О \mathscr{F}_h –ДОПОЛНЯЕМЫХ ПОДГРУППАХ КОНЕЧНОЙ ГРУППЫ

Н. Тан

Аннотация. Пусть \mathscr{F} — формация конечных групп. Вводится понятие \mathscr{F}_h -дополняемых подгрупп и исследуется строение конечных групп с условием, что некоторые максимальные подгруппы силовских подгрупп, максимальные подгруппы, минимальные подгруппы или 2-максимальные подгруппы \mathscr{F}_h -дополняемы соответственно. Получены обобщения некоторых известных результатов.

 $DOI\,10.17377/smzh.2017.58.418$

Ключевые слова: \mathscr{F}_h -дополняемая подгруппа; максимальная подгруппа; 2-максимальная подгруппа; минимальная подгруппа; подгруппа, порядок которой равен квадрату простого числа.

1. Введение

Все рассматриваемые в данной работе группы конечны, и G всегда обозначает конечную группу. Используются стандартные понятия и обозначения из [1,2].

Пусть \mathscr{F} — класс групп. Предположим, что (1) если $G \in \mathscr{F}$ и $H \subseteq G$, то $G/H \in \mathscr{F}$; (2) если G/M и G/N лежат в \mathscr{F} , где M, N — произвольные нормальные подгруппы из G, то $G/(M \cap N) \in \mathscr{F}$. Тогда \mathscr{F} называется формацией. Если класс \mathscr{F} замкнут относительно взятия (нормальных) подгрупп, то \mathscr{F} называется \mathscr{F} -замкнутым (S_n -замкнутым). Главный фактор H/K группы G называется \mathscr{F} -центральным, если $[H/K](G/C_G(H/K)) \in \mathscr{F}$ (см. [2, определение 2.4.3]). Символом $Z_\infty^\mathscr{F}(G)$ обозначим \mathscr{F} -гиперцентр группы G, т. е. произведение всех подгрупп группы G, G-главные факторы которых \mathscr{F} -центральны. Символами \mathscr{F} , \mathscr{U} и \mathscr{N} обозначены формации всех разрешимых, сверхразрешимых и нильпотентных групп соответственно.

Напомним, что минимальная подгруппа группы G имеет простой порядок. Подгруппа N_2 называется 2-*минимальной подгруппой* G, если максимальная подгруппа N_2 является минимальной подгруппой G. Очевидно, подгруппы, порядок которых является квадратом простого числа, 2-минимальны. Пусть M — максимальная подгруппа группы G. Если M_1 — максимальная подгруппа M, то будем называть M_1 2-максимальной подгруппой G. Обозначим через AB полупрямое произведение групп A и B.

Согласно [3] подгруппа H группы G называется \mathscr{F}_h -нормальной, если существует нормальная подгруппа K в G такая, что HK — нормальная холлова

This project is supported by the National Natural Science Foundation of China (Grant No. 11471138) and University Natural Science Foundation of Jiangsu (Grant No. 15KJB110002).

подгруппа G и $(H \cap K)H_G/H_G \leq Z_{\infty}^{\mathscr{F}}(G/H_G)$. В этих терминах в [3] получены некоторые интересные результаты. В качестве обобщения откажемся от свойства нормальности холловых подгрупп и введем следующее понятие.

Определение 1.1. Пусть \mathscr{F} — класс групп. Подгруппа H группы G называется \mathscr{F}_h -дополняемой в G, если существует нормальная подгруппа T в G такая, что HT — холлова подгруппа в G и $(H\cap T)H_G/H_G \leq Z_{\infty}^{\mathscr{F}}(G/H_G)$.

Очевидно, все нормальные подгруппы, c-нормальные подгруппы и \mathscr{F}_h -нормальные подгруппы \mathscr{F}_h -дополняемы. Однако обратное неверно.

ПРИМЕР 1.2. Пусть $G=Z_5 \wr S_3=[B]S_3$ — регулярное сплетение, где $S_3=[Z_3]Z_2$ — симметрическая группа степени 3, B — база регулярного сплетения G. Тогда Z_2B — холлова подгруппа G. Очевидно, $Z_2 \cap B=1$. Поэтому $Z_2 \mathscr{F}_h$ -дополняема в G для любой непустой насыщенной формации \mathscr{F} . При этом нетрудно заметить, что Z_2 не является нормальной, c-нормальной или \mathscr{N}_h -нормальной в G. На самом деле G — единственная нормальная подгруппа G такая, что $Z_2G=G$ и $(Z_2)_G=1$. Более того, $Z_2\cap G=Z_2\nleq Z_\infty^{\mathscr{N}}(G)=Z_\infty(G)$. Поэтому Z_2 не \mathscr{N}_h -нормальна в G.

В данной работе исследуется строение конечных групп с условием, что некоторые максимальные подгруппы, 2-максимальные подгруппы, минимальные подгруппы или 2-минимальные подгруппы \mathscr{F}_h -дополняемы соответственно, и описывается строение разрешимых, сверхразрешимых и p-нильпотентных групп.

2. Предварительные результаты

В дальнейшем будут использоваться следующие известные результаты.

Лемма 2.1 [4, лемма 2.1]. Пусть G- группа и $A\leq G.$ Пусть $\mathscr{F}-$ непустая насыщенная формация и $Z=Z_{\infty}^{\mathscr{F}}(G).$ Тогда

- (1) если A нормальна в G, то $AZ/A \leq Z_{\infty}^{\mathscr{F}}(G/A);$
- (2) если \mathscr{F} S-замкнута, то $Z \cap A \leq Z_{\infty}^{\mathscr{F}}(A)$;
- (3) если \mathscr{F} S_n -замкнута и A нормальна в G, то $Z \cap A \leq Z_{\infty}^{\mathscr{F}}(A)$;
- (4) если $G \in \mathcal{F}$, то Z = G.

Лемма 2.2 [4, лемма 2.3]. Пусть \mathscr{F} — насыщенная формация, содержащая \mathscr{U} , и G — группа c нормальной подгруппой E такая, что $G/E \in \mathscr{F}$. Если E циклическая, то $G \in \mathscr{F}$.

