О ВЛОЖЕНИИ ЦЕНТРАЛЬНЫХ РАСШИРЕНИЙ В ПОДСТАНОВОЧНЫЕ СПЛЕТЕНИЯ

А. В. Заварницин

Аннотация. Найдено необходимое условие вложимости центрального расширения группы G с элементарным абелевым ядром в сплетение, соответствующее ее заданному подстановочному представлению.

 $DOI\,10.17377/smzh.2017.58.508$

Ключевые слова: подстановочный модуль, центральное расширение, сплетение.

1. Введение

Конечная группа $G=\mathrm{PSL}_2(q)$, где q нечетно, естественно действует подстановками на проективной прямой порядка q+1. В [1] изучалось вложение $\mathrm{SL}_2(q)$ в подстановочное сплетение $\mathbb{Z}/2\mathbb{Z}$ с G, соответствующее этому подстановочному действию. Эта проблема была обобщена в [2] на произвольные группы $\mathrm{PSL}_n(q)$ и их центральные расширения с ядром простого порядка. В настоящей работе получено дальнейшее обобщение этих результатов.

Пусть G — конечная группа, Ω — конечное множество и $\rho:G\to \mathrm{Sym}(\Omega)$ — подстановочное представление. Для $\omega\in\Omega$ обозначим через $\mathrm{St}(\omega)$ стабилизатор ω в G.

Пусть A — коммутативное кольцо простой характеристики p. Рассмотрим (правый) подстановочный AG-модуль V, соответствующий ρ , с базисом (отождествленным с) Ω и его подмодуль

$$0 \to I \to V, \tag{1}$$

порожденный $\omega_0 = \sum_{\omega \in \Omega} \omega$. Ясно, что есть изоморфизм AG-модулей $\alpha: A \to I$, определенный правилом $\alpha: 1 \mapsto \omega_0$. Пусть $G \rightthreetimes V$ обозначает естественное полупрямое произведение.

Предположим также, что имеется центральное расширение

$$1 \to A \xrightarrow{\iota} H \xrightarrow{\pi} G \to 1, \tag{2}$$

т. е. такое, что ${\rm Im}\,\iota\leqslant {\rm Z}(H)$, где кольцо A отождествляем с его аддитивной группой A^+ . Будем говорить, что подгруппа $S\leqslant G$ поднимается в H, если полный прообраз $S\pi^{-1}$ расщепляется над ${\rm Im}\,\iota$. Также будем говорить, что H является подрасширением в $G\rightthreetimes V$ относительно вложения (1), если существует вложение $\beta: H\to G\rightthreetimes V$ такое, что коммутативна диаграмма

Работа выполнена за счет Российского научного фонда (код проекта 14-21-00065).

где $I = {\rm Im}\,\alpha$ отождествляем с его образом в V под действием (1).

Главным результатом, доказанным в разд. 5, является следующее необходимое условие.

Теорема 1. В принятых выше обозначениях если центральное расширение H является подрасширением $G \times V$ относительно вложения (1), то $\mathrm{St}(\omega)$ поднимается в H для любого $\omega \in \Omega$.

Доказательство этого утверждения является обобщением некоторых идей, изложенных в [1,2]. В частности, будет доказан вспомогательный результат о копредставлениях p-групп.

Пусть $F=F\langle X\rangle$ — свободная группа с базой X. Каждый элемент $w\in F$ можно записать в виде

$$w = x_1^{\varepsilon_1} \dots x_t^{\varepsilon_t},$$

где $x_i \in X$ и $\varepsilon = \pm 1$. Для $x \in X$ определим

$$\log_x(w) = \sum_{x_i = x} \varepsilon_i.$$

Следующий факт доказан в разд. 4.

Предложение 2. Каждая конечная *p*-группа *P* имеет конечное копредставление $\langle X \mid R \rangle$ такое, что $\log_x(r) \equiv 0 \pmod{p}$ для всех $x \in X$, $r \in R$.

