ХАРАКТЕРИЗАЦИЯ ПРОСТЫХ СИМПЛЕКТИЧЕСКИХ ГРУПП РАЗМЕРНОСТИ 4 НАД ЛОКАЛЬНО КОНЕЧНЫМИ ПОЛЯМИ ХАРАКТЕРИСТИКИ 2 В КЛАССЕ ПЕРИОДИЧЕСКИХ ГРУПП

Д. В. Лыткина, В. Д. Мазуров

Аннотация. Доказывается, что если любая конечная подгруппа четного порядка периодической группы, содержащей элемент порядка 2, содержится в подгруппе, изоморфной простой симплектической группе размерности 4 над некоторым конечным полем характеристики 2, то эта группа изоморфна простой симплектической группе $S_4(Q)$ над некоторым локально конечным полем Q характеристики 2.

 $DOI\,10.17377/smzh.2017.58.512$

Ключевые слова: периодическая группа, период, симплектическая группа, локально конечная группа.

Любая простая группа G лиева типа X над локально конечным полем P является объединением возрастающей последовательности конечных простых групп типа X над конечными подполями поля P, поэтому любая конечная подгруппа группы G содержится в конечной простой подгруппе из G, изоморфной $X(p^m)$, где p— характеристика P, а m— некоторое натуральное число. Для локально конечных групп верно и обратное: если G— локально конечная группа, в которой каждая конечная подгруппа содержится в конечной простой подгруппе группы G, изоморфной группе данного лиева типа X над конечным полем фиксированной характеристики p, то $G \simeq X(P)$ для некоторого локально конечного поля P характеристики p.

Действительно, группа G, очевидно, проста. Она линейна по знаменитой теореме А. И. Мальцева [1] и поэтому счетна (см. [2, теорема 1.L.2]). Следовательно, она является объединением возрастающей последовательности конечных групп, изоморфных группам типа X над конечными полями. Результаты работ [3–6] показывают, что это объединение изоморфно X(P).

Можно ли здесь условие локальной конечности заменить условием периодичности группы G?

Этот чрезвычайно сложный вопрос к настоящему времени решен положительно (в контексте более общих результатов) лишь для групп типов A_1 , A_2 , 2A_2 , 2C_2 , 2G_2 , в частности, для всех групп лиева ранга 1 [7–14].

Данная работа посвящена группам типа C_2 , т. е. простым симплектическим группам размерности 4, над полями характеристики 2.

Работа выполнена за счет Российского научного фонда (проект № 14–21–00065).

Теорема. Пусть G — периодическая группа, содержащая элемент порядка 2. Если любая ее конечная подгруппа четного порядка содержится в подгруппе, изоморфной простой симплектической группе размерности 4 над некоторым конечным полем характеристики 2, то G изоморфна простой симплектической группе $S_4(Q)$, где Q — некоторое локально конечное поле характеристики 2.

§ 1. Предварительные сведения

Пусть W — векторное пространство четной размерности $2m \ge 4$ над полем F, снабженное знакопеременным скалярным произведением, т. е. невырожденной билинейной формой $(x,y), x,y \in W$, с условием (w,w)=0 для любого $w \in W$. Симплектической группой Sp(W) называется группа, состоящая из линейных преобразований $\varphi \in SL(W)$, для которых $(w\varphi, u\varphi) = (w, u)$ при любых $w, u \in W$. Выбор конкретного базиса W позволяет отождествить Sp(W) с группой Sp(2m,F), состоящей из матриц $a \in SL_{2m}(F)$, для которых $aJa^T = J$, где J — матрица скалярного произведения в выбранном базисе, a^T — транспонированная матрица a.

Центр Sp(2m,F) состоит из матриц вида $\pm E_{2m}$, где E_t обозначает единичную матрицу размерности t. Фактор-группа $S_{2m}(F) = S_p(2m,F)/\langle -E_{2m} \rangle$ проста при $m \geq 2$, за исключением $S_4(2) \simeq S_6$. Она называется простой сим плектической группой размерности 2m над полем F. Если характеристика Fравна 2, то, очевидно, $S_{2m}(F) = S_p(2m, F)$. Если F — конечное поле порядка q, то наряду с $S_{2m}(F)$ используется обозначение $S_{2m}(q)$.

Пусть далее $q=2^m\geq 4$. Базис W можно выбрать так, чтобы матрица

Лемма 1.1. Обозначим $S(q)=S_4(q)$. (1) $|S(q)|=(q^2-1)(q^4-1)q^4$.

$$V(q) = \left\{ egin{pmatrix} A & B \ \cdot & A \end{pmatrix} \mid A = egin{pmatrix} 1 & x \ \cdot & 1 \end{pmatrix}, \ B = egin{pmatrix} u & v \ r & t \end{pmatrix}, \ x, u, v, r, t \in GF(q), \ u+t+xr = 0
ight\}$$

является силовской 2-подгруппой S(q).