Лемма 2.3. Пусть G — группа и $H \le K \le G$. Тогда

- (1) H \mathscr{F}_h -дополняема в G тогда и только тогда, когда G имеет нормальную подгруппу T_0 такую, что HT_0 холлова подгруппа G, $H_G \leq T_0$ и $(H/H_G) \cap (T_0/H_G) \leq Z_{\infty}^{\mathscr{F}}(G/H_G)$.
- (2) Предположим, что H нормальна в G. Если K \mathscr{F}_h -дополняема в G, то K/H \mathscr{F}_h -дополняема в G/H.
- (3) Предположим, что H нормальна в G. Тогда для любой \mathscr{F}_h -дополняемой подгруппы E в G такой, что (|H|,|E|)=1, HE/H \mathscr{F}_h -дополняема в G/H.
 - (4) Если H \mathscr{F}_h -дополняема в G и \mathscr{F} S-замкнута, то H \mathscr{F}_h -дополняема в K .
- (5) Если H \mathscr{F}_h -дополняема в G, K нормальна в G и \mathscr{F} S_n -замкнута, то H \mathscr{F}_h -дополняема в K.
 - (6) Если $G \in \mathscr{F}$, то любая подгруппа $G \mathscr{F}_h$ -дополняема в G.

Доказательство аналогично [4] по лемме 2.1.

Лемма 2.4 [5, лемма 2.6]. Пусть N — нетривиальная нормальная подгруппа группы G. Если $N \cap \Phi(G) = 1$, то подгруппа Фиттинга F(N) группы N является прямым произведением минимальных нормальных подгрупп G, лежащих в F(N).

Лемма 2.5 [6, теорема 2.2]. Пусть G — группа, p и q — различные простые делители |G|, P — нециклическая силовская p-подгруппа G. Если любая максимальная подгруппа P (кроме одной) имеет q-замкнутое дополнение в G, то G q-замкнута.

Лемма 2.6 [7, лемма 3.12]. Пусть p — наименьший простой делитель порядка группы H и P — силовская p-подгруппа H. Если $|P| \leq p^2$ и H A_4 -свободна, то H p-нильпотентна.

3. Основные результаты и некоторые приложения

Ниже приводятся основные результаты и приложения при условии, что некоторые максимальные подгруппы силовских подгрупп, максимальные подгруппы, минимальные подгруппы или 2-максимальные подгруппы \mathscr{F}_h -дополняемы.

3.1. Максимальная подгруппа силовской подгруппы.

Теорема 3.1. Группа G сверхразрешима тогда и только тогда, когда любая максимальная подгруппа всякой нециклической силовской подгруппы G \mathcal{U}_{b} -дополняема в G.

Доказательство. Необходимость следует из леммы 2.3(6). Докажем достаточность. Предположим противное, и пусть G — контрпример минимального порядка.

(1) Если N — нетривиальная нормальная p-подгруппа G для некоторого простого p, то G/N сверхразрешима.

Пусть T/N — некоторая нециклическая силовская q-подгруппа G/N и T_1/N — максимальная подгруппа T/N, где q — простой делитель |G/N|. Если q=p, то T — нециклическая силовская p-подгруппа G и T_1 — максимальная подгруппа T. По условию T_1 \mathcal{U}_h -дополняема в G. Таким образом, по лемме 2.3(2) T_1/N \mathcal{U}_h -дополняема в G/N. Пусть $q\neq p$, тогда найдется силовская q-подгруппа Q в G такая, что T=QN. Пусть $Q_1=Q\cap T_1$. Сравнение порядков показывает, что Q_1 — максимальная подгруппа Q и $T_1=Q_1N$. По условию Q_1 \mathcal{U}_h -дополняема в G. Поэтому по лемме 2.3(3) T_1/N \mathcal{U}_h -дополняемая в G/N. Это показывает, что G/N удовлетворяет условию теоремы. Следовательно, G/N сверхразрешима в силу минимальности выбора G.

(2) G разрешима.

Пусть p — наименьший простой делитель |G| и P — силовская p-подгруппа G. Если p>2, то G разрешима по теореме Фейта — Томпсона. Поэтому считаем p=2. Если P циклическая, то G 2-нильпотентна по [8, 10.1.9]. Таким образом, G разрешима. Рассмотрим случай, когда P нециклическая. Пусть P_1 — максимальная подгруппа P. По условию P_1 \mathscr{U}_h -дополняема в G. Найдется нормальная подгруппа T в G такая, что P_1T — холлова подгруппа G и $(P_1\cap T)(P_1)_G/(P_1)_G \le Z_\infty^\mathscr{U}(G/(P_1)_G)$. Если $(P_1)_G \ne 1$, то по (1) $G/(P_1)_G$ сверхразрешима и, таким образом, G разрешима. Если $(P_1)_G = 1$, то $P_1\cap T \le Z_\infty^\mathscr{U}(G)$. Если $P_1\cap T$ 0. Найдется минимальная нормальная подгруппа $P_1\cap T$ 1. В $P_1\cap T$ 2 найдется минимальная нормальная подгруппа $P_1\cap T$ 3.

для некоторого простого r. По (1) G/L сверхразрешима. Отсюда следует, что G разрешима. Рассмотрим случай $Z_{\infty}^{\mathscr{U}}(G)=1$. В этом случае $P_1\cap T=1$. Поскольку T — нормальная подгруппа в G порядка 2m, где m нечетно, найдется нетривиальная нормальная r-подгруппа N в G такая, что $N\leq T$, для любого простого r. Более того, по (1) G/N сверхразрешима. Стало быть, G разрешима.

(3) G имеет единственную минимальную нормальную подгруппу $L, L = O_p(G) = F(G) = C_G(L)$ и $\Phi(G) = 1$.

Пусть L — минимальная нормальная подгруппа G. По (2) L — элементарная абелева p-подгруппа для некоторого простого p. По (1) G/L сверхразрешима. Поскольку класс всех сверхразрешимых групп является насыщенной формацией, L — единственная минимальная нормальная подгруппа в G и $\Phi(G)=1$. Более того, $L=O_p(G)=F(G)=C_G(L)$.

(4) L — силовская p-подгруппа G.

