quad (1.6)$$

для всех $v \in C^{\infty}(\overline{D}, S)$, поскольку $w \in C^{\infty}(\overline{D}, S)$. Следовательно, как и в доказательстве теоремы 1.5, видим, что $\bar{\partial}u - f = 0$ на $\partial D \setminus S$ в смысле слабых граничных значений.

Наконец, так как $(\partial u-f)$ антиголоморфна (т. е. является решением эллиптического оператора $\bar{\partial}^*$), из [17, теорема 2.8] следует, что $(\bar{\partial} u-f)$ тождественно равна нулю в D. \square

Замечание 1.1. Согласно [15, следствие 2.3] слабые граничные значения голоморфных (антиголоморфных) функций класса $L^2(D)$ в области D принадлежат пространству Соболева $H^{-1/2}(\partial D)$ на компактном множестве ∂D , т. е. эти следы имеют конечный порядок особенности на ∂D . Следовательно, все вышеперечисленные результаты действительны для областей с конечным (вероятно, достаточно высоким) порядком гладкости границы.

В заключение этого раздела поясним значение (1.5). Это равенство означает, что решение $u\in H^+(D,S)$ задачи Коши $\bar{\partial}u=f$ на самом деле является решением смешанной задачи типа Зарембы

$$\begin{cases}
-\Delta u = \bar{\partial}^* f & \text{B } D, \\
t(u) = 0 & \text{Ha } S, \\
\bar{\partial}_{\nu} u = \nu(f) & \text{Ha } \partial D \setminus S.
\end{cases}$$
(1.7)

Действительно, из доказательства леммы 1.7 вытекает, что

$$ar{\partial}^*ar{\partial}u=-\Delta u=ar{\partial}^*f$$
 в D

в пространстве распределений и $\nu(\bar{\partial}u - f) = 0$ на $\partial D \setminus S$ в смысле слабых граничных значений. В частности, если вектор $\nu(f)$ корректно определен на $\partial D \setminus S$, то и $\bar{\partial}_{\nu}u$ также корректно определен на $\partial D \setminus S$.

Конечно, смешанная задача (1.7), рассмотренная в подходящих пространствах, дает не что иное, как (1.5). В следующем разделе получим условия разрешимости задачи 1.3.

2. Об одном возмущении задачи Коши

Последнее наблюдение разд. 1 наталкивает на мысль о возмущении задачи 1.3 с целью получения смешанной задачи типа Зарембы (1.7).

С учетом леммы 1.7 рассмотрим следующую возмущенную задачу Коши.

Задача 2.1. Зафиксируем $\varepsilon \in (0,1]$. По заданной функции $f \in L^2(D)$ найти элемент $u_{\varepsilon} \in H^+(D,S)$, удовлетворяющий условию

$$(\bar{\partial}u_{\varepsilon}, \bar{\partial}v)_{L^{2}(D)} + \varepsilon (u_{\varepsilon}, v)_{L^{2}(\partial D \setminus S)} = (f, \bar{\partial}v)_{L^{2}(D)}$$
(2.1)

для всех $v \in H^+(D, S)$.

Заметим, что уравнение (2.1) приводит к возмущению смешанной задачи (1.7). Более точно,

$$\begin{cases}
-\Delta u_{\varepsilon} = \bar{\partial}^* f & \text{B } D, \\
t(u_{\varepsilon}) = 0 & \text{Ha } S, \\
\bar{\partial}_{\nu} u_{\varepsilon} + \varepsilon t(u_{\varepsilon}) = \nu(f) & \text{Ha } \partial D \setminus S.
\end{cases}$$
(2.2)

Так как пространство $H^+(D,S)$ содержит все гладкие функции с компактным носителем в D,~(2.1) означает, что $-\Delta u_\varepsilon=\bar{\partial}^*f$ в D в смысле распределений. Граничное условие $t(u_\varepsilon)=0$ на S следует из определения пространства $H^+(D,S)$. Наконец, равенство $\nu(\bar{\partial} u_\varepsilon)+\varepsilon t(u_\varepsilon)=\nu(f)$ выполнено в том смысле, что $\nu(\bar{\partial} u_\varepsilon-f)+\varepsilon t(u_\varepsilon)=0$ на $\partial D\setminus S$, так как

$$\bar{\partial}^*(\bar{\partial}u_{\varepsilon}-f)=0\in L^2(D)$$

в смысле распределений в D, $(\bar{\partial}u_{\varepsilon}-f)$ голоморфна в D и после интегрирования по частям, как в (1.6), с использованием (2.1) получается

$$\lim_{\delta \to +0} \int_{\partial D_{\delta}} \overline{(\bar{\partial} u_{\varepsilon} - f)(\zeta)} v(\zeta) \, ds_{\delta}(\zeta) = -\sqrt{-1} \lim_{\delta \to +0} \int_{\partial D_{\delta}} \overline{(\bar{\partial} u_{\varepsilon} - f)(\zeta)} w(\zeta) \, d\zeta$$
$$= (\bar{\partial} w, \bar{\partial} u_{\varepsilon} - f)_{L^{2}(D)} = -\varepsilon (w, t(u_{\varepsilon}))_{L^{2}(\partial D \setminus S)} = -\varepsilon \left(v, \frac{t(u_{\varepsilon})}{\nu_{1} + \sqrt{-1}\nu_{2}}\right)_{L^{2}(\partial D \setminus S)}$$

