УНИВЕРСАЛЬНАЯ ГЕОМЕТРИЧЕСКАЯ ЭКВИВАЛЕНТНОСТЬ АЛГЕБРАИЧЕСКИХ СИСТЕМ ОДНОЙ СИГНАТУРЫ

Э. Ю. Даниярова, А. Г. Мясников, В. Н. Ремесленников

Аннотация. Представлена часть проекта по изложению основ алгебраической геометрии над произвольными алгебраическими системами [1–8]. Вводится понятие универсальной геометрической эквивалентности двух алгебраических систем $\mathcal A$ и $\mathcal B$ одного языка L, которое является усилением уже известного понятия геометрической эквивалентности и выражает максимальную близость $\mathcal A$ и $\mathcal B$ с точки зрения их алгебраических геометрий. Раскрывается связь между универсальной геометрической эквивалентностью и универсальной эквивалентностью в смысле совпадения универсальных теорий.

 $DOI\,10.17377/smzh.2017.58.507$

Ключевые слова: универсальная алгебраическая геометрия, алгебраическая система, универсальная геометрическая эквивалентность, универсальная эквивалентность, универсальный класс.

1. Введение

Исследовательские задачи алгебраической геометрии над произвольной алгебраической системой $\mathscr A$ произвольной сигнатуры L сформулированы в ряде предшествующих работ авторов [1–5, 7, 8], там же доказаны теоремы, помогающие в решении соответствующих задач. Попутно выделены и изучены несколько классов алгебраических систем, в которых справедливы те или иные полезные вспомогательные результаты (класс нётеровых по уравнениям алгебраических систем, u_ω -компактных, эквациональных областей и др.). Дальнейшей целью является сравнение различных алгебраических систем одной сигнатуры с точки зрения их алгебро-геометрических свойств.

В 90-х гг. XX века Б. И. Плоткин поставил вопрос: когда две алгебраические системы $\mathscr A$ и $\mathscr B$ сигнатуры L имеют одинаковые алгебраические геометрии? Для формализации этого вопроса было введено понятие геометрической эквивалентности $\mathscr A$ и $\mathscr B$. Статья [6] полностью посвящена геометрической эквивалентности алгебраических систем, в ней приведен ряд критериев геометрической эквивалентности. Один из них утверждает, что $\mathscr A$ и $\mathscr B$ геометрически эквивалентны тогда и только тогда, когда категории координатных алгебр над $\mathscr A$ и $\mathscr B$ совпадают. Одним из следствий геометрической эквивалентности $\mathscr A$ и $\mathscr B$ является квазиэквациональная эквивалентность $\mathscr A$ и $\mathscr B$, т. е. совпадение множеств квазитождеств, истинных на $\mathscr A$ и $\mathscr B$ соответственно. Б. И. Плоткиным был

Работа выполнена за счет Российского научного фонда (грант 17–11–01117).

также сформулирован вопрос, позже названный *проблемой Б. И. Плоткина*: следует ли из квазиэквациональной (или хотя бы из элементарной) эквивалентности геометрическая эквивалентность? В любой постановке эти проблемы решаются отрицательно в общем случае и положительно в классе q_{ω} -компактных алгебраических систем (в частности, для нётеровых по уравнениям).

На настоящий момент исследованиям по проблеме геометрической эквивалентности и по ее обобщениям в различных классических многообразиях алгебр посвящено достаточно большое количество статей, например, [9–17]. Наиболее полный обзор по этой теме с перечнем известных результатов приведен в [18, 19]. Несмотря на важность и содержательность понятий геометрической эквивалентности и ее обобщений, с нашей точки зрения, оно не в полной мере отражает родство алгебраических систем относительно их алгебро-геометрических свойств, поэтому его, напротив, бывает полезно сузить, т. е. усилить. Поясним, почему это так.

Во-первых, известно, что два изоморфных алгебраических множества Y,Z над одной и той же алгебраической системой $\mathscr A$ неприводимы или приводимы одновременно. Далее, алгебраические множества Y и Z изоморфны тогда и только тогда, когда изоморфны их координатные алгебры $\Gamma(Y)$ и $\Gamma(Z)$. Предположим, что $\mathscr A$ и $\mathscr B$ — геометрически эквивалентные алгебраические системы. Тогда класс координатных алгебр алгебраических множеств над $\mathscr A$ совпадает с классом координатных алгебр алгебраических множеств над $\mathscr B$. Однако если берем два алгебраических множества, Y над $\mathscr A$ и Z над $\mathscr B$, координатные алгебры которых изоморфны, то, вообще говоря, не можем утверждать, что Y и Z неприводимы или приводимы одновременно.

Во-вторых, есть множество важных в алгебраической геометрии результатов и свойств, которые не наследуются при геометрической эквивалентности. Например, так называемые объединяющие теоремы, описывающие различными способами координатные алгебры [2,3], будучи верными для алгебраической системы \mathscr{A} , могут быть неверными для геометрически эквивалентной алгебраической системы \mathscr{B} . Или, другой пример, эквациональная область [4] может быть геометрически эквивалентной не эквациональной области. Все нестыковки такого типа можно обобщить в один факт: среди упомянутых выше особых и важных классов алгебраических систем (эквациональные области и ко-области, \mathfrak{u}_{ω} -компактные алгебраические системы и пр.) не все замкнуты относительно геометрической эквивалентности.

В данной статье мы предлагаем решить сразу все описанные выше проблемы с помощью альтернативного понятия — понятия универсальной геометрической эквивалентности, которое является усилением понятия геометрической эквивалентности. Построение и содержание статьи повторяют контур статьи [6], посвященной понятию геометрической эквивалентности, однако, естественно, имеет свою специфику. Так, для универсальной геометрической эквивалентности приводим ряд критериев. Затем показываем, что универсальная геометрическая эквивалентность $\mathcal A$ и $\mathcal B$ влечет универсальную эквивалентность $\mathcal A$ и $\mathcal B$, т. е. совпадение универсальных теорий $\mathcal A$ и $\mathcal B$, причем обратное, вообще говоря, неверно. В то же время в классе $\mathbf u_\omega$ -компактных алгебраических систем (в частности, в классе нётеровых по уравнениям) универсальная и универсальная геометрическая эквивалентности совпадают. В общем случае вводим понятие универсальной ω -геометрической эквивалентностии, которая совпадает с универсальной эквивалентностью в классе всех алгебраических систем.

То, что универсальная геометрическая эквивалентность является более информативным и сильным требованием по сравнению с геометрической эквивалентностью, видно даже в классе нётеровых по уравнениям алгебраических систем, в разд. 4 это показано на примере абелевых групп. При этом в классах эквациональных областей и ко-областей эти две эквивалентности совпадают. Отметим, что исследование общих свойств универсальной геометрической эквивалентности не исчерпывается этой статьей, в частности, вопросы о связи универсальной геометрической эквивалентности с особыми классами алгебраических систем (эквациональных областей и ко-областей, различными классами компактности) требуют отдельной полновесной работы.

В заключение необходимо отметить, что эта работа тесно связана с рядом предыдущих статей, поэтому многие результаты в данной работе имеют короткие доказательства по модулю уже доказанных результатов из упомянутых работ.

2. Предварительные сведения

В этом разделе напомним для удобства читателей базовые понятия и факты универсальной алгебраической геометрии, следуя [1–3, 5]. В теоретикомодельных вопросах опираемся на книгу В. А. Горбунова [20].

Пусть L — язык исчисления предикатов первого порядка (или сигнатура). Отметим, что в [1-4] мы всюду ограничивали себя функциональными языками (т. е. языками без предикатов). В [5] показано, как все определения, конструкции и почти все результаты предыдущих работ переносятся на произвольный язык L (за исключением нескольких утверждений из [4]). Таким образом, далее по умолчанию на язык L не накладываем каких-либо ограничений.

Через $T_L(X)$ (соответственно $\operatorname{At}_L(X)$) обозначим множество термов (соответственно атомарных формул) языка L от переменных из $X = \{x_1, \dots, x_n\}$. Уравнением языка L называется любая атомарная формула из $\operatorname{At}_L(X)$, системой уравнений — любое подмножество $S \subseteq \operatorname{At}_L(X)$. Термальную алгебраическую L-систему обозначаем через $\mathscr{T}_L(X)$ (ее носителем является множество всех термов $\operatorname{T}_L(X)$; константные и функциональные символы языка L интерпретируются естественным образом, а все предикатные символы интерпретируются тождественно ложными отношениями).

Зафиксируем алгебраическую систему $\mathscr{A} = \langle A; \mathtt{L} \rangle$ языка L.

Множество $V_{\mathscr{A}}(S) = \{(a_1, \ldots, a_n) \in A^n \mid \mathscr{A} \models \varphi(a_1, \ldots, a_n) \ \forall \varphi \in S\}$ всех решений системы уравнений S в \mathscr{A} называется алгебраическим множеством над \mathscr{A} , определенным системой уравнений S.