(3) Элементарная абелева группа

$$Z(q) = \left\{ egin{bmatrix} E_2 & B \ \cdot & E_2 \end{bmatrix} \mid B = egin{bmatrix} u & v \ \cdot & u \end{bmatrix}, \ u,v \in GF(q)
ight\}$$

совпадает с центром V(q), ее порядок равен q^2 ;

$$Z(q) = [V(q), V(q)] = \Phi(V(q)),$$

где $\Phi(H)$ означает подгруппу Фраттини группы H. B частности, V(q) периода 4и двуступенно нильпотентна.

(4) Группы

$$A_1(q) = \left\{ \begin{bmatrix} E_2 & B \\ \cdot & E_2 \end{bmatrix} \mid B = \begin{bmatrix} u & v \\ r & u \end{bmatrix}, \ u, v, r \in GF(q) \right\},$$

$$A_2(q) = \left\{ \begin{bmatrix} A & B \\ \cdot & A \end{bmatrix} \mid A = \begin{bmatrix} 1 & x \\ \cdot & 1 \end{bmatrix}, \ B = \begin{bmatrix} u & v + xu \\ \cdot & u \end{bmatrix}, \ x, u, v \in GF(q) \right\}$$

элементарные абелевы и являются максимальными абелевыми подгруппами V(q). Их порядки равны q^3 , при этом

$$V(q) = A_1(q)A_2(q), \quad A_1(q) \cap A_2(q) = Z(q),$$

и любая инволюция из V(q) содержится в $A_1(q) \cup A_2(q)$.

Eсли a- инволюция из $A_j(q),\, j=1,2,$ не принадлежащая Z(q), то $C_{V(q)}(a)=A_j(q).$

(5) Нормализатор V(q) в S(q) равен полупрямому произведению V(q) на группу $H(q) = H_1(q) \times H_2(q)$, где

$$H_1(q) = \left\{ \begin{bmatrix} 1 & \cdot & \cdot & \cdot \\ \cdot & r & \cdot & \cdot \\ \cdot & \cdot & r^{-1} & \cdot \\ \cdot & \cdot & \cdot & 1 \end{bmatrix} \mid r \in GF(q), \ r \neq 0 \right\},$$

$$H_2(q) = \left\{ \begin{bmatrix} r & \cdot & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & r^{-1} \end{bmatrix} \mid r \in GF(q), \ r \neq 0 \right\}.$$

 Π ри этом H(q) нормализует подгруппы

$$I_1(q) = \left\{ \begin{bmatrix} E_2 & R \\ \cdot & E_2 \end{bmatrix} \mid R = \begin{bmatrix} r & \cdot \\ \cdot & r \end{bmatrix}, \ r \in GF(q) \right\} \le Z(q),$$

$$I_2(q) = \left\{ \begin{bmatrix} E & T \\ \cdot & E \end{bmatrix} \mid T = \begin{bmatrix} \cdot & t \\ \cdot & \cdot \end{bmatrix}, \ t \in GF(q) \right\} \le Z(q).$$

Кроме того, H_1 действует при сопряжении свободно на $I_1(q)$ и централизует $I_2(q)$; H_2 действует свободно на $I_2(q)$ и централизует $I_1(q)$, а H(q) действует при сопряжении как регулярная группа подстановок на множестве

$$I_3(q) = \left\{ \begin{bmatrix} E_2 & U \\ \cdot & E_2 \end{bmatrix} \mid U = \begin{bmatrix} r & t \\ \cdot & r \end{bmatrix}, \ r,t \in GF(q), \ r \neq 0 \neq t \right\} \leq Z(q).$$

Далее, $Z(q) = I_1(q) \cup I_2(q) \cup I_3(q)$.

- (6) Нормализатор V(q) в S(q) совпадает с нормализатором Z(q) в S(q).
- (7) Нормализатор $N_1(q)$ подгруппы $A_1(q)$ в S(q) равен полупрямому произведению $A_1(q)$ на группу

$$P_1(q) = \left\{ \begin{bmatrix} X & \cdot \\ \cdot & (IX^TI)^{-1} \end{bmatrix} \mid X \in GL_2(q), \ I = \begin{bmatrix} \cdot & 1 \\ 1 & \cdot \end{bmatrix} \right\},$$

изоморфную $GL_2(q)$. Кроме того, $N_1(q)$ нормализует $I_1(q)$.

Нормализатор $N_2(q)$ подгруппы $A_2(q)$ в S(q) равен полупрямому произведению $A_2(q)$ на группу

$$P_2(q) = \left\{ \begin{bmatrix} \alpha & \cdot & \cdot \\ \cdot & A & \cdot \\ \cdot & \cdot & \alpha^{-1} \end{bmatrix} \mid \alpha \in GF(q), \ \alpha \neq 0, \ A \in SL_2(q) \right\},$$

изоморфную $GL_2(q)$. Кроме того, $N_2(q)$ нормализует $I_2(q)$.