для всех $v\in C^{\infty}(\overline{D},S)$, т. е. $\overline{(\bar{\partial}u_{\varepsilon}-f)}$ совпадает с $-\varepsilon\,t(\overline{u_{\varepsilon}})/(\nu_{1}+\sqrt{-1}\nu_{2})$ на $\partial D\backslash S$ в смысле слабых граничных значений. Следовательно, $\nu(\bar{\partial}u_{\varepsilon}-f)+\varepsilon t(u_{\varepsilon})=0$ на $\partial D\setminus S$ в смысле слабых граничных значений. Если сужение $\nu(f)$ на $\partial D\setminus S$ имеет смысл, то сужение $\nu(\bar{\partial}u_{\varepsilon}-f)$ также корректно определено, поскольку $t(u_{\varepsilon})\in L^{2}(\partial D)$.

Ясно, что смешанная задача (2.2), рассмотренная в подходящих пространствах, дает не что иное, как (2.1).

На самом деле (1.7) и (2.2) являются смешанными задачами с граничными условиями робеновского типа. Это аналоги так называемой задачи Зарембы для оператора Лапласа (см. [19]). В общем случае смешанные задачи (1.7) и (2.2) имеют некоэрцитивные граничные условия на $\partial D \setminus S$ (см. [10, 13]). Следовательно, они не могут быть корректными в весовых пространствах Соболева (см. [20]). Принципиальная разница между задачами 1.3 и 2.1 в том, что последняя корректна в $H^+(D,S)$.

Лемма 2.2. Для любых $\varepsilon > 0$ и $f \in L^2(D)$ существует единственное решение $u_{\varepsilon}(f) \in H^+(D,S)$ задачи 2.1. Более того, оно удовлетворяет оценке

$$||u_{\varepsilon}(f)||_{+,\varepsilon} \leq ||f||_{L^2(D)}.$$

ДОКАЗАТЕЛЬСТВО. Как видели выше, пространство $H^+(D,S)$, наделенное скалярным произведением $(\cdot,\cdot)_{+,\varepsilon}$, гильбертово. Из неравенства Шварца следует, что

$$|(f,\bar{\partial}v)_{L^2(D)}| \leq \|f\|_{L^2(D)} \|\bar{\partial}v\|_{L^2(D)} \leq \|f\|_{L^2(D)} \|v\|_{+,\varepsilon}$$

для всех $v \in H^+(D,S)$. Значит, отображение $v \mapsto (f,\bar{\partial}v)_{L^2(D)}$ определяет непрерывный линейный функционал \mathscr{F}_f на $H^+(D,S)$, норма которого мажорируется следующим образом: $\|\mathscr{F}_f\| \leq \|f\|_{L^2(D)}$.

В силу теоремы Рисса заключаем, что существует единственный элемент $u_{\varepsilon}(f) \in H^+(D,S)$, удовлетворяющий условию

$$\mathscr{F}_f(v) = (u_{\varepsilon}(f), v)_{+, \varepsilon}$$

для любого $v \in H^+(D,S)$. Ясно, что $u_{\varepsilon}(f)$ является решением задачи (2.1). Наконец, по теореме Рисса имеем

$$||u_{\varepsilon}(f)||_{+,\varepsilon} \leq ||f||_{L^{2}(D)},$$

что и требовалось доказать.

Уравнения (2.2) показывают, что лемма 2.2 дает информацию о разрешимости смешанной задачи для оператора Лапласа Δ с очень специальными данными на D, S и $\partial D \setminus S$. Выясним, какие теоремы разрешимости могут быть получены для произвольных данных. С этой целью обозначим через $H^-(D,S)$

двойственное к $H^+(D,S)$ пространство относительно спаривания $\langle \cdot, \cdot \rangle$, индуцированного скалярным произведением $(\cdot, \cdot)_{L^2(D)}$ (см., например, [12,13]). На самом деле, это гильбертово пространство, изоморфное нормированному пространству, построенному как пополнение $H^+(D,S)$ по любой из норм

$$\|g\|_{-,arepsilon}=\sup_{\substack{v\in H^+(D,S),\ v
eq 0}}rac{|(g,v)_{L^2(D)}|}{\|v\|_{+,arepsilon}},\quad arepsilon>0.$$

Задача 2.3. Зафиксируем $\varepsilon \in (0,1]$. Для заданного $g \in H^-(D,S)$ найти элемент $w_\varepsilon(g) \in H^+(D,S)$, удовлетворяющий условию

$$(\bar{\partial}w_{\varepsilon}(g), \bar{\partial}v)_{L^{2}(D)} + \varepsilon (w_{\varepsilon}(g), v)_{L^{2}(\partial D \setminus S)} = \langle g, v \rangle$$
(2.3)

для любого $v \in H^+(D,S)$.