Paдикалом алгебраического множества $Y={\rm V}_{\mathscr{A}}(S)$ или системы уравнений S называется совокупность всех следствий системы S: ${\rm Rad}(Y)={\rm Rad}_{\mathscr{A}}(S)=\{\varphi\in{\rm At_L}(X)\mid\mathscr{A}\models\varphi(a_1,\ldots,a_n)\;\forall(a_1,\ldots,a_n)\in Y\}$. Две системы уравнений $S_1,S_2\subseteq{\rm At_L}(X)$ называются эквивалентными над \mathscr{A} $(S_1\sim_{\mathscr{A}}S_2)$, если ${\rm V}_{\mathscr{A}}(S_1)={\rm V}_{\mathscr{A}}(S_2)$. Таким образом, ${\rm Rad}_{\mathscr{A}}(S)$ — это максимальная система уравнений, эквивалентная над \mathscr{A} системе S. Подмножество $R\subseteq{\rm At_L}(X)$ называется радикальным идеалом над \mathscr{A} , если R— радикал некоторого алгебраического множества над \mathscr{A} . Другими словами, R— радикальный идеал над \mathscr{A} тогда и только тогда, когда $R={\rm Rad}_{\mathscr{A}}(R)$, кроме того, радикал ${\rm Rad}_{\mathscr{A}}(S)$ произвольной системы уравнений S совпадает с пересечением всех радикальных идеалов над \mathscr{A} , содержащих S.

Координатной алгеброй $\Gamma(Y)$ алгебраического множества $Y = \mathrm{V}_{\mathscr{A}}(S)$

или координатной алгеброй $\Gamma_{\mathscr{A}}(S)$ системы уравнений S называется факторсистема термальной алгебраической L-системы $\mathscr{T}_{\mathsf{L}}(X)$ по обобщенной конгруэнции Горбунова — Туманова $\theta_{\mathrm{Rad}(Y)}$. Все подробности можно найти в [5]; понимания их не требуется для знакомства с данной статьей.

Задача классификации алгебраических множеств над алгебраической системой \mathscr{A} является первостепенно важной проблемой алгебраической геометрии над \mathscr{A} . Через $\mathbf{AS}(\mathscr{A})$ обозначаем категорию всех алгебраических множеств над \mathscr{A} , через $\mathbf{CA}(\mathscr{A})$ — категорию всех координатных алгебр алгебраических множеств над \mathscr{A} . Эти категории дуально эквивалентны, что уравнивает задачу классификации алгебраических множеств над \mathscr{A} с задачей классификации координатных алгебр над \mathscr{A} (подробнее см. в [2]).

Отдельный интерес представляет задача классификации nenpusodumux алгебраических множеств над \mathscr{A} , которые определяются топологически. Будем пользоваться в этой статье следующим критерием: непустое алгебраическое множество Y над \mathscr{A} неприводимо в том и только том случае, когда его нельзя представить в виде конечного объединения собственных алгебраических над \mathscr{A} подмножеств [2, лемма 3.35]; в противном случае Y npusodumo. Если координатные алгебры алгебраических множеств Y и Z над \mathscr{A} изоморфны, то сами множества Y и Z неприводимы, приводимы или пусты одновременно. Координатная алгебра неприводимого алгебраического множества также называется nenpusodumoй.

Подмножество $R\subseteq \operatorname{At}_{\mathsf{L}}(X)$ называется неприводимым радикальным идеалом над \mathscr{A} , если R — радикал некоторого неприводимого алгебраического множества над \mathscr{A} (радикал однозначно определяет алгебраическое множество, поэтому это определение корректно). Произвольное непустое алгебраическое множество представимо в виде (бесконечного) объединения неприводимых алгебраических множеств [2, лемма 3.34], поэтому радикал $\operatorname{Rad}_{\mathscr{A}}(S)$ произвольной системы уравнений S совпадает с пересечением всех неприводимых радикальных идеалов над \mathscr{A} , содержащих S.

В этой статье используем ряд операторов, переводящих класс алгебраических L-систем ${\bf K}$ в новый класс L-систем. Для удобства перечислим здесь все такие операторы:

 $\mathbf{S}(\mathbf{K})$ — класс подсистем алгебраических систем из \mathbf{K} ;

 $\mathbf{P}(\mathbf{K})$ — класс прямых произведений алгебраических систем из \mathbf{K} (следуя В. А. Горбунову [20], предполагаем, что прямое произведение над пустым множеством индексов есть тривиальная L-система \mathscr{E});

 $\mathbf{P_r}(\mathbf{K})$ — класс фильтрованных произведений алгебраических систем из \mathbf{K} ;

 $P_{u}(K)$ — класс ультрапроизведений алгебраических систем из K;

 $\mathbf{Qvar}(\mathbf{K})$ — наименьшее квазимногообразие, содержащее \mathbf{K} ;

Ucl(K) — универсальное замыкание класса K;

 $\mathbf{Res}(\mathbf{K})$ — класс алгебраических систем, аппроксимируемых классом \mathbf{K} (определение см. ниже);

 ${\bf Dis}({\bf K})$ — класс алгебраических систем, дискриминируемых классом ${\bf K}$ (определение см. ниже);

 ${\bf K}_{\omega}$ — класс конечно порожденных алгебраических систем из ${\bf K}$;

 ${f L_{fg}(K)}$ — класс алгебраических систем, в которых каждая конечно порожденная подсистема входит в ${f K}$ (т. е. $\mathscr{A}\in {f L_{fg}(K)}$ тогда и только тогда, когда ${f S}(\mathscr{A})_{\omega}\subseteq {f K}$).

Для любого класса ${\bf K}$ имеем

$$\begin{aligned} \mathbf{Dis}(\mathbf{K}) \subseteq \mathbf{Res}(\mathbf{K}) &= \mathbf{SP}(\mathbf{K}) \subseteq \mathbf{Qvar}(\mathbf{K}), \\ \mathbf{Dis}(\mathbf{K}) \subseteq \mathbf{Ucl}(\mathbf{K}) &= \mathbf{SP_u}(\mathbf{K}) \subseteq \mathbf{Qvar}(\mathbf{K}). \end{aligned}$$

Напомним определение аппроксимируемости и дискриминируемости в более краткой форме (другая форма определения в [5]). Говорят, что алгебраическая система $\mathscr{C} = \langle C; \mathtt{L} \rangle$ аппроксимируется классом алгебраических L-систем ${\bf K}$ (или алгебраической системой ${\mathscr A}$ при ${\bf K}=\{{\mathscr A}\}$), если для любого натурального числа $n \geq 1$, любой атомарной формулы $\varphi \in \mathrm{At}_{\mathsf{L}}(x_1,\dots,x_n)$ и любых элементов $y_1,\ldots,y_n\in C$, таких, что $\mathscr{C}\models \neg\varphi(y_1,\ldots,y_n)$, существуют такая $\mathscr{A} \in \mathbf{K}$ и такой гомоморфизм $h:\mathscr{C} \to \mathscr{A}$, что $\mathscr{A} \models \neg \varphi(h(y_1),\dots,h(y_n))$. В более общем случае, если каждая конечно порожденная подсистема $\mathscr{C}_0 \leq \mathscr{C}$ аппроксимируется с помощью \mathscr{A} (т. е. $\mathscr{C} \in \mathbf{L_{fg}Res}(\mathscr{A})$), то говорят, что \mathscr{C} локально annpoксимируется с помощью \mathscr{A} . Аналогично \mathscr{C} дискриминируется классом ${f K}$ (или алгебраической системой ${\mathscr A}$ при ${f K}=\{{\mathscr A}\}$), если для любого натурального числа $n \geq 1$, любых атомарных формул $\varphi_1, \ldots, \varphi_m \in \operatorname{At}_{\mathsf{L}}(x_1, \ldots, x_n)$ и любых элементов $y_1,\ldots,y_n\in C$ существуют такая $\mathscr{A}\in \mathbf{K}$ и такой гомоморфизм $h:\mathscr{C}\to\mathscr{A}$, что для каждого $i=1,\ldots,m$ справедлива импликация $\mathscr{C}\models$ $\neg \varphi_i(y_1,\ldots,y_n) \longrightarrow \mathscr{A} \models \neg \varphi_i(h(y_1),\ldots,h(y_n))$. Если каждая конечно порожденная подсистема $\mathscr{C}_0 \leq \mathscr{C}$ дискриминируется с помощью \mathscr{A} (т. е. $\mathscr{C} \in \mathbf{L_{fg}Dis}(\mathscr{A})$), то говорят, что $\mathscr C$ локально дискриминируется с помощью $\mathscr A$.

Существенным результатом является то, что класс координатных алгебр алгебраических множеств над \mathscr{A} совпадает с $\mathbf{Res}(\mathscr{A})_{\omega}$, а класс координатных алгебр неприводимых алгебраических множеств над $\mathscr{A} - \mathbf{c} \ \mathbf{Dis}(\mathscr{A})_{\omega} \ [2]$.

Среди всех алгебраических систем выделяем несколько классов, в которых изучение алгебраической геометрии в большей или меньшей степени упрощается за счет специфических свойств. В этой статье речь пойдет только о следующих особых классах:

- нётеровых по уравнениям (**N**) [2];
- \bullet слабо нётеровых по уравнениям (\mathbf{N}') [3];
- u_{ω} -компактных (**U**) [3].