2. Производные Фокса

Пусть $X = \{x_1, \dots, x_n\}$ и $F = F\langle X \rangle$ — свободная группа с базой X. Напомним, что i-я (правая) производная Фокса — это отображение $\partial/\partial x_i : F \to \mathbb{Z} F$, удовлетворяющее условиям $\partial x_i/\partial x_i = \delta_{ij}$, $1 \leq j \leq n$, и

$$\frac{\partial(uv)}{\partial x_i} = \frac{\partial u}{\partial x_i} v + \frac{\partial v}{\partial x_i}$$

для всех $u,v\in F,\ 1\leqslant i\leqslant n.$ Пусть $w=w(x_1,\ldots,x_n)\in F$ и $w=x_{i_1}^{\varepsilon_1}\ldots x_{i_l}^{\varepsilon_l},$ где $x_{i_k}\in X$ и $\varepsilon_k=\pm 1$ для всех k. Можно показать [3, предложение 2.73], что

$$\frac{\partial w}{\partial x_i} = \sum_{\{k \mid i_k = i\}} \varepsilon_k f_k,$$

где

$$f_k = \left\{ egin{array}{ll} x_{i_{k+1}}^{arepsilon_{k+1}} \dots x_{i_l}^{arepsilon_l}, & ext{ecли } arepsilon_k = 1, \ x_{i_k}^{arepsilon_k} x_{i_{k+1}}^{arepsilon_{k+1}} \dots x_{i_l}^{arepsilon_l}, & ext{ecли } arepsilon_k = -1. \end{array}
ight.$$

Пусть G — группа и V — G-модуль. Фиксируя гомоморфизм $F \to G \wedge V$, запишем образ каждого x_i в виде $g_i v_i$ для подходящих $g_i \in G, v_i \in V$. Тогда, используя аддитивное обозначение в V, можно записать

$$w(g_1v_1,\ldots,g_nv_n)=w(g_1,\ldots,g_n)\bigg(v_1\frac{\partial w}{\partial g_1}+\cdots+v_n\frac{\partial w}{\partial g_n}\bigg),$$
 (5)

где $\partial/\partial g_i$ — сокращенное обозначение композиции $\partial/\partial x_i$ и гомоморфизма $\mathbb{Z}F \to \mathbb{Z}G$, который продолжает отображение $x_i \mapsto g_i, \ i=1,\ldots,n$ (подробности см. в $[4,\S 1.9]$).

3. Копредставление групповых расширений

Пусть $1 \to N \stackrel{\iota}{\to} G \stackrel{\pi}{\to} Q \to 1$ — короткая точная последовательность групп. Предположим, что N имеет копредставление $\langle \overline{Y} \mid \overline{S} \rangle$ и Q — копредставление $\langle \overline{X} \mid \overline{R} \rangle$. Используя эту информацию, можно описать копредставление группы G. Пусть Y — образ \overline{Y} под действием $\iota: \overline{y} \mapsto y$ и

$$S = \{ s \mid \bar{s} \in \overline{S} \},\$$

где s — слово от Y, полученное из \bar{s} заменой каждого \bar{y} на y. Выберем множество представителей $X\subseteq G$ так, что $x\pi=\bar{x}\in\overline{X}$ для всех $x\in X$. Для каждого $\bar{r}\in\overline{R}$ пусть r обозначает слово от X, полученное из \bar{r} заменой каждого \bar{x} на x. Ясно, что r как элемент группы G лежит в $\ker\pi=\mathrm{Im}\,\iota$ и, значит, является словом, скажем, w_r от Y. Определим

$$R = \left\{ rw_r^{-1} \mid \bar{r} \in \overline{R} \right\}.$$

Поскольку ${\rm Im}\,\iota \le G$, элемент $x^{-1}yx$ лежит в ${\rm Im}\,\iota$ для всех $y\in Y,\ x\in X$ и, значит, является словом, скажем, w_{xy} от Y. Положим

$$T = \left\{ x^{-1} y x w_{xy}^{-1} \mid \bar{x} \in \overline{X}, \ \bar{y} \in \overline{Y} \right\}.$$

Предложение 3 [5, предложение 10.2.1; 3, предложение 2.55]. *В принятых* выше обозначениях $\langle X \cup Y \mid R \cup S \cup T \rangle$ — копредставление группы G.

4. Доказательство предложения 2

Напомним, что $\Omega_1(P)$ обозначает подгруппу p-группы P, порожденную всеми элементами порядка p.