Лемма 2.4. Для любых $\varepsilon > 0$ и $g \in H^-(D,S)$ существует единственное решение $w_{\varepsilon} \in H^+(D,S)$ задачи 2.3. Более того,

$$||w_{\varepsilon}(g)||_{+,\varepsilon} \leq ||g||_{H^{-}(D,S)}.$$

Доказательство аналогично доказательству леммы 2.2 (см. [12, лемма 3; 13]). \square

На самом деле лемма 2.4 эквивалентна следующему утверждению: задача 2.3 индуцирует непрерывно обратимый линейный оператор $L_{\varepsilon}: H^+(D,S) \to H^-(D,S)$ с $\|L_{\varepsilon}\| = \|L_{\varepsilon}^{-1}\| = 1$.

Но даже в этом случае нельзя гарантировать того, что $w_{\varepsilon} \in H^s(D)$ при любом s > 1/2, без введения дополнительных ограничений на g. Эта ситуация типична для смешанных задач (см. [20,21]).

Однако теорема 1.2 (вместе с теоремами вложения Реллиха — Кондрашова и теоремой Гильберта — Шмидта) дает преимущество — спектральную теорему, относящуюся к задаче 2.3.

Введем скалярное произведение

$$(g, \tilde{g})_{-,\varepsilon} = \langle g, L_{\varepsilon}^{-1} \tilde{g} \rangle$$

в пространстве $H^-(D,S)$. Данное скалярное произведение определяет норму $\|\cdot\|_{-,\varepsilon}.$

Лемма 2.5. Для любого $\varepsilon\in(0,1]$ существуют положительные числа $\left\{\lambda_k^{(\varepsilon)}\right\}_{k\in\mathbb{N}}$ и функции $\left\{b_k^{(\varepsilon)}\right\}_{k\in\mathbb{N}}\subset H^+(D,S)$ такие, что

$$\left(\bar{\partial}b_{k}^{(\varepsilon)}, \bar{\partial}v\right)_{L^{2}(D)} + \varepsilon \left(b_{k}^{(\varepsilon)}, v\right)_{L^{2}(\partial D \setminus S)} = \left(\lambda_{k}^{(\varepsilon)}\right)^{-1} \left(b_{k}^{(\varepsilon)}, v\right)_{L^{2}(D)} \tag{2.4}$$

для любого $v\in H^+(D,S)$. Система $\left\{b_k^{(\varepsilon)}\right\}_{k\in\mathbb{N}}$ является ортонормированным базисом в $H^+(D,S)$ (по норме $(\cdot,\cdot)_{+,\varepsilon}$), также это ортогональный базис в $L^2(D)$ и $H^-(D,S)$ (по норме $(\cdot,\cdot)_{-,\varepsilon}$). Более точно, $\left\{b_k^{(\varepsilon)}\right\}_{k\in\mathbb{N}}$ является системой собственных векторов компактных самосопряженных операторов

$$L_{\varepsilon}^{-1}\iota'\iota: H^+(D,S) \to H^+(D,S), \quad \iota'\iota L_{\varepsilon}^{-1}: H^-(D,S) \to H^-(D,S),$$
$$\iota L_{\varepsilon}^{-1}\iota': L^2(D) \to L^2(D),$$

соответствующих (положительным) собственным значениям $\left\{\lambda_k^{(\varepsilon)}\right\}_{k\in\mathbb{N}}$, где

$$\iota: H^+(D,S) \to L^2(D), \quad \iota': L^2(D) \to H^-(D,S)$$

суть операторы естественного вложения.

Доказательство. См. [12, лемма 4; 13]. $\ \square$

По построению каждая функция $b_k^{(\varepsilon)}$ удовлетворяет некоторому уравнению Гельмгольца в области D; в частности, каждая функция $b_k^{(\varepsilon)}$ вещественно аналитическая в D.