Алгебраическая система $\mathscr B$ языка L называется $\mathscr A$ -системой, если она содержит подсистему, изоморфную $\mathscr A$. Например, в $\partial uo \phi anmooom$ случае, когда все элементы основного множества A алгебраической системы $\mathscr A$ являются интерпретациями некоторых замкнутых термов языка L (т. е. термов, в записи которых участвуют только функциональные и константные символы языка L), любая нетривиальная алгебраическая система из $\mathbf{Qvar}(\mathscr A)$ (в частности, из $\mathbf{Ucl}(\mathscr A)$, $\mathbf{Res}(\mathscr A)$, $\mathbf{Dis}(\mathscr A)$) является $\mathscr A$ -системой, поскольку $\mathbf{Qvar}(\mathscr A) = \mathbf{SP_r}(\mathscr A)$.

3. Универсальная геометрическая эквивалентность

Пусть \mathscr{A} и \mathscr{B} — алгебраические системы одной сигнатуры L. Напомним, что алгебраические системы \mathscr{A} и \mathscr{B} называются $\mathit{геометрически}$ эквивалентными, если для любого конечного множества X и любой системы уравнений $S \subseteq \mathrm{At}_{\mathsf{L}}(X)$ имеет место равенство $\mathrm{Rad}_{\mathscr{A}}(S) = \mathrm{Rad}_{\mathscr{B}}(S)$. Далее при необходимости будем пользоваться и другими формами этого определения [6, предложение 1]. Предлагаем усилить понятие геометрической эквивалентности следующим образом.

Определение 1. Алгебраические системы $\mathscr A$ и $\mathscr B$ назовем универсально геометрически эквивалентными, если для любого конечного множества X и любой системы уравнений $S\subseteq \mathrm{At}_{\mathbf L}(X)$

- 1) имеет место равенство $\operatorname{Rad}_{\mathscr{A}}(S) = \operatorname{Rad}_{\mathscr{B}}(S)$, причем
- 2) алгебраическое множество $V_{\mathscr{A}}(S)$ неприводимо тогда и только тогда, когда неприводимо $V_{\mathscr{B}}(S)$.

Сразу отметим, что алгебраическое множество может быть неприводимым, приводимым либо пустым. Если \mathscr{A} и \mathscr{B} геометрически эквивалентны и $V_{\mathscr{A}}(S) = \varnothing$, то $V_{\mathscr{B}}(S) = \varnothing$ [6, лемма 6]. Таким образом, при универсальной геометрической эквивалентности \mathscr{A} и \mathscr{B} для любой системы уравнений S алгебраические множества $V_{\mathscr{A}}(S)$ и $V_{\mathscr{B}}(S)$ одновременно неприводимы, приводимы либо пусты.

Теорема 7 в [6] выступает иллюстрацией свойства геометрической эквивалентности на категорном языке; ее усиление до универсальной геометрической эквивалентности приводит к следующему результату.

Теорема 1. Для любых алгебраических систем $\mathscr A$ и $\mathscr B$ языка L следующие условия равносильны:

- 1) \mathscr{A} и \mathscr{B} универсально геометрически эквивалентны,
- 2) категории координатных алгебр $\mathbf{CA}(\mathscr{A})$ и $\mathbf{CA}(\mathscr{B})$ совпадают, причем всякая координатная алгебра неприводима над \mathscr{A} тогда и только тогда, когда она неприводима над \mathscr{B} .

Утверждения 1, 2 влекут следующее:

3) категории алгебраических множеств $\mathbf{AS}(\mathscr{A})$ и $\mathbf{AS}(\mathscr{B})$ изоморфны, причем существует такой изоморфизм между ними, при котором неприводимым алгебраическим множествам соответствуют неприводимые, а приводимым — приводимые.

Практически для установления универсальной геометрической эквивалентности алгебраических систем $\mathscr A$ и $\mathscr B$ достаточно потребовать совпадения классов неприводимых координатных алгебр над $\mathscr A$ и $\mathscr B$ соответственно, что вытекает из теоремы 1 и следующего далее предложения 2. В нем формулируем и доказываем ряд критериев универсальной геометрической эквивалентности. Отметим, что некоторые из них носят наглядный геометрический смысл, причем одни изначально кажутся более слабыми, чем исходное понятие универсальной геометрической эквивалентности, другие — более сильными, тем не менее все они оказываются равносильными.

Предложение 2. Для двух алгебраических систем $\mathscr A$ и $\mathscr B$ языка L следующие условия эквивалентны:

- (1) \mathscr{A} и \mathscr{B} универсально геометрически эквивалентны;
- (2) для любого натурального числа $n \ge 1$, любой системы уравнений $S \subseteq {\rm At}_{\rm L}(x_1,\ldots,x_n)$, любого натурального числа $m \ge 1$ и любых уравнений $f_1,\ldots,$

 $f_m \in \mathrm{At_L}(x_1,\ldots,x_n)$ (бесконечное) универсальное предложение

$$\forall x_1 \dots \forall x_n \left(\bigwedge_{s \in S} s(x_1, \dots, x_n) \longrightarrow \bigvee_{i=1}^m f_i(x_1, \dots, x_n) \right)$$
 (1)

истинно в $\mathscr A$ тогда и только тогда, когда оно истинно в $\mathscr B$;

- (3) для любого конечного множества X и любой системы уравнений $S \subseteq {\rm At_L}(X)$ алгебраическое множество ${\rm V}_{\mathscr A}(S)$ неприводимо в том и только том случае, если ${\rm V}_{\mathscr B}(S)$ неприводимо, причем в этом случае ${\rm Rad}_{\mathscr A}(S)={\rm Rad}_{\mathscr B}(S)$;
- (4) для любого конечного множества X, любого натурального числа $m \geq 1$ и любых систем уравнений $S, S_1, \ldots, S_m \subseteq \operatorname{At}_{\mathbf{L}}(X)$ равенство $V_{\mathscr{A}}(S) = V_{\mathscr{A}}(S_1) \cup \cdots \cup V_{\mathscr{A}}(S_m)$ имеет место в том и только том случае, если $V_{\mathscr{B}}(S) = V_{\mathscr{B}}(S_1) \cup \cdots \cup V_{\mathscr{B}}(S_m)$;
- (5) для любого конечного множества X, любого натурального числа $m \geq 1$ и любых систем уравнений $S, S_1, \ldots, S_m \subseteq \operatorname{At}_L(X)$ включение $\operatorname{V}_{\mathscr{A}}(S) \subseteq \operatorname{V}_{\mathscr{A}}(S_1) \cup \cdots \cup \operatorname{V}_{\mathscr{A}}(S_m)$ имеет место в том и только том случае, если $\operatorname{V}_{\mathscr{B}}(S) \subseteq \operatorname{V}_{\mathscr{B}}(S_1) \cup \cdots \cup \operatorname{V}_{\mathscr{B}}(S_m)$;
- (6) для любого конечного множества X, любой системы уравнений $S\subseteq {\rm At_L}(X)$, любого натурального числа $m\geq 1$ и любых уравнений $f_1,\ldots,f_m\in {\rm At_L}(X)$ включение ${\rm V}_{\varnothing}(S)\subseteq {\rm V}_{\varnothing}(\{f_1\})\cup\cdots\cup {\rm V}_{\varnothing}(\{f_m\})$ имеет место в том и только том случае, если ${\rm V}_{\varnothing}(S)\subseteq {\rm V}_{\varnothing}(\{f_1\})\cup\cdots\cup {\rm V}_{\varnothing}(\{f_m\});$
- (7) для любого конечного множества X, любых натуральных чисел $m,k\geq 1$ и любых систем уравнений $S_1,\ldots,S_m,T_1,\ldots,T_k\subseteq \operatorname{At}_{\mathbf{L}}(X)$ равенство $\mathbf{V}_{\mathscr{A}}(S_1)\cup\cdots\cup\mathbf{V}_{\mathscr{A}}(S_m)=\mathbf{V}_{\mathscr{A}}(T_1)\cup\cdots\cup\mathbf{V}_{\mathscr{A}}(T_k)$ имеет место в том и только том случае, если $\mathbf{V}_{\mathscr{B}}(S_1)\cup\cdots\cup\mathbf{V}_{\mathscr{B}}(S_m)=\mathbf{V}_{\mathscr{B}}(T_1)\cup\cdots\cup\mathbf{V}_{\mathscr{B}}(T_k)$;
- (8) для любого конечного множества X подмножество $R \subseteq \operatorname{At}_{L}(X)$ является неприводимым радикальным идеалом над \mathscr{A} в том и только том случае, если R неприводимый радикальный идеал над \mathscr{B} ;
- (9) каждая конечно порожденная алгебраическая система $\mathscr C$ языка L изоморфна координатной алгебре некоторого неприводимого алгебраического множества над $\mathscr A$ в том и только том случае, если она изоморфна координатной алгебре некоторого неприводимого алгебраического множества над $\mathscr B$;
 - (10) $\mathbf{Dis}(\mathscr{A})_{\omega} = \mathbf{Dis}(\mathscr{B})_{\omega};$
 - (11) \mathscr{A} и \mathscr{B} локально дискриминируют друг друга.