Доказательство предложения 2 проведем индукцией по |P|. Если |P|=1, то утверждение справедливо. Предположим, что |P|>1, и пусть $N=\Omega_1({\rm Z}(P))$. Заметим, что N — нетривиальная элементарная абелева p-группа и

$$1 \to N \xrightarrow{\iota} P \to Q \to 1$$

— центральное расширение. По индукции Q обладает конечным копредставлением $\langle \overline{X} \mid \overline{R} \rangle$, удовлетворяющим требуемому свойству. Ясно, что N также имеет требуемое копредставление $\langle \overline{Y} \mid \overline{S} \rangle$, где \overline{Y} конечно и

$$\overline{S} = \{ \bar{y}^p, \ [\bar{y}_1, \bar{y}_2] \mid \bar{y}, \bar{y}_1, \bar{y}_2 \in \overline{Y} \}.$$

Заметим, что в качестве \overline{Y} можно выбрать произвольный базис группы N. Определим множества порождающих X,Y и определяющих слов R,S,T, как перед предложением 3, где G=P. Поскольку определяющие слова из S переписаны из слов \overline{S} , они обладают требуемым свойством, т. е. сумма показателей каждого порождающего в каждом слове кратна p. Так как подгруппа $\operatorname{Im}\iota$ центральна в P, имеем $w_{xy}=y$ для всех $x\in X,y\in Y$, значит, T состоит из коммутаторов, обладающих требуемым свойством. Рассмотрим слова rw_r^{-1} из R. Исключим некоторые из них, а в оставшихся заменим подслова w_r новыми, удовлетворяющими требуемому условию.

В самом деле, можно выбрать минимальное линейно независимое подмножество множества

$$W = \{w_r \mid r \in R\} \subseteq \operatorname{Im} \iota$$

и дополнить его до базиса группы ${\rm Im}\,\iota$. Как было отмечено, без ограничения общности можно считать, что этот базис совпадает с Y. Все порождающие

 $y = w_r \in W \cap Y$ можно исключить, подставив их в другие слова, поскольку есть соотношения $w_r = r$, где r не содержит ни одного $y \in Y$. Оставшиеся слова $w_r \in W \setminus Y$ являются линейными комбинациями таких порождающих, значит, после подстановки они станут словами от R, обладающими нужным свойством по индукции. Слова из $S \cup T$ являются коммутаторами и степенями вида y^p и, стало быть, также сохранят требуемое свойство после подстановки. Получившееся копредставление группы P, очевидно, удовлетворяет требуемому условию. Предложение доказано.

5. Доказательство основной теоремы

Будет использован следующий результат.

Предложение 4 (теорема Гашюца [6, (10.4)]). Пусть p — простое число, V — нормальная абелева p-подгруппа конечной группы G и $P \in \mathrm{Syl}_p(G)$. Тогда G расщепляется над V в том и только том случае, когда P расщепляется над V.

Теперь можем доказать теорему 1.

Доказательство теоремы 1. Обозначим $\omega_0 = \sum_{\omega \in \Omega} \omega$. Пусть, напротив, существует $\omega \in \Omega$ такой, что $S = \operatorname{St}(\omega)$ не поднимается в H. Пусть $P \in \operatorname{Syl}_p(S)$. Поскольку A — абелева p-группа, из предложения 4 следует, что P не поднимается в H. Пусть $\langle X \mid R \rangle$ — конечное копредставление группы P, обладающее свойством $\log_x(r) \equiv 0 \pmod{p}$ для любых $x \in X$, $r \in R$. Такое копредставление существует по предложению 2.

Пусть $F = F\langle X \rangle$ — свободная группа с базисом $X = \{x_1, \dots, x_n\}$. Для каждого $x \in X$ обозначим $\underline{x} = x\gamma \in P$, где $\gamma : F \to P$ — копредставляющий гомоморфизм, и выберем $\bar{x} \in H$ так, что

$$\bar{x}\pi = \underline{x},$$
 (6)

где π из (2). Существует определяющее слово $r=r(x_1,\ldots,x_n)\in R$ такое, что $\bar{r}=r(\bar{x}_1,\ldots,\bar{x}_n)\neq 1$ в группе H. В самом деле, в противном случае подгруппа

$$\overline{P} = \langle \bar{x} \mid x \in X \rangle \leqslant H$$

удовлетворяла бы тем же соотношениям, что и P, значит, отображение $[x\mapsto \bar{x}]$, $x\in X$, продолжалось бы до гомоморфизма $\sigma:P\to \overline{P}$ со свойством $\sigma\pi=\mathrm{id}_P$. Но это значит, что группа \overline{P} являлась бы расщеплением полного прообраза $P\pi^{-1}$ вопреки допущению.