Кроме того, можно получить формулу для решения задачи $2.3.~\mathrm{C}$ этой целью положим

$$\mathscr{G}_{\varepsilon}^{(N)}(z,\zeta) = \sum_{k=1}^{N} \frac{b_{k}^{(\varepsilon)}(z)\overline{b_{k}^{(\varepsilon)}(\zeta)}}{\left\|b_{k}^{(\varepsilon)}\right\|_{L^{2}(D)}}.$$

Следствие 2.6. Для каждого $g \in H^-(D,S)$ решение $w_{\varepsilon}(g) \in H^+(D,S)$ задачи 2.3 задается формулой

$$w_{arepsilon}(g)(z) = \lim_{N o \infty} ig\langle g, \mathscr{G}^{(N)}_{arepsilon}(z, \cdot) ig
angle, \quad z \in D.$$

ДОКАЗАТЕЛЬСТВО. Из леммы 2.5 следует, что для всех $u \in H^+(D,S)$ и $g \in H^-(D,S)$ имеем

$$u = \sum_{k=1}^{\infty} \left(u, b_k^{(arepsilon)}
ight)_{+,arepsilon} b_k^{(arepsilon)}, \quad g = \sum_{k=1}^{\infty} rac{\left(g, \iota' \iota b_k^{(arepsilon)}
ight)_{-,arepsilon}}{\left\|b_k^{(arepsilon)}
ight\|_{-,arepsilon}^2} \iota' \iota b_k^{(arepsilon)}.$$

С другой стороны, лемма 2.5 означает, что

$$L_{arepsilon}b_{k}^{(arepsilon)}=\lambda_{k}^{(arepsilon)}\iota'\iota b_{k}^{(arepsilon)},\quad L_{arepsilon}u=\sum_{k=1}^{\infty}\left(u,b_{k}^{(arepsilon)}
ight)_{+,arepsilon}\lambda_{k}^{(arepsilon)}\iota'\iota b_{k}^{(arepsilon)}.$$

Используя ортогональность системы $\left\{b_k^{(\varepsilon)}\right\}_{k\in\mathbb{N}}$, получаем

$$ig(w_{arepsilon}(g),b_{k}^{(arepsilon)}ig)_{+,arepsilon}=rac{ig(g,l'\iota b_{k}^{(arepsilon)}ig)_{-,arepsilon}}{ig\|b_{k}^{(arepsilon)}ig\|_{-,arepsilon}^{2}}.$$

Наконец, по определению

$$\big(g,\iota'\iota b_k^{(\varepsilon)}\big)_{-,\varepsilon} = \big\langle g, L_\varepsilon^{-1}\iota'\iota b_k^{(\varepsilon)} \big\rangle = \lambda_k^{(\varepsilon)} \big\langle g, b_k^{(\varepsilon)} \big\rangle,$$

$$\begin{split} \left\|b_k^{(\varepsilon)}\right\|_{-,\varepsilon}^2 &= \left(\iota'\iota b_k^{(\varepsilon)},\iota'\iota b_k^{(\varepsilon)}\right)_{-,\varepsilon} = \left\langle\iota'\iota b_k^{(\varepsilon)},L_\varepsilon^{-1}\iota'\iota b_k^{(\varepsilon)}\right\rangle \\ &= \lambda_k^{(\varepsilon)} \left\langle\iota'\iota b_k^{(\varepsilon)},b_k^{(\varepsilon)}\right\rangle = \lambda_k^{(\varepsilon)} \left\|b_k^{(\varepsilon)}\right\|_{L^2(D)}^2 \end{split}$$

и, следовательно,

$$\left(w_{arepsilon}(g),b_{k}^{(arepsilon)}
ight)_{+,arepsilon}=rac{\left\langle g,b_{k}^{(arepsilon)}
ight
angle }{\left\|b_{k}^{(arepsilon)}
ight\|_{L^{2}(D)}^{2}}.$$

Поэтому

$$w_arepsilon(g)(z) = \sum_{k=1}^\infty ig(w_arepsilon(g), b_k^{(arepsilon)}ig)_{+,arepsilon} b_k^{(arepsilon)}(z) = \lim_{N o\infty} \sum_{k=1}^N rac{ig\langle g, b_k^{(arepsilon)}ig
angle}{ig\|b_k^{(arepsilon)}ig\|_{L^2(D)}^2} b_k^{(arepsilon)}(z),$$

что и требовалось доказать.

Следствие 2.7. Для каждого $f \in L^2(D)$ решение $u_\varepsilon \in H^+(D,S)$ задачи 2.1 задается формулой

$$u_arepsilon(f)(z) = \lim_{N o +\infty} ig(f, ar{\partial} \mathscr{G}^{(N)}_arepsilon(z, \cdot)ig)_{L^2(D)}, \quad z \in D.$$

Доказательство вытекает из следствия $2.6\ \mathrm{c}$ учетом следующей связи между данными задач $2.1\ \mathrm{u}$ 2.3:

$$\langle g, v \rangle = (f, \bar{\partial}v)_{L^2(D)}$$

(см. доказательство леммы 2.4). $\ \square$

Обсудим очень важный вопрос о том, как найти собственные векторы задачи Зарембы, а следовательно, и решение задачи 1.3.