Пусть q — наибольший простой делитель |G| и Q — силовская q-подгруппа G. Тогда QL/L — силовская q-подгруппа G/L. Так как G/L сверхразрешима по (1), то $QL/L \le G/L$. Отсюда следует, что $QL \le G$. Пусть P — силовская p-подгруппа G. Если p=q, то $P/L \le G/L$, поэтому $P \le G$. По (3) $L=O_p(G)=P$ — силовская p-подгруппа G. Предположим, что p<q. Тогда QP=QLP является подгруппой G. Если QP<G, то по лемме 2.3(4) QP удовлетворяет условиям теоремы. В силу минимальности выбора G группа QP сверхразрешима. Поэтому $Q \le QP$ и $QL=Q\times L$. Следовательно, $Q \le C_G(L)=L$; противоречие.

Предположим, что QP=G. Очевидно, $Q \not \triangleq G$. Допустим, что L < P. Поскольку L не циклическая, то и P не циклическая. Докажем, что любая максимальная подгруппа P имеет q-замкнутое дополнение в G. Пусть P_1 — произвольная максимальная подгруппа P. Если $(P_1)_G \neq 1$, то по (3) $L \leq (P_1)_G \leq P_1$ и $G=LM=P_1M$, где $M\simeq G/L$ сверхразрешима и потому M q-замкнута. Предположим, что $(P_1)_G=1$. Если $Z_\infty^\mathscr{U}(G)\neq 1$, то по (3) $L\leq Z_\infty^\mathscr{U}(G)$. По (1) G/L сверхразрешима, значит, $G/Z_\infty^\mathscr{U}(G)\simeq (G/L)/(Z_\infty^\mathscr{U}(G)/L)$ сверхразрешима, а стало быть, и G сверхразрешима; противоречие. Таким образом, $Z_\infty^\mathscr{U}(G)=1$. По условию найдется нормальная подгруппа T в G такая, что P_1T — холлова подгруппа G и $P_1\cap T\leq Z_\infty^\mathscr{U}(G)=1$. Предположим, что P_1T < G. Тогда $P_1T=P$. Так как $|P|=|P_1||T|/|P_1\cap T|=|P_1||T|$, то T — циклическая группа порядка P. Минимальная нормальность P0 влечет P1. По P2 сверхразрешима, что влечет сверхразрешимость P3; противоречие. Таким образом, P4 сверхразрешима, что влечет сверхразрешимость P5; противоречие. Таким образом, P6 смым доказываемое утверждение верно. По лемме P7 следовательно, P8 смажнута. Тем самым доказываемое утверждение верно. По лемме P8. Полученное противоречие доказывает, что P7. Итак, получаем P8.

(5) Финальное противоречие.

Пусть L_1 — максимальная подгруппа в L. Очевидно, $(L_1)_G=1$. По условию найдется нормальная подгруппа T в G такая, что L_1T — холлова подгруппа G и $L_1 \cap T \leq Z_\infty^\mathscr{U}(G)$. Поскольку $L \cap T \trianglelefteq G$, то $L \cap T=1$ или L. Если $L \cap T=1$, то $L_1T=LT$, ибо L_1T — холлова подгруппа G. Поэтому $L=L\cap L_1T=L_1(L\cap T)=L_1$; противоречие. Таким образом, $L\cap T=L$, т. е. $L_1 \leq L \leq T$. Это показывает, что $1 \neq L_1 \leq Z_\infty^\mathscr{U}(G)\cap L$. Но $Z_\infty^\mathscr{U}(G)\cap L \trianglelefteq G$, поэтому $Z_\infty^\mathscr{U}(G)\cap L=L$, т. е. $L\leq Z_\infty^\mathscr{U}(G)$. Из (1) следует, что G/L сверхразрешима. Поскольку $G/Z_\infty^\mathscr{U}(G)\simeq (G/L)/(Z_\infty^\mathscr{U}(G)/L)$ сверхразрешима, G сверхразрешима; противоречие. Финальное противоречие заканчивает доказательство. \square

Теорема 3.2. Группа G сверхразрешима, если и только если найдется нормальная подгруппа E в G такая, что G/E сверхразрешима и любая максимальная подгруппа всякой нециклической силовской подгруппы E \mathcal{U}_h -дополняема в G.

Доказательство. Необходимость очевидна. Докажем достаточность. Предположим противное, и пусть G — контрпример, для которого |G||E| минимально. Дальнейшее доказательство разбито на несколько шагов. Можно считать, что E нециклическая.

(1) Если L — нетривиальная нормальная p-подгруппа G, лежащая в E, где p простое, то G/L сверхразрешима.

Если E/L циклическая, то поскольку $(G/L)/(E/L)\cong G/E$, получаем $G/L\in \mathscr{U}$. Вудем считать, что E/L не циклическая. Пусть T/L — некоторая нециклическая силовская q-подгруппа E/L и T_1/L — максимальная подгруппа T/L, где q — некоторый простой делитель |E/L|. Если q=p, то T — нециклическая силовская p-подгруппа E и T_1 — максимальная подгруппа E. По условию E0 — максимальная подгруппа E1. По условию E1 — максимальная подгруппа E3 — подгруппа E4 — максимальная подгруппа E5 — подгруппа E6 — подгруппа E7 — максимальная в E7. Пусть E8 — E9 — максимальная подгруппа E9 — максимальная подгруппа E9 — максимальная подгруппа E9 — максимальная подгруппа E9 — максимальная в E9. Стало быть, по лемме E1. По условию E1 — максимальная в E2. Отсюда следует, что E4 — удовлетворяет условию теоремы. В силу минимальности выбора E8 получаем, что E4 сверхразрешима.

(2) E сверхразрешима.

Поскольку класс $\mathcal W$ всех сверхразрешимых групп S-замкнут, по лемме 2.3(4) получаем, что условие теоремы выполнено для (E,E). Если E=G, то по теореме 3.1~G сверхразрешима; противоречие. Поэтому будем считать, что E < G. Тогда E сверхразрешима в силу минимальности выбора G. Таким образом, (2) выполнено.

(3) G имеет единственную минимальную нормальную подгруппу L, содержащуюся в E, и $L = O_p(E) = F(E) = C_E(L)$ для некоторого простого $p \in \pi(G)$.

Пусть L — минимальная нормальная подгруппа G, лежащая в E. По (2) L — элементарная абелева p-подгруппа для некоторого простого p. Рассуждая, как в доказательстве (3) теоремы 3.1, получаем (3).

(4) Финальное противоречие.