Доказательство. В первую очередь покажем, что условия (2), (4)–(7) эквивалентны друг другу. Очевидными в этом ряду являются эквивалентность условий (2) и (6), а также импликации: (5) влечет (6), (7) влечет (4) и (5) влечет (7). Далее, для любых систем уравнений $S, S_1, \ldots, S_m \subseteq \operatorname{At}_L(X)$ включение $V_{\mathscr{A}}(S) \subseteq V_{\mathscr{A}}(S_1) \cup \cdots \cup V_{\mathscr{A}}(S_m)$ равносильно равенству $V_{\mathscr{A}}(S) = V_{\mathscr{A}}(S_1 \cup S) \cup \cdots \cup V_{\mathscr{A}}(S_m \cup S)$, с одной стороны, и, с другой стороны, оно же равносильно совокупности включений $V_{\mathscr{A}}(S) \subseteq V_{\mathscr{A}}(\{f_1\}) \cup \cdots \cup V_{\mathscr{A}}(\{f_m\})$ по всевозможным наборам уравнений $f_1 \in S_1, \ldots, f_m \in S_m$. Отсюда следуют импликации: (4) влечет (5) и (6) влечет (5).

Покажем, что эквивалентны друг другу условия (1), (3), (8)–(11). Поскольку класс координатных алгебр неприводимых алгебраических множеств над алгебраической системой \mathscr{A} совпадает с $\mathbf{Dis}(\mathscr{A})_{\omega}$, имеем эквивалентность условий (9) и (10). Эквивалентность условий (10) и (11) следует непосредственно из определения дискриминируемости. Тривиальным образом условие (1) влечет условие (3). Справедливость условия (3) позволяет сказать, что для любого неприводимого над \mathscr{A} радикального идеала R алгебраическое множество

 $V_{\mathscr{B}}(R)$ неприводимо, а его радикал совпадает с R, т. е. R — неприводимый радикал над \mathscr{B} , тем самым выполняется условие (8). Если справедливо условие (8), то каждая неприводимая координатная алгебра $\mathscr{C} = \mathscr{T}_{\mathsf{L}}(X)/\theta_R$ над \mathscr{A} является неприводимой координатной алгеброй над \mathscr{B} , т. е. справедливо условие (9). Покажем, что эквивалентные условия (10), (11) влекут условие (1). Из справедливости условия (11) следует, что \mathscr{A} и \mathscr{B} локально аппроксимируют друг друга, что влечет их геометрическую эквивалентность [6, предложение 1]. Таким образом, для любой системы уравнений S имеем $\Gamma_{\mathscr{A}}(S) = \Gamma_{\mathscr{B}}(S)$, при этом алгебраическое множество $V_{\mathscr{A}}(S)$ неприводимо тогда и только тогда, когда $\Gamma_{\mathscr{A}}(S) \in \mathbf{Dis}(\mathscr{A})_{\omega}$, что равнозначно требованию $\Gamma_{\mathscr{B}}(S) \in \mathbf{Dis}(\mathscr{B})_{\omega}$, т. е. тому, что неприводимо алгебраическое множество $V_{\mathscr{B}}(S)$.

Последнее, что нужно показать, это эквивалентность условий (2) и (11). Если условие (11) нарушается, то без ограничения общности можно считать, что в \mathscr{A} найдется конечно порожденная подсистема \mathscr{A}_0 , которая не дискриминируется алгебраической системой \mathcal{B} . Это означает, что найдутся такие натуральные числа $k,m\geq 1$, атомарные формулы $\varphi_1,\ldots,\varphi_m\in \mathrm{At}_{\mathrm{L}}(y_1,\ldots,y_k)$ и элементы $a_1,\dots,a_k\in A_0$, что $\mathscr{A}_0\models \neg\varphi_i(a_1,\dots,a_k)$ для всех $i=1,\dots,m$, но для любого гомоморфизма $h\colon \mathscr{A}_0\to \mathscr{B}$ найдется индекс $i=1,\dots,m$, для которого $\mathscr{B}\models \varphi_i(h(a_1),\ldots,h(a_k))$. Запишем \mathscr{A}_0 через систему порождающих элементов и определяющих соотношений, $\mathscr{A}_0 = \langle X \mid S \rangle, X = \{x_1, \dots, x_n\}$. Тогда $a_j = t_j(x_1, \dots, x_n), \ t_j \in \mathrm{T_L}(X), \ j = 1, \dots, k$. Любой гомоморфизм $h \colon \mathscr{A}_0 \to \mathscr{B}$ определяется набором образов $h(x_1), \ldots, h(x_n)$, в роли которых может выступать любой набор элементов из \mathcal{B} , удовлетворяющих всем соотношениям S. Таким образом, в В истинно (бесконечное) универсальное предложение (1) при $f_i = \varphi_i(t_1,\ldots,t_k), \ i=1,\ldots,m$, но это же предложение ложно в \mathscr{A} . Таким образом, не выполняется условие (2). Проведенные рассуждения без труда обращаются: если (бесконечное) универсальное предложение (1) истинно в \mathcal{B} , но нарушается в \mathscr{A} на элементах a_1, \ldots, a_n , то подсистема $\mathscr{A}_0 \leq \mathscr{A}$, порожденная этими элементами, не может дискриминироваться с помощью ${\mathscr B}$. Таким образом, нарушение условия (2) влечет нарушение условия (11).

Следствие 3. Конечно порожденные алгебраические системы $\mathscr A$ и $\mathscr B$ универсально геометрически эквивалентны тогда и только тогда, когда они дискриминируют друг друга.

Следствие 4. Если для алгебраических систем \mathscr{A} и \mathscr{B} языка L справедливо равенство $\mathbf{Dis}(\mathscr{A})_{\omega} = \mathbf{Dis}(\mathscr{B})_{\omega}$, то верно также и равенство $\mathbf{Res}(\mathscr{A})_{\omega} = \mathbf{Res}(\mathscr{B})_{\omega}$.

Доказательство. Действительно, равенство $\mathbf{Dis}(\mathscr{A})_{\omega} = \mathbf{Dis}(\mathscr{B})_{\omega}$ выступает критерием универсальной геометрической эквивалентности \mathscr{A} и \mathscr{B} , а $\mathbf{Res}(\mathscr{A})_{\omega} = \mathbf{Res}(\mathscr{B})_{\omega}$ — критерием геометрической эквивалентности \mathscr{A} и \mathscr{B} [6, предложение 1]. \square

Напомним, что геометрическая эквивалентность \mathscr{A} и \mathscr{B} влечет равенство $\mathbf{Qvar}(\mathscr{A}) = \mathbf{Qvar}(\mathscr{B})$, которое обратимо в некоторых классах, в частности, в $\mathbf{N}, \mathbf{N}', \mathbf{U}$ [6, теорема 23]. Для извлечения аналогичного следствия из универсальной геометрической эквивалентности воспользуемся следующим вспомогательным фактом.

Лемма 5. Пусть \mathscr{A} и \mathscr{B} — алгебраические системы языка L. Если $\mathbf{Qvar}(\mathscr{A}) = \mathbf{Qvar}(\mathscr{B})$ и при этом каждое (конечное) универсальное предложение вида (1) истинно в \mathscr{A} в том и только том случае, когда оно истинно в \mathscr{B} , то $\mathbf{Ucl}(\mathscr{A}) = \mathbf{Ucl}(\mathscr{B})$.

Доказательство. Во-первых, заметим, что $\mathscr A$ является тривиальной системой тогда и только тогда, когда $\mathscr B$ — тривиальная система, поскольку тривиальность выражается с помощью тождеств. Таким образом, можно считать, что $\mathscr A$, $\mathscr B \neq \mathscr E$. Во-вторых, произвольное универсальное предложение языка L эквивалентно конечной конъюнкции (конечных) универсальных предложений вида (1) и некоторых антитождеств. В-третьих, любое антитождество в классе нетривиальных алгебраических систем эквивалентно множеству квазитождеств. \square

Следствие 6. Если алгебраические системы \mathscr{A} и \mathscr{B} языка L универсально геометрически эквивалентны, то они универсально эквивалентны, т. е. $\mathbf{Ucl}(\mathscr{A}) = \mathbf{Ucl}(\mathscr{B})$.

Поскольку существуют примеры элементарно эквивалентных, но геометрически не эквивалентных алгебраических систем [21], следствие 6 необратимо в общем случае.

В диофантовом случае интерес представляет связь между геометрической эквивалентностью и классификацией координатных алгебр.

Утверждение 7. Допустим, что каждый элемент алгебраической L-системы $\mathscr A$ является интерпретацией некоторого замкнутого терма языка L. Тогда для любой нетривиальной конечно порожденной L-системы $\mathscr C$ следующие условия эквивалентны:

- (1) \mathscr{A} и \mathscr{C} геометрически эквивалентны;
- (2) $\mathscr C$ является координатной алгеброй некоторого алгебраического множества над $\mathscr A$.

Кроме того, эквивалентны такие условия:

- (1) \mathscr{A} и \mathscr{C} универсально геометрически эквивалентны;
- (2) $\mathscr C$ является координатной алгеброй некоторого неприводимого алгебраического множества над $\mathscr A$.