Пусть $\mathscr{D}-$ единичный диск в $\mathbb{C}.$ Построение системы $\left\{b_k^{(\varepsilon)}\right\}$ для $D=\mathscr{D}$ можно выполнить с использованием системы функций Бесселя

$$\mathscr{J}_p(z) = \sum_{k=0}^{\infty} rac{(-1)^k}{2^{2k+p}} rac{z^{2k+p}}{k! \, (k+p)!}, \quad \mathscr{J}_{-p}(z) = (-1)^p \, \mathscr{J}_p(z), \quad z \in \mathbb{C}, \,\, p \in \mathbb{Z}_+.$$

А именно, известно, что любая собственная функция задачи 2.3 в диске $\mathscr{D},$ отвечающая собственному значению $\lambda_k^{(\varepsilon)},$ имеет вид

$$b_k^{(\varepsilon)}(z) = \sum_{q \in \mathbb{Z}} (z/|z|)^q \mathscr{J}_q(|z|\sqrt{\lambda_k^{(\varepsilon)}}) d_q^{(\varepsilon)}(S) \tag{2.5}$$

с некоторыми коэффициентами $\left\{d_q^{(\varepsilon)}(S)\right\}_{q\in\mathbb{Z}}\subset\mathbb{C}$. Если $S=\varnothing$ или $S=\partial D$, то сумма состоит только из одного ненулевого слагаемого; если $S\neq\partial\mathscr{D}$ и $S\neq\varnothing$, то число ненулевых коэффициентов $d_q^{(\varepsilon)}(S)$ суммы не может быть конечным (см., например, [22, дополнение II, с. 1, § 2]. Собственное значение $\lambda_k^{(\varepsilon)}$ и коэффициенты $\left\{d_q^{(\varepsilon)}(S)\right\}_{q\in\mathbb{Z}}$ могут быть найдены из соотношений $b_k^{(\varepsilon)}=0$ на S и $(\bar{\partial}_{\nu}+\varepsilon)b_k^{(\varepsilon)}=0$ на $\partial D\setminus S$.

3. Основной результат

Неравенства (1.1) и лемма 2.2 дают следующую грубую оценку для семейства $\{u_{\varepsilon}(f)\}_{\varepsilon\in(0,1]}$:

$$||u_{\varepsilon}(f)||_{+,1} \leq \frac{1}{\sqrt{\varepsilon}} ||u_{\varepsilon}(f)||_{+,\varepsilon} \leq \frac{1}{\sqrt{\varepsilon}} ||f||_{L^{2}(D)}, \quad \varepsilon \in (0,1].$$

Таким образом, это семейство может быть неограниченным при $\varepsilon \to +0$. Выясним, как поведение семейства $\{u_{\varepsilon}(f)\}_{\varepsilon>0}$ влияет на разрешимость задачи 1.3.

Теорема 3.1. Семейство $\{\|u_{\varepsilon}(f)\|_{+,1}\}_{\varepsilon\in(0,1]}$ ограничено тогда и только тогда, когда существует $u\in H^+(D,S)$, удовлетворяющее (1.5).

Доказательство. Сначала докажем следующую лемму.

Лемма 3.2. Пусть существует такое множество $A \subset (0,1]$, что

- 1) нуль является предельной точкой A;
- 2) семейство $\{\|u_{\delta}(f)\|_{+,1}\}_{\delta \in A}$ ограничено.

Тогда существует $u \in H^+(D, S)$, удовлетворяющее (1.5).

Доказательство. Предположим, что нуль является предельной точкой множества A и семейство $\{\|u_{\delta}(f)\|_{+,1}\}_{\delta\in A}$ ограничено. Согласно (2.1) имеем

$$(ar{\partial} u_\delta(f),ar{\partial} v)_{L^2(D)} + \delta\left(u_\delta(f),v
ight)_{L^2(D)} = (f,ar{\partial} v)_{L^2(D)}$$

для всех $v \in H^+(D,S)$. Переходя к пределу при $A \ni \delta \to +0$ в последнем равенстве и пользуясь тем фактом, что $\{u_\delta(f)\}_{\delta \in A}$ ограничено, получаем

$$\lim_{\delta \to +0} (\bar{\partial} u_{\delta}(f), \bar{\partial} v)_{L^{2}(D)} = (f, \bar{\partial} v)_{L^{2}(D)}$$
(3.1)

для всех $v \in H^+(D, S)$.