Пусть q — наибольший простой делитель |E| и Q — силовская q-подгруппа E. По (2) $Q ext{ } extstyle E$. Тогда Q = F(E) = L — силовская q-подгруппа E. Заметим, что L_1 — максимальная подгруппа L. Очевидно, $(L_1)_G = 1$. По условию L_1 \mathscr{U}_h -дополняема в G. Тогда найдется нормальная подгруппа T в G такая, что L_1T — холлова подгруппа G и $L_1 \cap T \leq Z_\infty^\mathscr{V}(G)$. Поскольку $LT = L_1T$ — холлова подгруппа G, то $L = L \cap L_1T = L_1(L \cap T)$. Отсюда следует, что $L \cap T \neq 1$. Очевидно, $L \cap T \leq G$. Стало быть, $L \cap T = L$, т. е. $L \leq T$. Поэтому $1 \neq L_1 \leq Z_\infty^\mathscr{V}(G) \cap L \leq L$. Так как $Z_\infty^\mathscr{V}(G) \cap L \leq G$, то $Z_\infty^\mathscr{V}(G) \cap L = L$ и, таким образом, $L \leq Z_\infty^\mathscr{V}(G)$. Из (1) следует, что G/L сверхразрешима. Поскольку $G/Z_\infty^\mathscr{V}(G) \simeq (G/L)/(Z_\infty^\mathscr{V}(G)/L)$ сверхразрешима, G сверхразрешима; противоречие. Финальное противоречие заканчивает доказательство. \square

Следствие 3.3 [1, VI, теорема 10.3]. Группа G сверхразрешима, если все силовские подгруппы G циклические.

Следствие 3.4 [9]. Пусть G — группа c нормальной подгруппой E такой, что G/E сверхразрешима. Если любая максимальная подгруппа всякой силовской подгруппы E нормальна в G, то G сверхразрешима.

Следствие 3.5 [3, теорема 3.1]. Группа G сверхразрешима, если и только если найдется нормальная подгруппа E в G такая, что G/E сверхразрешима и любая максимальная подгруппа всякой нециклической силовской подгруппы E \mathscr{U}_h -нормальна в G.

Теорема 3.6. Пусть $\mathscr{F}-S$ -замкнутая насыщенная формация, содержащая \mathscr{U} , класс всех сверхразрешимых групп, и G— группа. Тогда G принадлежит \mathscr{F} тогда и только тогда, когда G имеет нормальную подгруппу E такую, что $G/E \in \mathscr{F}$ и любая максимальная подгруппа всякой нециклической силовской подгруппы E \mathscr{U}_h -дополняема в G.

Доказательство. Очевидно, что необходимость следует из леммы 2.3(6). Докажем достаточность. Предположим противное, и пусть G — контрпример, для которого |G||E| минимально.

По теореме 3.2 и лемме 2.3(4) $E\in \mathscr{U}$. Пусть p — наибольший простой делитель |E| и E_p — силовская p-подгруппа E. Тогда E_p char $E \leq G$, поэтому $E_p \leq G$. Пусть N — минимальная нормальная подгруппа в G, лежащая в E_p . По лемме 2.3(2),(3) нетрудно заметить, что условие теоремы выполнено для (G/N, E/N). В силу выбора G имеем $G/N \in \mathscr{F}$. Поскольку \mathscr{F} — насыщенная формация, N является единственной минимальной нормальной подгруппой G, лежащей в E_p , и $N \not \leq \Phi(G)$. Таким образом, существует максимальная подгруппа M в G такая, что G = [N]M. Отсюда следует, что $N = O_p(E) = E_p$ по рассуждениям, аналогичным доказательству (3) теоремы 3.1. Следовательно, N нециклическая по лемме 2.2. Аналогично доказательству теоремы 3.1(5), получаем $N \leq Z_\infty^{\mathscr{U}}(G)$, что невозможно. \square

Следствие 3.7 [10]. Пусть $\mathscr{F}-S$ -замкнутая насыщенная формация, содержащая \mathscr{U} . Пусть G— группа c нормальной подгруппой E такой, что $G/E \in \mathscr{F}$. Если любая максимальная подгруппа всякой силовской подгруппы E c-нормальна в G, то $G \in \mathscr{F}$.

3.2. Максимальные подгруппы и минимальные подгруппы.

Теорема 3.8. Пусть $\mathscr{F}-S$ -замкнутая насыщенная формация, содержащая класс \mathscr{U} всех сверхразрешимых групп, и G— группа. Тогда G принадлежит \mathscr{F} тогда и только тогда, когда G имеет нормальную подгруппу E такую, что $G/E \in \mathscr{F}$, и любая циклическая подгруппа E простого порядка или порядка 4 \mathscr{U}_h -дополняема в G.

Доказательство. Необходимость очевидна. Докажем достаточность. Предположим противное, и пусть G — контрпример, для которого |G||E| минимально. Нетрудно заметить, что $E = G^{\mathscr{F}}$. По лемме 2.3(4) для любой подгруппы H в E условия теоремы выполнены для (H,H). В силу минимальности выбора G любая подгруппа H из E сверхразрешима. Из [1, VI, теорема 9.6] следует, что E разрешима.

Пусть M — максимальная подгруппа G, не содержащая E. Имеем $M/M \cap E \simeq ME/E = G/E \in \mathscr{F}$. По лемме 2.3(4) любая циклическая подгруппа $M \cap E$ простого порядка или порядка 4 \mathscr{U}_h -дополняема в M. Поэтому условия теоремы выполнены для $(M, M \cap E)$. Следовательно, $M \in \mathscr{F}$ по выбору G. Тогда по

[2, теорема 3.4.2] $E = G^{\mathscr{F}}$ является p-группой для некоторого простого p и выполнены следующие утверждения:

- (1) $E/\Phi(E) G$ -главный фактор и элементарная абелева p-группа;
- (2) $\Phi(E) = E \cap \Phi(G) \le Z(E)$;
- (3) E группа экспоненты p или 4 (если p = 2 и E неабелева).

Докажем, что $|E/\Phi(E)|=p$. Предположим противное. Пусть $\Phi=\Phi(E)$, F/Φ — подгруппа E/Φ простого порядка, $x\in F\setminus\Phi$ и $L=\langle x\rangle$. Тогда по (3) |L|=p или 4. По условию L \mathscr{U}_h -дополняема в G. Стало быть, найдется нормальная подгруппа T в G такая, что LT — холлова подгруппа G и $(L\cap T)L_G/L_G \le Z_\infty^{\mathscr{U}}(G/L_G)$. Так как $L\le E-p$ -группа и LT — холлова подгруппа G, то $E\le LT$.