ДОКАЗАТЕЛЬСТВО. Действительно, в этом случае все нетривиальные алгебраические системы из $\mathbf{Res}(\mathscr{A})$ и $\mathbf{Dis}(\mathscr{A})$ являются \mathscr{A} -системами, поэтому условие $\mathbf{Res}(\mathscr{A})_{\omega} = \mathbf{Res}(\mathscr{C})_{\omega}$ равносильно включению $\mathscr{C} \in \mathbf{Res}(\mathscr{A})$, а условие $\mathbf{Dis}(\mathscr{A})_{\omega} = \mathbf{Dis}(\mathscr{C})_{\omega}$ — включению $\mathscr{C} \in \mathbf{Dis}(\mathscr{A})$. \square

4. Универсальная геометрическая эквивалентность и нётеровость по уравнениям

Предположим, что алгебраическая L-система \mathcal{A} нётерова по уравнениям. Это обстоятельство открывает большие возможности для исследования алгебраической геометрии над \mathcal{A} . В этом случае справедливы так называемые объединяющие теоремы для описания координатных алгебр над \mathcal{A} как всех, так и отдельно неприводимых [2]. Кроме того, любое непустое алгебраическое множество над \mathcal{A} представимо в виде конечного объединения неприводимых алгебраических множеств (и при несократимости это представление единственно) [2, теорема 4.4]. Отметим, что в ближайших к \mathbf{N} классах \mathbf{N}' и \mathbf{U} аналогичный результат, вообще говоря, неверен [22].

Теперь предположим, что алгебраическая L-система $\mathscr B$ универсально геометрически эквивалентна $\mathscr A$. Тогда $\mathscr B$ также нётерова по уравнениям [6, лемма 7]. При этом если алгебраическое множество $V_{\mathscr A}(S)$ неприводимо, то и $V_{\mathscr B}(S)$ неприводимо; если $V_{\mathscr A}(S)$ приводимо и $V_{\mathscr A}(S) = V_{\mathscr A}(S_1) \cup \cdots \cup V_{\mathscr A}(S_m)$ —

разложение в конечное несократимое объединение неприводимых алгебраических множеств, то $V_{\mathscr{B}}(S)$ также приводимо, а $V_{\mathscr{B}}(S) = V_{\mathscr{B}}(S_1) \cup \cdots \cup V_{\mathscr{B}}(S_m)$ — разложение в конечное несократимое объединение неприводимых алгебраических множеств.

Понятие геометрической эквивалентности в классе \mathbf{N} является логическим и совпадает с понятием квазиэквациональной эквивалентности [6, лемма 8]. Аналогичное утверждение справедливо и для понятия универсальной геометрической эквивалентности в классе \mathbf{N} .

Лемма 8 (частный случай леммы 12 ниже). Нётеровые по уравнениям алгебраические системы \mathscr{A} и \mathscr{B} универсально геометрически эквивалентны в том и только том случае, если $\mathbf{Ucl}(\mathscr{A}) = \mathbf{Ucl}(\mathscr{B})$.

Следствие 9. Если алгебраическая система $\mathscr A$ нётерова по уравнениям, то все алгебраические $\mathscr A$ -системы из универсального класса $\operatorname{Ucl}(\mathscr A)$ нётеровы по уравнениям и универсально геометрически эквивалентны $\mathscr A$ (или, что то же, универсально геометрически эквивалентны друг другу).

ДОКАЗАТЕЛЬСТВО. Действительно, любая алгебраическая \mathscr{A} -система $\mathscr{B} \in \mathbf{Ucl}(\mathscr{A})$ нётерова по уравнениям [2, утверждение 4.5], в то же время $\mathbf{Ucl}(\mathscr{A}) = \mathbf{Ucl}(\mathscr{B})$. \square

Проиллюстрируем геометрическую и универсальную геометрическую эквивалентности на примере абелевых групп. В качестве языка возьмем стандартный групповой язык $L_{gr} = \{\cdot,^{-1},e\}$. Любая абелева группа A как L_{gr} -алгебра нётерова по уравнениям [21], следовательно, две абелевы группы A и B геометрически эквивалентны тогда и только тогда, когда $\mathbf{Qvar}(A) = \mathbf{Qvar}(B)$, а универсально геометрически они эквивалентны тогда и только тогда, когда $\mathbf{Ucl}(A) = \mathbf{Ucl}(B)$, поэтому для описания (универсально) геометрически эквивалентных абелевых групп воспользуемся результатами из [23, 24].

Для сокращения записи примем несколько обозначений. Если абелева группа A ограничена, т. е. существует такое целое положительное число m, что $a^m=0$ для всех $a\in A$, то будем писать $\delta(A)=0$; иначе $\delta(A)=1$. Пусть $\mathbf{K}_Q-\mathbf{K}_Q$ класс всех конечных циклических абелевых групп, $\mathbf{K}_Q=\{C(p^k)\}$, где p пробегает множество всех простых чисел, а k— множество целых положительных. Пусть также \mathbf{K}_U — класс всех конечных p-примарных абелевых групп по всем простым p, $\mathbf{K}_U=\{C^{m_1}(p)\oplus C^{m_2}(p^2)\oplus\cdots\oplus C^{m_k}(p^k)\}$, где p пробегает множество всех простых чисел, k— множество целых положительных и m_i , $i=1,\ldots,k$,— множество целых неотрицательных.

Утверждение 10 [23, 24]. Пусть A и B — абелевы группы. Справедливы следующие утверждения:

- (1) A и B геометрически эквивалентны как \mathbf{L}_{gr} -алгебры тогда и только тогда, когда $\delta(A)=\delta(B)$ и $\mathbf{S}(A)_{\omega}\cap\mathbf{K}_{Q}=\mathbf{S}(B)_{\omega}\cap\mathbf{K}_{Q};$
- (2) A и B универсально геометрически эквивалентны как \mathbf{L}_{gr} -алгебры тогда и только тогда, когда $\delta(A) = \delta(B)$ и $\mathbf{S}(A)_{\omega} \cap \mathbf{K}_{U} = \mathbf{S}(B)_{\omega} \cap \mathbf{K}_{U}$.

В частности, например, геометрически эквивалентные абелевы группы C(p) и $C^2(p)$ универсально не эквивалентны. Отметим, что в действительности в работах А. А. Виноградова [23] и А. А. Мищенко, В. Н. Ремесленникова и А. В. Трейера [24] проведены классификации квазимногообразий и универсальных классов абелевых групп соответственно, из которых легко выводится приведенный выше результат утверждения 10. Кроме этого, существует неопублико-

ванная работа А. Берзиньша, в которой критерий геометрической эквивалентности абелевых групп сформулирован на языке экспонент. Соответствующую формулировку можно найти в лекциях Б. И. Плоткина [11, лекция 3, предложение 4].

5. Универсальная геометрическая эквивалентность и u_ω-компактность

Класс u_{ω} -компактных алгебраических систем ${\bf U}$ является ближайшим к классу нётеровых по уравнениям алгебраических систем ${\bf N}$ в том смысле, что в нем справедливы объединяющие теоремы, правда, с одной поправкой, связанной с тем, что в классе ${\bf U}$, вообще говоря, нет результата о разложении произвольного алгебраического множества в конечное объединение неприводимых [3]. В отличие от классов ${\bf N}$ и ${\bf N}'$, которые инвариантны относительно геометрической эквивалентности, для класса ${\bf U}$ это, вообще говоря, неверно [6, замечание 13]. При универсальной геометрической эквивалентности эта проблема устраняется.

Лемма 11. Класс **U** инвариантен относительно универсальной геометрической эквивалентности.

Доказательство. Пусть \mathscr{A} и \mathscr{B} — универсально геометрически эквивалентные алгебраические системы языка L и \mathscr{A} и $_{\omega}$ -компактна. Тогда $\mathbf{Dis}(\mathscr{A})_{\omega} = \mathbf{Ucl}(\mathscr{A})_{\omega} = \mathbf{Ucl}(\mathscr{B})_{\omega} = \mathbf{Dis}(\mathscr{B})_{\omega}$, следовательно, \mathscr{B} и $_{\omega}$ -компактна. \square

Покажем, что в классе ${\bf U}$ понятие универсальной геометрической эквивалентности логическое.

Лемма 12. Пусть \mathscr{A} и $\mathscr{B}-\mathbf{u}_{\omega}$ -компактные алгебраические системы языка L. Тогда следующие условия эквивалентны:

- (1) \mathscr{A} и \mathscr{B} универсально геометрически эквивалентны;
- (2) $Ucl(\mathscr{A}) = Ucl(\mathscr{B}).$

Доказательство. Если $\mathbf{Ucl}(\mathscr{A}) = \mathbf{Ucl}(\mathscr{B})$, то $\mathbf{Dis}(\mathscr{A})_{\omega} = \mathbf{Ucl}(\mathscr{A})_{\omega} = \mathbf{Ucl}(\mathscr{A})_{\omega} = \mathbf{Ucl}(\mathscr{B})_{\omega} = \mathbf{Dis}(\mathscr{B})_{\omega}$, что в силу предложения 2 приводит к универсальной геометрической эквивалентности \mathscr{A} и \mathscr{B} . Обратный результат доказан в следствии 6. \square

Следствие 13. Пусть $\mathscr{A} - u_{\omega}$ -компактная алгебраическая система и $\mathscr{B} \in \mathbf{Ucl}(\mathscr{A})$, причем \mathscr{A} локально дискриминируется с помощью \mathscr{B} (в частности, \mathscr{B} может быть любой алгебраической \mathscr{A} -системой из $\mathbf{Ucl}(\mathscr{A})$, например, любой ультрастепенью \mathscr{A}). Тогда \mathscr{B} u_{ω} -компактна и универсально геометрически эквивалентна \mathscr{A} .