Известно, что любое ограниченное множество в гильбертовом пространстве слабо компактно. Следовательно, существует подпоследовательность $\{u_{\delta_j}(f)\}$ $\subset H^+(D,S)$, слабо сходящаяся в этом пространстве к элементу $u\in H^+(D,S)$. Здесь $\{\delta_j\}$ стремится к 0 при $j\to\infty$.

Покажем, что $\{u_{\delta_i}(f)\}$ сходится слабо к u в $H^s(D)$ при s<1/2 и $j\to\infty$.

Из теоремы 1.2 следует, что вложение $i_s: H^+(D,S) \to H^s(D)$ непрерывно для любого s < 1/2. Следовательно, сопряженный оператор $i_s^{\star}: H^s(D) \to H^+(D,S)$ также ограничен, а

$$\lim_{j \to \infty} (i_s u_{\delta_j}(f), v)_{H^s(D)} = \lim_{j \to \infty} (u_{\delta_j}(f), i_s^{\star} v)_{H^+(D,S)} = (u, i_s^{\star} v)_{H^+(D,S)}$$

для всех $v \in H^s(D)$. Это в точности означает, что $\{u_{\delta_j}(f)\}$ сходится слабо в $H^s(D)$.

Обозначим через $\bar{\partial}^{\star}: L^2(D) \to H^+(D,S)$ сопряженный к ограниченному линейному оператору $\bar{\partial}: H^+(D,S) \to L^2(D)$. Простые вычисления показывают, что

$$\lim_{A\ni\delta\to+0} (\bar{\partial}u_{\delta}(f), \bar{\partial}v)_{L^{2}(D)} = \lim_{A\ni\delta\to+0} (u_{\delta}(f), \bar{\partial}^{\star}\bar{\partial}v)_{H^{+}(D,S)}$$

$$= (u(f), \bar{\partial}^{\star}\bar{\partial}v)_{H^{+}(D,S)} = (\bar{\partial}u(f), \bar{\partial}v)_{L^{2}(D)} \quad (3.2)$$

для всех $v \in H^+(D,S)$. Комбинируя (3.1) и (3.2), видим, что (1.5) выполняется для функции $u \in H^+(D,S)$. \square

Получим более сильное утверждение, чем теорема 3.1, если докажем следующую лемму.

Лемма 3.3. Если существует функция $u \in H^+(D,S)$, удовлетворяющая условию (1.5), то семейство $\{\|u_{\varepsilon}(f)\|_{+,1}\}_{\varepsilon\in(0,1]}$ ограничено и

$$\lim_{arepsilon o +0} \|ar{\partial} (u_{arepsilon}(f)-u)\|_{L^2(D)} = 0.$$

Более того, $\{u_{\varepsilon}(f)\}_{\varepsilon\in(0,1]}$ сходится слабо к $u\in H^+(D,S)$ при $\varepsilon\to+0$ и сходится к решению u в $H^s(D)$ для всех s<1/2.

ДОКАЗАТЕЛЬСТВО. Пусть существует $u \in H^+(D,S)$, удовлетворяющее условию (1.5). Обозначим $R_{\varepsilon} = u_{\varepsilon}(f) - u$, тогда из (1.5) и (2.1) следует, что

$$(\bar{\partial}R_{\varepsilon}, \bar{\partial}v)_{L^{2}(D)} + \varepsilon (R_{\varepsilon}, v)_{L^{2}(\partial D)} = -\varepsilon (u, v)_{L^{2}(\partial D)}$$
(3.3)

для всех $v \in H^+(D,S)$. Так как

$$|-\varepsilon(u,v)_{L^2(\partial D)}| \le \varepsilon ||u||_{L^2(\partial D)} ||v||_{L^2(\partial D)} \le \sqrt{\varepsilon} ||u||_{L^2(\partial D)} ||v||_{+\varepsilon},$$

отображение $v\mapsto -\varepsilon(u,v)_{L^2(\partial D)}$ определяет непрерывный линейный функционал $g_\varepsilon(u)$ в пространстве $H^+(D,S)$ и

$$||g_{\varepsilon}(u)|| \leq \sqrt{\varepsilon} ||u||_{L^{2}(\partial D)}.$$

Таким образом, (3.3) означает, что $R_{\varepsilon}=w_{\varepsilon}(g_{\varepsilon}(u))$ есть решение задачи 2.3 с данными $g=g_{\varepsilon}(u)$.