Предположим, что |L|=4. Пусть H — максимальная подгруппа L. Поскольку $F/\Phi=L\Phi/\Phi\simeq L/L\cap\Phi$ имеет простой порядок, $L\cap\Phi\neq 1$. Так как L циклическая, отсюда следует, что $H=L\cap\Phi\leq\Phi$. Докажем, что L нормальная в G. Если нет, то $L_G=1$ или H.

Случай 1. $L_G=H$. Если $L\leq \Phi(G)$, то $L\leq E\cap \Phi(G)=\Phi$ по (2); противоречие. Таким образом, $L\nleq \Phi(G)$. Тогда найдется максимальная подгруппа M в G такая, что G=LM. Так как $L_G=H\leq \Phi\leq \Phi(G)\leq M$, имеем $|G:M|=|LM:M|=|L:M\cap L|=2$. Поэтому $M\trianglelefteq G$ и $G/M=LM/M\simeq L/M\cap L$ циклическая. Отсюда следует, что $L\leq E=G^{\mathscr F}\leq M$; противоречие.

Случай 2. $L_G=1$. Тогда $L\cap T\leq Z_\infty^\mathscr{U}(G)$. Рассмотрим две возможности: $L\cap T=L$ и $L\cap T\neq L$. Если $L\cap T=L$, то $L\leq T$ и $L\leq Z_\infty^\mathscr{U}(G)$. По лемме 2.1(1) $1\neq L\Phi/\Phi\leq Z_\infty^\mathscr{U}(G)\Phi/\Phi\leq Z_\infty^\mathscr{U}(G/\Phi)$, поэтому $1\neq L\Phi/\Phi\leq Z_\infty^\mathscr{U}(G/\Phi)\cap E/\Phi$. Но E/Φ является G-главным фактором, $E/\Phi\leq Z_\infty^\mathscr{U}(G/\Phi)$ и поэтому $|E/\Phi|=2$; противоречие. Таким образом, $L\cap T\neq L$. Поскольку $E\leq LT$, то LT=ET нормальна в G. Если LT=G, то $G/T=LT/T\simeq L/L\cap T$ циклическая и, стало быть, $G/T\in\mathscr{F}$, откуда $L\leq E=G^\mathscr{F}\leq T$. Тем самым G=T; противоречие. Таким образом, LT=G. Так как $LT/T\subseteq G/T$, то LT/T \mathscr{U}_h -дополняема в G/T. Более того, $(G/T)/(LT/T)\simeq G/LT\simeq (G/E)/(LT/E)\in\mathscr{F}$. Следовательно, (G/T,LT/T) удовлетворяет условиям теоремы. Поэтому $G/T\in\mathscr{F}$ по выбору G. Отсюда следует, что $L\leq E=G^\mathscr{F}\leq T$ вопреки предположению, что $L\cap T\neq L$. Полученные противоречия доказывают, что L нормальна в G, когда |L|=4. Поскольку $E/\Phi=$ главный фактор, $|E/\Phi|=|L\Phi/\Phi|=|L/L\cap\Phi|=|L/H|=2$, когда |L|=4.

Предположим, что |L| просто. Если L не нормальна в G, то $L_G=1$ и поэтому $L\cap T\leq Z_\infty^{\mathscr U}(G)$. Очевидно, что $L\cap T=L$ или $L\cap T=1$. Если $L\cap T=L$, то $L\leq T$ и $L\leq Z_\infty^{\mathscr U}(G)$. По лемме 2.1(1) $1\neq L\Phi/\Phi\leq Z_\infty^{\mathscr U}(G/\Phi)\cap E/\Phi$. Аналогично предыдущему $|E/\Phi|=p$; противоречие. Предположим, что $L\cap T=1$. Если LT=G, то $G/T\simeq L\in\mathscr F$. Отсюда следует, что $L\leq E=G^{\mathscr F}\leq T$; противоречие. Предположим, что LT< G и LT=ET нормальна в G. Очевидно, $(G/T)/(LT/T)\simeq G/LT\simeq (G/E)/(LT/E)\in\mathscr F$. Аналогично рассуждениям выше LT/T $\mathscr U_h$ -дополняема в G/T. Таким образом, условия теоремы верны для (G/T, LT/T). Отсюда $G/T\in\mathscr F$ по выбору G. Таким образом, $L\leq E=G^{\mathscr F}\leq T$; противоречие. Эти противоречия показывают, что $|E/\Phi|=p$, когда |L|=p.

Итак, утверждение справедливо во всех случаях, т. е. $E/\Phi = L\Phi/\Phi$ — циклическая группа простого порядка. С другой стороны, $(G/\Phi)/(E/\Phi) \simeq G/E \in \mathscr{F}$ по лемме 2.2, поэтому $G \in \mathscr{F}$. Финальное противоречие завершает доказательство. \square

Следствие 3.9. Группа G сверхразрешима, если и только если любая циклическая подгруппа простого порядка или порядка 4 \mathcal{U}_h -дополняема в G.

Следствие 3.10 [3, теорема 3.2]. Пусть $\mathscr{F}-S$ -замкнутая насыщенная формация, содержащая все сверхразрешимые группы, и G — группа. Тогда G принадлежит \mathscr{F} в том и только в том случае, когда G содержит нормальную подгруппу E такую, что $G/E \in \mathscr{F}$, и любая циклическая подгруппа E простого порядка или порядка 4 \mathscr{U}_h -нормальна в G.

Теорема 3.11. Пусть G — группа и N — неединичная нормальная подгруппа G. Тогда N разрешима, если и только если любая максимальная подгруппа G, не содержащая N, \mathcal{S}_h -дополняема в G.

Доказательство. (\Leftarrow) Предположим, что любая максимальная подгруппа M в G такая, что $N \nleq M$, \mathscr{S}_h -дополняема в G. Пусть R — минимальная нормальная подгруппа в G. Предположим, что M/R — максимальная подгруппа G/R такая, что $NR/R \nleq M/R$. По условию M \mathscr{S}_h -дополняема в G. Тогда M/R \mathscr{S}_h -дополняема в G/R по лемме 2.3(2). Таким образом, по индукции NR/R разрешима. Если $N \cap R = 1$, то $N = N/(N \cap R) \simeq NR/R$ разрешима. Стало быть, можно считать, что любая минимальная нормальная подгруппа G содержится в N. Поскольку класс всех разрешимых групп замкнут относительно подпрямых произведений, R — единственная минимальная нормальная подгруппа в G.