Доказательство. Действительно, алгебраическая система \mathscr{B} u_{ω} -компактна и $\mathbf{Ucl}(\mathscr{A}) = \mathbf{Ucl}(\mathscr{B})$ [3, лемма 7.8], следовательно, \mathscr{B} универсально геометрически эквивалентна \mathscr{A} . \square

Следствие 14. Если K — некоторый класс алгебраических систем, в котором понятия универсальной и универсальной геометрической эквивалентностей совпадают и $K \supseteq U$, то K = U.

Доказательство. Действительно, для любой алгебраической системы $\mathscr{A} \in \mathbf{K}$ и ее \mathbf{u}_{ω} -компактного элементарного расширения $\mathscr{A} \prec \mathscr{B}$ имеем $\mathbf{Ucl}(\mathscr{A}) = \mathbf{Ucl}(\mathscr{B})$ и $\mathscr{B} \in \mathbf{U} \subseteq \mathbf{K}$, следовательно, \mathscr{A} и \mathscr{B} универсально геометрически эквивалентны, а в силу леммы $11 \mathscr{A} \in \mathbf{U}$. Таким образом, $\mathbf{K} \subseteq \mathbf{U}$, откуда $\mathbf{K} = \mathbf{U}$. \square

Отметим, что существуют хорошие примеры не u_{ω} -компактных алгебраических систем (в том числе в классе конечно порожденных групп [21]), а с их помощью наглядно демонстрируется разница между универсальной и универсальной геометрической эквивалентностями.

Лемма 15. Если алгебраическая система $\mathscr A$ не является u_ω -компактной, то найдется ультрастепень $\mathscr B$ системы $\mathscr A$, универсально геометрически не эквивалентная $\mathscr A$. Кроме того, если $\mathscr A$ конечно порождена, то найдется такое конечно порожденное расширение $\mathscr A \leq \mathscr C$, что $\mathbf{Ucl}(\mathscr A) = \mathbf{Ucl}(\mathscr C)$, но $\mathscr A$ и $\mathscr C$ универсально геометрически не эквивалентны.

ДОКАЗАТЕЛЬСТВО. Возьмем $\mathscr{C}_0 \in \mathbf{Ucl}(\mathscr{A})_\omega \setminus \mathbf{Dis}(\mathscr{A})_\omega$. Так как $\mathscr{C}_0 \in \mathbf{Ucl}(\mathscr{A}) = \mathbf{SP_u}(\mathscr{A})$, выделим ультрастепень \mathscr{B} алгебраической системы \mathscr{A} , подсистемой которой является \mathscr{C}_0 . Тогда $\mathbf{Dis}(\mathscr{A})_\omega \neq \mathbf{Dis}(\mathscr{B})_\omega$, поэтому в силу предложения $2\mathscr{A}$ и \mathscr{B} универсально геометрически не эквивалентны. Через \mathscr{C} обозначим алгебраическую подсистему в \mathscr{B} , порожденную диагональю \mathscr{A} и алгебраической системой \mathscr{C}_0 . Если \mathscr{A} конечно порождена, то и \mathscr{C} конечно порождена. В то же время $\mathbf{Ucl}(\mathscr{A}) = \mathbf{Ucl}(\mathscr{C})$, но $\mathbf{Dis}(\mathscr{A})_\omega \neq \mathbf{Dis}(\mathscr{C})_\omega$. \square

Следствие 16. Если K — некоторый класс алгебраических L-систем, замкнутый относительно ультрастепеней, в котором понятия универсальной и универсальной геометрической эквивалентностей совпадают, то $K \subseteq U$.

Следующая теорема дает критерий u_{ω} -компактности алгебраической системы \mathscr{A} на языке универсальной геометрической эквивалентности алгебраических систем из ее универсального класса $\mathbf{Ucl}(\mathscr{A})$.

Теорема 17. Для любой алгебраической системы $\mathscr A$ языка L следующие условия эквивалентны:

- (1) алгебраическая система \mathscr{A} u_{ω} -компактна;
- (2) все алгебраические \mathscr{A} -системы из универсального класса $Ucl(\mathscr{A})$ универсально геометрически эквивалентны друг другу (или, что то же, универсально геометрически эквивалентны \mathscr{A});
- (3) все алгебраические системы из универсального класса $Ucl(\mathscr{A})$, локально дискриминирующие \mathscr{A} , универсально геометрически эквивалентны друг другу (или, что то же, универсально геометрически эквивалентны \mathscr{A}).

Доказательство. Следствие 13 доказывает, что условие (1) влечет условие (3). Условие (3) влечет условие (2) тривиальным образом. Чтобы проверить, что условие (2) влечет условие (1), предположим противное: алгебраическая система \mathscr{A} не является \mathbf{u}_{ω} -компактной. Тогда в силу леммы 15 найдется алгебраическая \mathscr{A} -система $\mathscr{B} \in \mathbf{Ucl}(\mathscr{A})$, а именно подходящая ультрастепень алгебраической системы \mathscr{A} , универсально геометрически не эквивалентная \mathscr{A} . \square

Отметим, что в диофантовом случае все нетривиальные алгебраические системы из $Ucl(\mathscr{A})$ являются \mathscr{A} -системами, поэтому здесь формулировка теоремы 17 естественным образом упрощается.

6. Универсальная ω -геометрическая эквивалентность

Напомним, что алгебраические системы \mathscr{A} и \mathscr{B} языка L называются ω -геометрически эквивалентными, если для любого конечного множества X и любой конечной системы уравнений $S\subseteq \operatorname{At}_{\mathbf{L}}(X)$ имеет место равенство $\operatorname{Rad}_{\mathscr{A}}(S)=\operatorname{Rad}_{\mathscr{B}}(S)$. Важность этого геометрического понятия в том, что оно

совпадает с квазиэквациональной эквивалентностью для любых алгебраических систем \mathscr{A} и \mathscr{B} [6, лемма 19].

Имея целью введение геометрического аналога для универсальной эквивалентности, обобщим не исходное определение универсальной геометрической эквивалентности, а один из его критериев, доказанных в предложении 2 (обоснование такого выбора приведено ниже).

Определение 2. Алгебраические системы \mathscr{A} и \mathscr{B} языка L назовем универсально ω -геометрически эквивалентными, если для любого конечного множества X, любого натурального числа $m \geq 1$ и любых конечных систем уравнений $S, S_1, \ldots, S_m \subseteq \operatorname{At}_L(X)$ равенство $V_{\mathscr{A}}(S) = V_{\mathscr{A}}(S_1) \cup \cdots \cup V_{\mathscr{A}}(S_m)$ имеет место в том и только том случае, если $V_{\mathscr{B}}(S) = V_{\mathscr{B}}(S_1) \cup \cdots \cup V_{\mathscr{B}}(S_m)$.

В силу предложения 2 универсальная геометрическая эквивалентность алгебраических систем влечет их универсальную ω -геометрическую эквивалентность. В свою очередь, универсальная ω -геометрическая эквивалентность влечет ω -геометрическую эквивалентность, поскольку алгебраические L-системы \mathscr{A} и \mathscr{B} ω -геометрически эквивалентны тогда и только тогда, когда для любого конечного множества X и любых конечных систем уравнений $S_1, S_2 \subseteq \operatorname{At}_L(X)$ равенство $V_{\mathscr{A}}(S_1) = V_{\mathscr{A}}(S_2)$ имеет место в том и только том случае, если $V_{\mathscr{B}}(S_1) = V_{\mathscr{B}}(S_2)$ [6, лемма 19].

Повторяя рассуждения доказательства предложения 2, а именно обоснование того, что условия (2), (4)–(7) эквивалентны, и своевременно накладывая ограничение конечности на встречающиеся системы уравнений, затем прибавляя факт, сформулированный в лемме 5, получим следующие критерии универсальной ω -геометрической эквивалентности.