Согласно (1.1) и лемме 2.4 имеем

$$\|R_{\varepsilon}\|_{+,1} \leq \frac{1}{\sqrt{\varepsilon}} \|R_{\varepsilon}\|_{+,\varepsilon} \leq \frac{1}{\sqrt{\varepsilon}} \sqrt{\varepsilon} \|u\|_{L^{2}(\partial D)} = \|u\|_{L^{2}(\partial D)}.$$

Следовательно, семейство $\{\|R_{\varepsilon}\|_{+,1}\}_{\varepsilon\in(0,1]}$, а также семейство $\{\|u_{\varepsilon}(f)\|_{+,1}\}_{\varepsilon\in(0,1]}$ ограничены. Из (3.3) следует

$$\begin{split} \lim_{\varepsilon \to +0} \| \bar{\partial} (u_{\varepsilon}(f) - u) \|_{L^{2}(D)}^{2} &= \lim_{\varepsilon \to +0} \| \bar{\partial} R_{\varepsilon} \|_{L^{2}(D)}^{2} \\ &= -\lim_{\varepsilon \to +0} \varepsilon \left(\| R_{\varepsilon} \|_{L^{2}(\partial D)}^{2} + (u, R_{\varepsilon})_{L^{2}(\partial D)} \right) = 0. \end{split}$$

Наконец, покажем, что $\{u_{\varepsilon}(f)\}_{\varepsilon\in(0,1]}$ сходится слабо к u в $H^+(D,S)$ при $\varepsilon\to +0$. Доказательство будем строить от противного. Действительно, если $\{u_{\varepsilon}(f)\}_{\varepsilon\in(0,1]}$ не сходится слабо к u в $H^+(D,S)$, то существуют $v\in H^+(D,S)$, $\gamma>0$ и последовательность $\{\varepsilon_j\}$, стремящаяся к +0 при $j\to\infty$, такие, что

$$|(u_{\varepsilon_i} - u, v)_{+,1}| \ge \gamma \tag{3.4}$$

для любого $j \in \mathbb{N}$. Но последовательность $\{u_{\varepsilon_j}\}$ ограничена в гильбертовом пространстве $H^+(D,S)$, а значит, существует подпоследовательность, сходящаяся слабо в $H^+(D,S)$. Чтобы не усложнять обозначения, снова обозначим ее через $\{u_{\varepsilon_j}\}$. Как видно из доказательства леммы 3.2, слабый предел $\{u_{\varepsilon_j}\}$ есть u. Это противоречит (3.4), а следовательно, первая часть леммы доказана.

Наконец, согласно теореме 1.2 пространство $H^+(D,S)$ непрерывно вложено в пространство Соболева — Слободецкого $H^{1/2-\delta}(D)$ при любом $\delta>0$. Хорошо известно, что компактные операторы в гильбертовом пространстве переводят слабо сходящуюся последовательность в сходящуюся. Таким образом, из теоремы Реллиха — Кондрашова о компактных вложениях для пространств Соболева вытекает, что $\{u_\varepsilon(f)\}_{\varepsilon\in(0,1]}$ сходится к u в $H^s(D)$ для любого s<1/2 при $\varepsilon\to+0$. \square

Доказательство теоремы 3.1 немедленно следует из лемм 3.2 и 3.3.

Следствие 3.4. Семейство $\{\|u_{\varepsilon}(f)\|_{+,1}\}_{\varepsilon\in(0,1]}$ ограничено тогда и только тогда, когда задача 1.3 разрешима. Более того, в этом случае

$$\lim_{\varepsilon \to +0} \|\bar{\partial} u_{\varepsilon}(f) - f\|_{L^{2}(D)} = 0$$

и $\{u_{\varepsilon}(f)\}_{\varepsilon\in(0,1]}$ сходится слабо в $H^+(D,S)$ при $\varepsilon\to +0$ к решению $u\in H^+(D,S)$ задачи 1.3. Кроме того, оно сходится к u в пространстве $H^s(D)$ для любого s<1/2 и в $H^1_{\mathrm{loc}}(D\cup S)$.

Доказательство. Почти все эти утверждения следуют из теоремы 3.1 и лемм 1.7 и 3.3. Остается только показать, что $\{u_{\varepsilon}(f)\}_{\varepsilon\in(0,1]}$ сходится к u в топологии $H^1_{\mathrm{loc}}(D\cup S)$, если $u\in H^+(D,S)$ является решением задачи 1.3.

Действительно, замечаем, что $\{u_{\varepsilon}(f)-u\}_{\varepsilon\in(0,1]}$ ограничена в $H^+(D)$ в силу леммы 3.3 и

$$\lim_{arepsilon o +0} \|ar{\partial} (u_{arepsilon}(f)-u)\|_{L^2(D)} = 0, \quad t(u_{arepsilon}(f)-u) = 0$$

на S для любого $\varepsilon \in (0,1]$. Тогда, применяя [23, теорема 7.2.6], заключаем, что $\{u_{\varepsilon}(f)\}_{\varepsilon \in (0,1]}$ сходится к u в $H^1_{\mathrm{loc}}(D \cup S)$. \square

Наконец, выпишем формулу карлемановского типа для решений задачи ${
m Komu}\ 1.3.$

Следствие 3.5. Для любой функции $u \in H^+(D,S)$

$$(u,v)_{+,1} = \lim_{\varepsilon \to +0} \lim_{N \to +\infty} \left(\left(\bar{\partial} u, \bar{\partial} \mathscr{G}_{\varepsilon}^{(N)}(z,\cdot) \right)_{L^2(D)}, v(z) \right)_{L^2(D)}$$

для всех $v \in H^+(D, S)$.