Поскольку

$$\bar{r}\pi = r(\underline{x}_1, \dots, \underline{x}_n) = 1, \tag{7}$$

имеем $\bar{r}=a\iota$ для некоторого ненулевого элемента $a\in A$. По предположению H — подрасширение в $G \wedge V$ относительно вложения (1). Значит,

$$\bar{r}\beta = a\iota\beta = a\alpha = a\omega_0,$$

где вложения α и β такие, как в (3). (Мы отождествляем группу V с ее образом в $G \wedge V$.) Можно также записать $\bar{x}_i\beta = g_iv_i, i=1,\ldots,n$, для подходящих $g_i \in G$, $v_i \in V$. Заметим, что $g_i = \underline{x}_i$ в силу (6) и коммутативности диаграммы (3). Пусть $r = x_{i_1}^{\varepsilon_1} \dots x_{i_l}^{\varepsilon_l}$, где $i_k \in \{1,\ldots,n\}$, $\varepsilon_k = \pm 1, \ k = 1,\ldots,l$. Определим

гомоморфизм $F \to G \wedge V$, продолжая отображение $x_i \mapsto \underline{x}_i v_i, i = 1, \dots, n$. Используя (5) и (7), имеем

$$a\omega_{0} = \bar{r}\beta = r(\bar{x}_{1}\beta, \dots, \bar{x}_{n}\beta) = r(\underline{x}_{1}v_{1}, \dots, \underline{x}_{n}v_{n}) = r(\underline{x}_{1}, \dots, \underline{x}_{n})$$

$$\times \left(v_{1}\frac{\partial r}{\partial \underline{x}_{1}} + \dots + v_{n}\frac{\partial r}{\partial \underline{x}_{n}}\right) = v_{1}\sum_{\{k|i_{k}=1\}} \varepsilon_{k}\underline{f}_{k} + \dots + v_{n}\sum_{\{k|i_{k}=n\}} \varepsilon_{k}\underline{f}_{k}, \quad (8)$$

где $f_k \in F$ определяется равенством (4) и $\underline{f}_k = f_k \gamma \in P$. Можно разложить

$$V = A\omega \oplus V_0$$
,

где $V_0 - A$ -линейная оболочка множества $\Omega \setminus \omega$, и записать $v_i = a_i \omega + w_i$, $i = 1, \ldots, n$, для подходящих $a_i \in A$ и $w_i \in V_0$. Поскольку элемент $\underline{f}_k \in S$ стабилизирует ω , он также стабилизирует V_0 . Поэтому правая часть (8) может быть переписана так:

$$a_1 \left(\sum_{\{k \mid i_k = 1\}} \varepsilon_k \right) \omega + w_1' + \dots + a_n \left(\sum_{\{k \mid i_k = n\}} \varepsilon_k \right) \omega + w_n', \tag{9}$$

где $w_i' = \sum\limits_k arepsilon_k w_i \underline{f}_k$ лежит в V_0 для каждого i. Заметим, что

$$\sum_{\{k|i_k=i\}} \varepsilon_k = \log_{x_i}(r) \equiv 0 \pmod{p}$$

для каждого i по предположению. Так как кольцо A имеет характеристику p, элемент (9) равен $\sum_i w_i' = w'$ и принадлежит V_0 . Сравним коэффициенты при ω элементов w' и $a\omega_0$. Поскольку V свободен как A-модуль, эти коэффициенты должны совпадать. Однако первый равен нулю, а второй $-a \neq 0$; противоречие. Теорема доказана.

ЛИТЕРАТУРА

- 1. Zavarnitsine A. V. Subextensions for a permutation $PSL_2(q)$ -module // Sib. Electron. Math. Rep. 2013. V. 10. P. 551–557.
- Zavarnitsine A. V. Embedding central extensions of simple linear groups into wreath products // Sib. Electron. Math. Rep. 2016. V. 13. P. 361–365.
- 3. Holt D. F., Eick B., O'Brien E. A. Handbook of computational group theory. Boca Raton, FL: Chapman & Hall/CRC Press, 2005. (Discrete Math. Appl.).
- Кузьмин Ю. В. Гомологическая теория групп. М.: Факториал пресс, 2006. (Adv. Stud. Math. Mech.; V. 1).
- Johnson D. L. Presentations of groups. 2nd ed.. Cambridge: Camb. Univ. Press, 1997. (London Math. Soc. Student Texts; V. 15).
- Aschbacher M. Finite group theory. 2nd ed. Cambridge: Camb. Univ. Press, 2000. (Camb. Stud. Adv. Math.; V. 10).

Статья поступила 10 июня 2017 г.

Заварницин Андрей Витальевич Институт математики им. С. Л. Соболева СО РАН, пр. Академика Коптюга, 4, Новосибирск 630090 zav@math.nsc.ru