Лемма 18. Для двух алгебраических систем $\mathscr A$ и $\mathscr B$ языка L следующие условия эквивалентны:

- (1) \mathscr{A} и \mathscr{B} универсально ω -геометрически эквивалентны;
- (2) \mathscr{A} и \mathscr{B} универсально эквивалентны, т. е. $\mathbf{Ucl}(\mathscr{A}) = \mathbf{Ucl}(\mathscr{B})$;
- (3) для любого конечного множества X, любого натурального числа $m \geq 1$ и любых конечных систем уравнений $S, S_1, \ldots, S_m \subseteq \operatorname{At}_L(X)$ включение $\operatorname{V}_{\mathscr{A}}(S) \subseteq \operatorname{V}_{\mathscr{A}}(S_1) \cup \cdots \cup \operatorname{V}_{\mathscr{A}}(S_m)$ имеет место в том и только том случае, если $\operatorname{V}_{\mathscr{B}}(S) \subseteq \operatorname{V}_{\mathscr{B}}(S_1) \cup \cdots \cup \operatorname{V}_{\mathscr{B}}(S_m)$;
- (4) для любого конечного множества X, любой конечной системы уравнений $S \subseteq \operatorname{At}_L(X)$, любого натурального числа $m \ge 1$ и любых уравнений $f_1, \ldots, f_m \in \operatorname{At}_L(X)$ включение $\operatorname{V}_{\varnothing}(S) \subseteq \operatorname{V}_{\varnothing}(\{f_1\}) \cup \cdots \cup \operatorname{V}_{\varnothing}(\{f_m\})$ имеет место в том и только том случае, если $\operatorname{V}_{\varnothing}(S) \subseteq \operatorname{V}_{\varnothing}(\{f_1\}) \cup \cdots \cup \operatorname{V}_{\varnothing}(\{f_m\})$;
- (5) для любого конечного множества X, любых натуральных чисел $m,k\geq 1$ и любых конечных систем уравнений $S_1,\ldots,S_m,T_1,\ldots,T_k\subseteq \operatorname{At}_{\mathbf{L}}(X)$ равенство $V_{\mathscr{A}}(S_1)\cup\cdots\cup V_{\mathscr{A}}(S_m)=V_{\mathscr{A}}(T_1)\cup\cdots\cup V_{\mathscr{A}}(T_k)$ имеет место в том и только том случае, если $V_{\mathscr{B}}(S_1)\cup\cdots\cup V_{\mathscr{B}}(S_m)=V_{\mathscr{B}}(T_1)\cup\cdots\cup V_{\mathscr{B}}(T_k)$.

Следствие 19. Пусть $\mathscr A$ и $\mathscr B$ — универсально ω -геометрически эквивалентные алгебраические системы языка L. Тогда для любого конечного множества X и любой конечной системы уравнений $S\subseteq \operatorname{At}_{\mathsf L}(X)$ алгебраические множества $\operatorname{V}_{\mathscr A}(S)$ и $\operatorname{V}_{\mathscr B}(S)$ неприводимы, приводимы или пусты одновременно.

Доказательство. Если $V_{\mathscr{A}}(S) = \varnothing$, то в силу конечности S в \mathscr{A} истинно соответствующее универсальное предложение, а ввиду равенства $\mathbf{Ucl}(\mathscr{A}) = \mathbf{Ucl}(\mathscr{B})$ то же предложение будет истинно в \mathscr{B} , следовательно, $V_{\mathscr{B}}(S) = \varnothing$. Предположим, что $V_{\mathscr{A}}(S)$ приводимо и $V_{\mathscr{A}}(S) = V_{\mathscr{A}}(S_1) \cup \cdots \cup V_{\mathscr{A}}(S_m)$ —

его представление в виде конечного объединения собственных алгебраических подмножеств. Тогда для каждого $i=1,\ldots,m$ существует уравнение $f_i\in \mathrm{Rad}_{\mathscr{A}}(S_i)$, для которого включение $\mathrm{V}_{\mathscr{A}}(S)\supset\mathrm{V}_{\mathscr{A}}(S\cup\{f_i\})$ строгое. Включения $\mathrm{V}_{\mathscr{A}}(S)\supset\mathrm{V}_{\mathscr{B}}(S\cup\{f_i\})$, $i=1,\ldots,m$, также строгие, поэтому равенство $\mathrm{V}_{\mathscr{A}}(S)=\mathrm{V}_{\mathscr{A}}(S\cup\{f_1\})\cup\cdots\cup\mathrm{V}_{\mathscr{A}}(S\cup\{f_m\})$ индуцирует представление алгебраического множества $\mathrm{V}_{\mathscr{B}}(S)$ в виде конечного объединения собственных алгебраических подмножеств, $\mathrm{V}_{\mathscr{B}}(S)=\mathrm{V}_{\mathscr{B}}(S\cup\{f_1\})\cup\cdots\cup\mathrm{V}_{\mathscr{B}}(S\cup\{f_m\})$, обосновывая его приводимость. \square

Замечание 20. Напомним, что класс N инвариантен относительно отношения ω -геометрической эквивалентности (в частности, N инвариантен относительно универсальной ω -геометрической эквивалентности и относительно элементарной эквивалентности). Классы U и N', напротив, в общем случае не инвариантны даже относительно элементарной эквивалентности [6, замечание 21], а следовательно, ни относительно ω -геометрической, ни относительно универсальной ω -геометрической.

Теорема 21. Пусть \mathscr{A} и \mathscr{B} — u_{ω} -компактные алгебраические системы языка L. Тогда следующие условия эквивалентны:

- (1) \mathscr{A} и \mathscr{B} универсально геометрически эквивалентны;
- (2) \mathscr{A} и \mathscr{B} универсально эквивалентны, т. е. $\mathbf{Ucl}(\mathscr{A}) = \mathbf{Ucl}(\mathscr{B})$;
- (3) \mathscr{A} и \mathscr{B} универсально ω -геометрически эквивалентны.

Список дополняется эквивалентностями из предложения 2 и леммы 18.

Доказательство. Результат следует из лемм 12 и 18.

Теорема 22. Пусть \mathscr{A} и \mathscr{B} — нётеровы или слабо нётеровы по уравнениям алгебраические системы языка L. Тогда следующие условия эквивалентны:

- (1) \mathscr{A} и \mathscr{B} универсально геометрически эквивалентны;
- (2) \mathscr{A} и \mathscr{B} универсально эквивалентны, т. е. $\mathbf{Ucl}(\mathscr{A}) = \mathbf{Ucl}(\mathscr{B})$;
- (3) \mathscr{A} и \mathscr{B} универсально ω -геометрически эквивалентны;
- (4) для любого конечного множества X и любой конечной системы уравнений $S \subseteq \operatorname{At}_{\mathbb{L}}(X)$ имеет место равенство $\operatorname{Rad}_{\mathscr{A}}(S) = \operatorname{Rad}_{\mathscr{B}}(S)$, причем алгебраические множества $V_{\mathscr{A}}(S)$ и $V_{\mathscr{B}}(S)$ неприводимы, приводимы или пусты одновременно;
- (5) для любого конечного множества X и любой конечной системы уравнений $S \subseteq \mathrm{At}_{\mathbf{L}}(X)$ алгебраическое множество $V_{\mathscr{A}}(S)$ неприводимо тогда и только тогда, когда $V_{\mathscr{B}}(S)$ неприводимо, причем в этом случае $\mathrm{Rad}_{\mathscr{A}}(S) = \mathrm{Rad}_{\mathscr{B}}(S)$.

Список дополняется эквивалентностями из предложения 2 и леммы 18.

Доказательство. Предположим, что выполнено условие (5), и покажем, что в этом случае \mathscr{A} и \mathscr{B} универсально геометрически эквивалентны. В силу следствия 6, леммы 18, следствия 19 и очевидности того, что условие (4) влечет условие (5), этого достаточно для доказательства всей теоремы.

Рассмотрим произвольную систему уравнений S и обозначим через $I_{\mathscr{A}}$ множество всех неприводимых радикальных идеалов $\mathrm{Rad}_{\mathscr{A}}(S_0)$ таких, что $|S_0|<\infty$ и $\mathrm{Rad}_{\mathscr{A}}(S_0)\supseteq S$. Пусть $I_{\mathscr{B}}$ — аналогичное множество для \mathscr{B} . Имеем равенство $I_{\mathscr{A}}=I_{\mathscr{B}}$. Так как произвольный радикальный идеал совпадает с пересечением всех его содержащих неприводимых радикальных идеалов, а алгебраические системы \mathscr{A} и \mathscr{B} слабо нётеровы по уравнениям, то $\mathrm{Rad}_{\mathscr{A}}(S)=\bigcap\{R\mid R\in I_{\mathscr{A}}\}$ и $\mathrm{Rad}_{\mathscr{B}}(S)=\bigcap\{R\mid R\in I_{\mathscr{B}}\}$, откуда $\mathrm{Rad}_{\mathscr{A}}(S)=\mathrm{Rad}_{\mathscr{B}}(S)$. При этом для любого конечного множества X и любой системы уравнений $S\subseteq\mathrm{At}_{\mathsf{L}}(X)$ существует такая конечная система уравнений $S_0\subseteq\mathrm{At}_{\mathsf{L}}(X)$, что $S\sim_{\mathscr{A}}S_0$ и $S\sim_{\mathscr{B}}S_0$ [6,

предложение 1]. Таким образом, алгебраическое множество $V_{\mathscr{A}}(S) = V_{\mathscr{A}}(S_0)$ неприводимо тогда и только тогда, когда неприводимо алгебраическое множество $V_{\mathscr{B}}(S_0) = V_{\mathscr{B}}(S)$. \square