Докажем, что R разрешима. Действительно, предположим, что R неразрешима. Пусть P — силовская p-подгруппа R, где p — простой делитель |R|. По аргументу Фраттини $G = RN_G(P)$. Если $G = N_G(P)$, то P нормальна в G. Отсюда следует, что $R \leq P$; противоречие. Стало быть, $N_G(P) < G$. Пусть M — максимальная подгруппа G такая, что $N_G(P) \leq M$. Тогда $R \nleq M$, поэтому $N \nleq M$. Пусть G_p — силовская p-подгруппа G такая, что $P = R \cap G_p$. Очевидно, $P \leq G_p$. Таким образом, $G_p \leq N_G(P)$. Это показывает, что $p \nmid |G:M|$.

По условию M \mathscr{S}_h -дополняема в G, найдется нормальная подгруппа T в G такая, что MT — холлова подгруппа G и $(M\cap T)M_G/M_G \leq Z_\infty^\mathscr{S}(G/M_G)$. Поскольку R — единственная минимальная нормальная подгруппа в G, то $M_G = 1$. Если MT < G, то $R \leq T \leq MT = M$; противоречие. Таким образом, MT = G. Предположим, что $M \cap T = 1$. Тогда $R \cap M = 1$, поскольку $R \leq T$ и G = RM = TM. Очевидно, |R| = |T|, и тем самым R = T. Отсюда следует, что P делит |R| = |G:M|; снова противоречие. Поэтому $P \cap M \neq P$ и, стало быть, $P \cap M \neq P$ и, стало быть, $P \cap M \neq P$ и. Таким образом, $P \cap M \neq P$ и, стало быть, $P \cap M \neq P$

(⇒) Предположим, что N разрешима. Пусть M — максимальная подгруппа G такая, что $N \nleq M$, и пусть $1 = N_0 \leq N_1 \leq N_2 \leq \cdots \leq N_{t-1} \leq N_t = N$, где N_i/N_{i-1} — главный фактор G $(i=1,2,\ldots,t)$. Поскольку N разрешима, N_i/N_{i-1} элементарная абелева. Найдется индекс i такой, что $N_{i-1} \leq M$, $N_i \nleq M$. Тогда $N_i/N_{i-1} \cap M/N_{i-1} \leq (N_i/N_{i-1})(M/N_{i-1}) = G/N_{i-1}$, поэтому $N_i \cap M = N_{i-1} \leq M_G$. Пусть $MN_i = G$ и $(M \cap N_i)M_G/M_G = 1 \leq Z_\infty^{\mathscr{S}}(G/M_G)$, значит, M \mathscr{S}_h -дополняема в G. Теорема доказана. \square

3.3. 2-Максимальная подгруппа.

Теорема 3.12. Пусть p — наименьший простой делитель порядка группы G и P — силовская p-подгруппа G. Если любая 2-максимальная подгруппа P \mathcal{U}_h -дополняема в G и G A_4 -свободна, то G p-нильпотентна.

Доказательство. Предположим, что теорема неверна, и пусть G- контрпример наименьшего порядка. Справедливы следующие утверждения.

(1)
$$O_{p'}(G) = 1$$
.

Если $O_{p'}(G) \neq 1$, то по лемме 2.3(3) нетрудно доказать, что любая 2-максимальная подгруппа силовской подгруппы $PO_{p'}(G)/O_{p'}(G)$ \mathcal{U}_h -дополняема в $G/O_{p'}(G)$. Минимальность G влечет p-нильпотентность $G/O_{p'}(G)$, стало быть, G p-нильпотентна; противоречие. Таким образом, выполнено утверждение (1).

(2) $|P| \ge p^3$.

Нетрудно доказать по лемме 2.6.

(3) G разрешима.

Предположим, что G неразрешима. Тогда по теореме Фейта — Томпсона p=2. Допустим, что $O_2(G)\neq 1$. Пусть $P_1/O_2(G)=2$ -максимальная подгруппа $P/O_2(G)$. По условию и лемме 2.3(2) $P_1/O_2(G)$ \mathscr{U}_h -дополняема в $G/O_2(G)$. Минимальность при выборе G влечет 2-нильпотентность $G/O_2(G)$, поэтому G разрешима; противоречие. Таким образом, можно считать, что $O_2(G)=1$. Пусть $P_1=2$ -максимальная подгруппа P. Тогда $(P_1)_G=1$. По условию P_1 \mathscr{U}_h -дополняема в G. Поэтому найдется $T \unlhd G$ такая, что $P_1T=$ холлова подгруппа G и $P_1 \cap T \leq Z_\infty^\mathscr{U}(G)$. Очевидно, $T \neq 1$. Если $Z_\infty^\mathscr{U}(G) \neq 1$, то найдется минимальная нормальная подгруппа H в G, лежащая в $Z_\infty^\mathscr{U}(G)$, простого порядка. Но в силу (1) и $O_2(G)=1$ получаем H=1; противоречие. Если $Z_\infty^\mathscr{U}(G)=1$, то $P_1 \cap T=1$ и $2^2 \parallel |T|$. Более того, T A_4 -свободна. Стало быть, по лемме 2.6 T имеет нормальную холлову 2'-подгруппу K. Так как K char $T \unlhd G$, то $K \unlhd G$. Отсюда следует по (1), что K=1. Таким образом, $T \leq O_2(G)=1$; снова противоречие. Итак, условие (3) выполнено.

(5) Финальное противоречие.