ЛИТЕРАТУРА

- 1. Carleman T. Les fonctions quasianalytiques. Paris: Gauthier-Villars, 1926.
- Айзенберг Л. А. Формулы Карлемана в комплексном анализе. Первые приложения. Новосибирск: Наука, 1990.
- Tarkhanov N. The Cauchy problem for solutions of elliptic equations. Berlin: Akademie- Verl., 1995.
- 4. Лаврентьев M. M. О задаче Коши для линейных эллиптических уравнений второго порядка // Докл. АН СССР. 1957. Т. 112, № 2. С. 195—197.
- Лаврентьев М. М. О некоторых некорректных задачах математической физики. Новосибирск: Наука, 1962.
- Fedchenko D. P., Shlapunov A. A. On the Cauchy problem for the Dolbeault complex in spaces of distributions // Complex Variables, Elliptic Equ. 2013. V. 58, N 11. P. 1591–1614.
- Fedchenko D. P., Shlapunov A. A. On the Cauchy problem for the elliptic complexes in spaces
 of distributions // Complex Variables, Elliptic Equ. 2014. V. 59, N 5. P. 651–679.
- 8. Тихонов А. Н., Арсенин В. Я. Методы решения некорректных задач. М.: Наука, 1979.
- $\textbf{9.} \ \ \textit{Simanca S.} \ \ \textit{Mixed elliptic boundary value problems // Comm. in PDE. 1987. V. 12. P. 123–200.}$
- Shlapunov A. A., Tarkhanov N. Mixed problems with a parameter // Russ. J. Math. Phys. 2005. V. 12, N 1. P. 97–124.
- Schulze B.-W., Shlapunov A., Tarkhanov N. Green's integrals on manifolds with cracks // Ann. Global Anal. Geom. 2003. V. 24. P. 131–160.
- 12. Polkovnikov A. N., Shlapunov A. A. On spectral properties of a non-coercive mixed problem associated with the $\bar{\partial}$ -operator // J. Sib. Federal Univ., Math., Phys. 2013. V. 6, N 2. P. 247–261.
- 13. Shlapunov A. A., Tarkhanov N. On completeness of root functions of Sturm–Liouville problems with discontinuous boundary operators // J. Differ. Equ. 2013. V. 255. P. 3305–3337.
- 14. Айзенберг Л. А., Кытманов А. М. О возможности голоморфного продолжения в область функций, заданных на связном куске ее границы // Мат. сб. 1991. Т. 182, № 4. С. 490–507.
- **15.** Тарханов Н. Н., Шлапунов А. А. О задаче Коши для голоморфных функций класса Лебега L^2 в области // Сиб. мат. журн. 1992. Т. 33, № 5. С. 914–922.
- Shlapunov A. A. On the Cauchy problem for the Cauchy–Riemann operator in Sobolev spaces // Contemp. Math. 2008. V. 445. P. 333–347.
- 17. Shlapunov A. A., Tarkhanov N. Bases with double orthogonality in the Cauchy problem for systems with injective symbols // Proc. London. Math. Soc. 1995. V. 71, N 1. P. 1–54.
- 18. Михайлов В. П. Дифференциальные уравнения в частных производных. М.: Наука, 1976.
- 19. Zaremba S. Sur un problème mixte à l'équation de Laplace // Bull. Intern. Acad. Sci. Cracovie. 1910. P. 314–344.
- 20. Harutjunjan G., Schulze B.-W. Mixed problems and edge calculus: symbolic structure // Rend. Sem. Mat. Univ. Pol. Torino. 2006. V. 64, N 2. P. 159–197.
- Эскин Г. И. Краевые задачи для эллиптических псевдодифференциальных уравнений.
 М.: Наука, 1973.
- 22. Тихонов А. Н., Самарский А. А. Уравнения математической физики. М.: Наука, 1972.

 $\textbf{23.} \ \ \textit{Tarkhanov N}. \ \textbf{Analysis of solutions of elliptic equations}. \ \textbf{Dordrecht: Kluwer Acad. Publ.}, 1997.$

Cтатья поступила 25 октября 2016 г.

Полковников Александр Николаевич, Шлапунов Александр Анатольевич Сибирский федеральный университет, пр. Свободный, 79, Красноярск 660041 paskaattt@yandex.ru, ashlapunov@sfu-kras.ru