Вернемся к выбору определения понятия универсальной ω -геометрической эквивалентности. Возникает естественный вопрос: почему мы не остановились на непосредственном обобщении исходного определения универсальной геометрической эквивалентности? Для удобства изложения договоримся, что алгебраические системы \mathscr{A} и \mathscr{B} условно ω -геометрически эквивалентны (т. е. $\mathscr{A} \sim_{\omega} \mathscr{B}$), если для любого конечного множества X и любой конечной системы уравнений $S \subseteq \operatorname{At}_{\mathsf{L}}(X)$ имеет место равенство $\operatorname{Rad}_{\mathscr{A}}(S) = \operatorname{Rad}_{\mathscr{B}}(S)$, причем соответствующие алгебраические множества $V_{\mathscr{A}}(S)$ и $V_{\mathscr{B}}(S)$ неприводимы, приводимы или пусты одновременно. Из рассуждений выше видно, что равенство $\mathbf{Ucl}(\mathscr{A}) = \mathbf{Ucl}(\mathscr{B})$ влечет $\mathscr{A} \sim_{\omega} \mathscr{B}$, причем в классах \mathbf{N} и \mathbf{N}' справедливо и обратное: $\mathscr{A} \sim_{\omega} \mathscr{B}$ влечет $\mathrm{Ucl}(\mathscr{A}) = \mathrm{Ucl}(\mathscr{B})$. Однако условная ω -геометрическая эквивалентность не соответствует заданной цели — быть геометрическим аналогом универсальной эквивалентности для произвольных алгебраических систем. Покажем, что даже в классе \mathbf{U} условная ω -геометрическая эквивалентность, причем даже в сумме с геометрической эквивалентностью, вообще говоря, не влечет универсальную эквивалентность.

ПРИМЕР 1. Пусть L = $\{x > a, x < b \mid a, b \in \mathbb{Q}\}$ — язык, состоящий из одноместных предикатов, и $\mathscr{A} = \langle \mathbb{Q}; \mathtt{L} \rangle$ — алгебраическая система с естественной интерпретацией предикатов. Через \mathscr{B} обозначим подсистему $\mathscr{A} \leq \mathscr{B} \leq \mathscr{A}^2$ с носителем $B = \{(c,c), c \in \mathbb{Q}\} \cup \{(2,1)\}$. Пусть также $\mathscr{A} \prec \mathscr{A}'$ и $\mathscr{B} \prec \mathscr{B}'$ соответствующие элементарные \mathbf{u}_{ω} -компактные расширения. Тогда алгебраические системы Я и Я геометрически эквивалентны [6, следствие 3]. Поскольку $\mathbf{Qvar}(\mathscr{A}') = \mathbf{Qvar}(\mathscr{A}) = \mathbf{Qvar}(\mathscr{B}) = \mathbf{Qvar}(\mathscr{B}')$, то \mathscr{A}' и \mathscr{B}' также геометрически эквивалентны [6, лемма 10]. Далее, непосредственно проверяется, что для любой конечной системы уравнений S алгебраические множества $V_{\mathscr{A}}(S)$ и $V_{\mathscr{B}}(S)$ либо приводимы, либо пусты одновременно, но не могут быть неприводимыми, таким образом, $\mathscr{A} \sim_{\omega} \mathscr{B}$. Но поскольку $\mathbf{Ucl}(\mathscr{A}) = \mathbf{Ucl}(\mathscr{A}')$ и $\mathbf{Ucl}(\mathscr{B}) = \mathbf{Ucl}(\mathscr{B}')$, согласно следствию 19, $\mathscr{A} \sim_{\omega} \mathscr{A}'$ и $\mathscr{B} \sim_{\omega} \mathscr{B}'$, следовательно, $\mathscr{A}' \sim_{\omega} \mathscr{B}'$. Наконец, \mathscr{A} и \mathscr{B} универсально не эквивалентны: универсальное предложение $\forall x \, (x > 1 \lor x < 2)$ истинно в \mathscr{A} и ложно в \mathscr{B} . Отсюда заключаем, что $\mathbf{Ucl}(\mathscr{A}') \neq \mathbf{Ucl}(\mathscr{B}')$. Таким образом, алгебраические системы $\mathscr{A}', \mathscr{B}' \in \mathbf{U}$ геометрически эквивалентны, условно ω -геометрически эквивалентны, но универсально не эквивалентны.

ЛИТЕРАТУРА

- 1. Daniyarova E., Myasnikov A., Remeslennikov V. Unification theorems in algebraic geometry // Algebra Discrete Math. 2008. V. 1. P. 80–112.
- Даниярова Э. Ю., Мясников А. Г., Ремесленников В. Н. Алгебраическая геометрия над алгебраическими системами. II. Основания // Фунд. и прикл. математика. 2011/2012. Т. 17, № 1. С. 65–106.
- Daniyarova E., Myasnikov A., Remeslennikov V. Algebraic geometry over algebraic structures. III. Equationally Noetherian property and compactness // Southeast Asian Bull. Math. 2011. V. 35, N 1. P. 35–68.
- 4. Даниярова Э. Ю., Мясников А. Г., Ремесленников В. Н. Алгебраическая геометрия над алгебраическими системами. IV. Эквациональные области и ко-области // Алгебра и логика. 2010. Т. 49, № 6. С. 715–756.
- Даниярова Э. Ю., Мясников А. Г., Ремесленников В. Н. Алгебраическая геометрия над алгебраическими системами. V. Случай произвольной сигнатуры // Алгебра и логика.

2012. T. 51, № 1. C. 41-60.

- **6.** Даниярова Э. Ю., Мясников А. Г., Ремесленников В. Н. Алгебраическая геометрия над алгебраическими системами. VI. Геометрическая эквивалентность // Алгебра и логика. (Принята к печати).
- 7. Даниярова Э. Ю., Мясников А. Г., Ремесленников В. Н. Универсальная алгебраическая геометрия // Докл. АН. 2011. Т. 439, № 6. С. 730–732.
- 8. Даниярова Э. Ю., Мясников А. Г., Ремесленников В. Н. Размерность в универсальной алгебраической геометрии // Докл. АН. 2014. Т. 457, № 3. С. 265–267.
- Grätzer G., Lakser H. A note on implicational class generated by class of structures // Canad. Math. Bull. 1973. V. 16, N 4. P. 603–605.
- Berzins A. Geometrical equivalence of algebras // Int. J. Algebra Comput. 2001. V. 11, N 4. P. 447–456.
- Plotkin B. I. Seven lectures on the universal algebraic geometry / Preprint. arXiv:math/0204245 [math.GM], 2002, 87 pp.
- Göbel R., Shelah S. Radicals and Plotkin's problem concerning geometrically equivalent groups // Proc. Amer. Math. Soc. 2002. V. 130, N 3. P. 673-674.
- Плоткин Б. И. Проблемы алгебры, инспирированные универсальной алгебраической геометрией // Фунд. и прикл. математика. 2004. Т. 10, № 3. С. 181–197.
- Plotkin B., Tsurkov A. Action type geometrical equivalence of representations of groups // Algebra Discrete Math. 2005. V. 4. P. 48–79.
- Plotkin B. I. Geometrical equivalence, geometrical similarity, and geometrical compatibility of algebras // J. Math. Sci. (New York). 2007. V. 140, N 5. P. 716–728.
- Plotkin B., Zhitomirski G. Some logical invariants of algebras and logical relations between algebras // Algebra Anal. 2007. V. 19, N 5. P. 214–245.
- Плоткин Б. И. Изотипные алгебры // Современные проблемы математики. 2011. Т. 15. С. 40–66.
- Plotkin B. Algebras with the same (algebraic) geometry // Proc. Steklov Inst. Math. 2003.
 V. 242. P. 165–196.
- Plotkin E., Plotkin B. Multi-sorted logic and logical geometry: some problems // Demonstr. Math. 2015. V. 48, N 4. P. 578–618.
- Горбунов В. А. Алгебраическая теория квазимногообразий. Новосибирск: Науч. книга, 1999.
- Myasnikov A., Remeslennikov V. Algebraic geometry over groups. II. Logical foundations // J. Algebra. 2000. V. 234, N 1. P. 225–276.
- Shevlyakov A. N. Commutative idempotent semigroups at the service of universal algebraic geometry // Southeast Asian Bull. Math. 2011. V. 35, N 1. P. 111–136.
- 23. Виноградов А. А. Квазимногообразия абелевых групп // Алгебра и логика. 1965. Т. 4, № 5. С. 15–19.
- **24.** *Мищенко А. А.*, *Ремесленников В. Н., Трейер А. В. Универсальные инварианты для классов абелевых групп // Алгебра и логика. (Принята к печати).*

Статья поступила 9 июня 2017 г.

Даниярова Эвелина Юрьевна Институт математики им. С. Л. Соболева СО РАН, ул. Певцова, 13, Омск 644099 evelina.omsk@list.ru

Мясников Алексей Георгиевич
Schaefer School of Engineering and Science,
Department of Mathematical Sciences,
Stevens Institute of Technology,
Castle Point on Hudson, Hoboken NJ 07030-5991, USA
amiasnikov@gmail.com

Ремесленников Владимир Никанорович Институт математики им. С. Л. Соболева СО РАН, ул. Певцова, 13, Омск 644099 remesl@ofim.oscsbras.ru