Если $O_p(G) \neq 1$, то $N \leq O_p(G)$. По (4) G/N p-нильпотентна. Пусть T/N — нормальное p-дополнение G/N. По теореме Шура — Цассенхауза найдется холлова p'-подгруппа H в T такая, что T=HN. По аргументу Фраттини $G=TN_G(H)=NHN_G(H)=NN_G(H)$ и $O_p(G)=N(O_p(G)\cap N_G(H))$. Если $\Phi(O_p(G))\neq 1$, то $N\leq \Phi(O_p(G))$. Поскольку $\Phi(O_p(G))\leq \Phi(G)$, из $G=NN_G(H)$ следует, что $G=N_G(H)$ и, таким образом, G p-нильпотентна; противоречие. Итак, $\Phi(O_p(G))=1$, т. е. $O_p(G)$ элементарная абелева. Если $N< O_p(G)$, то $O_p(G)\cap N_G(H)\neq 1$. Так как $O_p(G)\cap N_G(H) \trianglelefteq O_p(G)N_G(H)=G$, получаем противоречие с (4). Стало быть, $O_p(G)=N$ минимальная нормальная в G.

Поскольку $N \nleq \Phi(G)$, найдется максимальная подгруппа M в G такая, что $G = O_p(G)M$, $O_p(G) \cap M = 1$, M p-нильпотентна и $N_G(M_{p'}) = M$, где $M_{p'}$ — холлова p'-подгруппа M. Выберем силовскую p-подгруппу M_p в M,

тогда $P = O_p(G)M_p$. Если $|P:M_p| \le p$, то $|G:M| \le p$. Следовательно, M нормальна в G, поскольку p — наименьший простой делитель |G|. Тогда $N \leq M$. Отсюда следует, что G = NM = M; противоречие. Таким образом, $|P:M_p| \geq p^2$. В этом случае выберем максимальную 2-подгруппу P_1 в Pтакую, что P_1 содержит M_p . По условию P_1 \mathcal{U}_h -дополняема в G. Так как $O_p(G) \nsubseteq P_1$ и $O_p(G) = N$ — единственная минимальная нормальная подгруппа G, то $(P_1)_G=1$. Таким образом, найдется нормальная подгруппа T в G такая, что P_1T — холлова подгруппа G и $P_1\cap T\leq Z_\infty^\mathscr{U}(G)$. Если $P_1\cap T=1$, то $|T|_p = p^2$. По лемме 2.6 T p-нильпотентна и, таким образом, нормальное pдополнение K в T является нормальной подгруппой в G. Из (1) следует, что K=1 и $|T|=p^2$. Минимальная нормальность N влечет $O_p(G)=N=T$. Таким образом, N элементарная абелева порядка p^2 . Заметим, что $|\operatorname{Aut}(N)| = (p +$ $1)p(p-1)^2$, поэтому если найдется q-элемент x в G, действующий нетривиально на N, то p=2 и q=3. В этом случае $[N]\langle x \rangle$. Таким образом, G имеет секцию, изоморфную A_4 , вопреки условию. Предположим, что $P_1 \cap T \neq 1$, тогда $Z_{\infty}^{\mathscr{U}}(G) \neq 1$. Поскольку $O_p(G)$ — единственная нормальная подгруппа в G, то $O_p(G) \leq Z_\infty^{\mathscr{U}}(G)$, таким образом, $|O_p(G)| = p$. Далее, $C_G(O_p(G)) =$ $C_G(O_p(G))\cap O_p(G)M=O_p(G)(C_G(O_p(G))\cap M)$ и $C_G(O_p(G))\cap M \leq G$. Поэтому $C_G(O_p(G)) \cap M = 1$ и, следовательно, $C_G(O_p(G)) = O_p(G)$. Отсюда получаем, что $M \simeq G/O_p(G) = N_G(O_p(G))/C_G(O_p(G))$ является циклической группой порядка p-1. С другой стороны, p — наименьший простой делитель порядка G. Стало быть, M=1. Поэтому $G=O_p(G)$; противоречие. Таким образом, $O_p(G) = 1$. По (1) и (3) получаем $O_p(G) \neq 1$; противоречие. Теорема 3.12 доказана. 🗆

Следствие 3.13. Пусть G — группа. Если для любого простого p, делящего порядок G, и для $P \in \mathrm{Syl}_p(G)$ любая 2-максимальная подгруппа P \mathscr{U}_h -дополняема в G и G A_4 -свободна, то G — группа c силовским рядом сверхразрешимого типа.

Теорема 3.14. Пусть \mathscr{F} — класс групп с силовским рядом сверхразрешимого типа и G A_4 -свободна. Если для любого простого p, делящего порядок нормальной подгруппы N из G, и для $P \in \operatorname{Syl}_p(N)$ любая 2-максимальная подгруппа P \mathscr{U}_h -дополняема в G, то G принадлежит \mathscr{F} .

ДОКАЗАТЕЛЬСТВО. Нетрудно заметить, что N- группа с силовским рядом сверхразрешимого типа по лемме 2.3(4) и следствию 3.13. Пусть q- наибольший простой из $\pi(N)$ и $Q\in \mathrm{Syl}_q(N)$. Тогда Q нормальна в G. Пусть $\overline{P}=QP/Q-$ силовская p-подгруппа N/Q с $q\neq p$. Можно считать, что P- силовская p-подгруппа N. Если $\overline{P_1}-2$ -максимальная подгруппа \overline{P} , то без ограничения общности можно считать, что $\overline{P_1}=P_1Q/Q$, где P_1-2 -максимальная подгруппа P. По условию и лемме 2.3(3) $\overline{P_1}$ \mathscr{U}_h -дополняема в G/Q. По индукции G/Q- группа с силовским рядом сверхразрешимого типа.

Предположим, что q также является наибольшим простым делителем порядка G. Пусть Q_1/Q — силовская q-подгруппа G/Q, где $Q_1 \in \operatorname{Syl}_q(G)$. Поскольку G/Q — группа с силовским рядом сверхразрешимого типа, $Q_1/Q \subseteq G/Q$, поэтому $Q_1 \subseteq G$. Применяя аналогичные рассуждения для пары $(G/Q_1, NQ_1/Q_1)$, получим, что G/Q_1 удовлетворяет условиям теоремы. В силу минимальности выбора G группа G/Q_1 , стало быть, и G являются группами с силовским рядом сверхразрешимого типа. Поэтому можно считать, что r — наибольший простой делитель порядка G и r > q. Пусть R — силовская r-

подгруппа G. Поскольку G/Q — группа с силовским рядом, RQ нормальна в G.

Если QR < G, то QR — группа с силовским рядом сверхразрешимого типа по индукции относительно |G|. Таким образом, $R \leq RQ$ и $G = N_G(R)$, т. е. Rнормальна в G. Рассмотрим фактор-группу G/R и ее нормальную подгруппу NR/R. Для любого простого p, делящего порядок NR/R, выполнено p < r. Если $\overline{P_2}$ — произвольная 2-максимальная подгруппа силовской p-подгруппы \overline{P} в NR/R, то $\overline{P_2}=P_2R/R$, где P_2-2 -максимальная подгруппа некоторой силовской подгруппы P в N. По условию P_2 \mathcal{U}_h -дополняема в G, тогда по лемме 2.3(3) $\overline{P_2}$ \mathcal{U}_h -дополняема в G/R. Таким образом, группа G/R и ее нормальная подгруппа NR/R удовлетворяют условию теоремы. По индукции G/R, а стало быть, и G являются группами с силовским рядом сверхразрешимого типа. Таким образом, можно считать, что G = RQ. Пусть L — минимальная нормальная подгруппа G, лежащая в Q. Нетрудно заметить, что фактор-группа G/L с нормальной подгруппой Q/L удовлетворяют условию теоремы. По индукции G/Lгруппа с силовским рядом сверхразрешимого типа. Поскольку ${\mathscr F}$ является насыщенной формацией, L — единственная минимальная пормальная подгруппа в G, лежащая в Q. Более того, $Q \cap \Phi(G) = 1$, поэтому по лемме $2.4 \ L = F(Q) = Q$ — абелева минимальная нормальная подгруппа G.

Если Q циклическая порядка q, то, поскольку $G/C_G(Q) \lesssim \operatorname{Aut}(Q)$ и $\operatorname{Aut}(Q)$ циклическая порядка q-1, имеем $G=C_G(Q)$. Тогда $G=Q\times R$ и, очевидно, G — группа с силовским рядом сверхразрешимого типа. Предположим, что $|Q| \geq q^2$ и Q_1-2 -максимальная подгруппа Q. По условию Q_1 \mathscr{U}_h -дополняема в G, найдется нормальная подгруппа T в G такая, что Q_1T — холлова подгруппа G и $(Q_1 \cap T)/(Q_1)_G \le Z_\infty^{\mathscr{U}}(G/(Q_1)_G)$. Если $(Q_1)_G \ne 1$, то $L \le (Q_1)_G < Q = L$; противоречие. Это противоречие показывает, что $(Q_1)_G = 1$. Таким образом, $Q_1 \cap T \leq Z_{\infty}^{\mathscr{U}}(G)$. С другой стороны, поскольку Q_1T — холлова подгруппа Gи G = QR, то $Q_1T = Q$ или G. Минимальная нормальность Q влечет $Q \leq T$. Это показывает, что T равно Q или G. Таким образом, $Q_1 \leq Z_{\infty}^{\mathscr{U}}(G)$. Если $Q_1 = 1$, то Q элементарная абелева порядка q^2 . Поскольку Q нормальная в G, любой элемент x из R индуцирует на Q автоморфизм σ . Пусть q=2. Так как $|\operatorname{Aut}(Q)|=(q+1)q(q-1)^2$, порядок $\sigma
eq 1$ должен быть равен 3 (r=q+1=3),ибо r>q. Тогда $[Q]\langle\sigma\rangle\simeq A_4$ вопреки условию, что G A_4 -свободна. Поэтому предположим, что q>2. Заметим, что q+1 не простое, тем самым $\sigma=1$ и, стало быть, $G = R \times Q$, следовательно, G — группа с силовским рядом сверхразрешимого типа. Если $Q_1 \neq 1$, то $Z_{\infty}^{\mathscr{U}}(G) \neq 1$. Отсюда следует, что $Q \leq Z_{\infty}^{\mathscr{U}}(G)$ и |Q|=q. Рассуждая аналогично, получим, что G — группа с силовским рядом сверхразрешимого типа. Теорема доказана.

Следствие 3.15. Пусть G A_4 -свободна и N — нормальная подгруппа G. Если для любого простого p, делящего порядок N, и для $P \in \operatorname{Syl}_p(N)$ всякая 2-максимальная подгруппа P \mathscr{U}_h -дополняема в G, то G сверхразрешима.

Следствие 3.16. Пусть G — группа нечетного порядка и N — нормальная подгруппа G. Если для любого простого p, делящего порядок N, и для $P \in \operatorname{Syl}_p(N)$ всякая 2-максимальная подгруппа P \mathscr{U}_h -дополняема в G, то G — группа C силовским рядом сверхразрешимого типа.

Автор благодарен рецензенту за ценные предложения, которые помогли улучшить статью.

ЛИТЕРАТУРА

- Huppert B. Endliche Gruppen. I. Berlin: Springer-Verl., 1967. (Grundlehren Math. Wiss.; Band 134).
- **2.** Guo W. The theory of classes of groups. Beijing; New York; Dordrecht; Boston; London: Sci. Press, Kluwer Acad. Publ., 2000.
- **3.** Guo W., Feng X. Huang J. New characterizations of some classes of finite groups // Bull. Malays. Math. Sci. Soc. (2). 2011. V. 34, N 3. P. 575–589.
- Guo W. On F-supplemented subgroups of finite groups // Manuscripta Math. 2000. V. 127, N 2. P. 139–150.
- 5. Li Y., Wang Y., Wei H. The influence of π -quasinormality of maximal subgroups of Sylow subgroups of a finite group // Arch. Math. 2003. V. 81. P. 245–252.
- 6. Skiba A. N. On weakly s-permutable subgroups of finite groups $/\!/$ J. Algebra. 2007. V. 315. P. 192–209.
- 7. Guo X., Shum K. P. Cover-avoidance properties and structure of finite groups // J. Pure Appl. Algebra. 2003. V. 181. P. 297–308.
- 8. Robinson D. J. S. A course in the theory of groups. New York: Springer-Verl., 1982. (Grad. Texts Math.; V. 80).
- 9. Srinivasan S. Two sufficient conditions for supersolvability of finite groups // Israel J. Math. 1980. V. 35, N 3. P. 210–214.
- 10. Li D., Guo X. The influence of c-normality of subgroups on the structure of finite groups. II // Comm. Algebra. 1998. V. 26, N 6. P. 1913–1922.

Статья поступила 26 апреля 2016 г.

Na Tang (Тан Ha) School of Mathematical Sciences, Huaiyin Normal University, Huaian, Jiangsu 223300, P. R. China hytn999@126.com