- (8) Централизатор $[P_j(q), P_j(q)], j = 1, 2,$ в S(q) изоморфен $SL_2(q)$.
- $(9) \ N_1(q) \ и \ N_2(q)$ максимальны в S(q).

Доказательство. Пп. (1)–(8) проверяются непосредственными вычислениями. П. (9) вытекает из описания максимальных подгрупп группы S(q) (см. [15, табл. 8.14]). Лемма доказана.

Лемма 1.2. (1) BS(q) ровно три класса сопряженных инволюций, и любая инволюция из S(q) сопряжена с одной из следующих инволюций:

$$i_1 = egin{bmatrix} 1 & \cdot & 1 & \cdot \ \cdot & 1 & \cdot & 1 \ \cdot & \cdot & 1 & \cdot \ \cdot & \cdot & 1 \end{bmatrix} \in I_1(q), \quad i_2 = egin{bmatrix} 1 & \cdot & \cdot & 1 \ \cdot & 1 & \cdot & \cdot \ \cdot & \cdot & 1 \end{bmatrix} \in I_2(q),$$

$$i_3=i_1i_2=egin{bmatrix} 1 & \cdot & 1 & 1 \ \cdot & 1 & \cdot & 1 \ \cdot & \cdot & 1 & \cdot \ \cdot & \cdot & \cdot & 1 \end{bmatrix} \in I_3(q).$$

Централизатор i_k любой инволюции из $I_k(q)$ в S(q), k=1,2, совпадает с коммутантом нормализатора подгруппы $A_k(q)$. Централизатор любой инволюции

из $I_3(q)$ в S(q) совпадает с V(q). (2) $i_j^{N_j(q)}=i_j^{H_j(q)}=I_j(q)\setminus 1,\ j=1,2;\ N_j(q)$ действует транзитивно при сопряжении на множествах инволюций, принадлежащих $A_{j}(q)$ и сопряженных в S(q) соответственно с i_{3-j} и i_3 . При этом

$$\left|i_{j}^{N_{j}(q)}\right|=q-1, \quad \left|i_{3-j}^{N_{j}(q)}\right|=\left|i_{3-j}^{N_{j}(q)\cap C(i_{j})}\right|=q^{2}-1, \quad \left|i_{3}^{N_{j}(q)}\right|=(q^{2}-1)(q-1)$$

и любая инволюция из $A_j(q)$, сопряженная с i_j в S(q), содержится в $I_j(q)$. В частности, любые две инволюции из $i_{3-j}^{N_j(q)}$ сопряжены элементом из $C(i_i) \cap N_i(q)$.

- (3) Если $B_i(q)$ множество всех инволюций из $A_i(q)$, сопряженных с i_{3-i} в $N_j(q) \cap C(i_j)$, то $\langle B_j(q) \rangle = A_j(q)$.
- (4) Если a инволюция из $A_j(q)$, то в $(C_{S(q)}(a) \cap N_j(q))/A_j(q)$ элемент четного порядка является инволюцией.

Доказательство. (1) Вытекает из [16, пп. (7.6), (7.7)].

Справедливость (2) проверяется непосредственными вычислениями.

(3) Очевидно, размерность $A_{i}(q)$ как $GF(q)N_{i}(q)$ -модуля равна трем, поэтому если утверждение пункта неверно для j=1 или j=2, то в силу того, что $|B_j(q)|=q^2-1$, размерность $\langle B_j(q)\rangle$ как подмодуля $A_j(q)$ равна двум, откуда вытекает, что произведение любых двух элементов из $B_j(q)$ сно-

ва содержится в
$$B_j(q)$$
. Но если $a=i_1,\ x=\begin{bmatrix}1&\cdot&\cdot&\cdot\\\cdot&1&\cdot&\cdot\\\cdot&1&1&\cdot\\\cdot&\cdot&\cdot&1\end{bmatrix}$, то $x\in N_2(q)$

и
$$aa^x=\begin{bmatrix}1&1&\cdot&1\\\cdot&1&\cdot&\cdot\\\cdot&\cdot&1&1\\\cdot&\cdot&\cdot&1\end{bmatrix}
ot\in B_2(q)$$
 по [16, п. (7.7)]. Аналогично если $b=i_2,$

$$y=egin{bmatrix} \cdot & 1 & \cdot & \cdot \ 1 & 1 & \cdot & \cdot \ \cdot & \cdot & \cdot & 1 \ \cdot & \cdot & 1 & 1 \end{bmatrix}$$
, то $y\in N_1(q)$ и

$$bb^y = egin{bmatrix} 1 & \cdot & 1 & \cdot & \ \cdot & 1 & 1 & 1 & \ \cdot & \cdot & 1 & \cdot & \ \cdot & \cdot & \cdot & 1 & \end{bmatrix}
otin B_1(q).$$

(4) По п. (2) $|i_j^{N_j(q)}| + |i_{3-j}^{N_j(q)}| + |i_3^{N_j(q)}| = (q^3-1) = |A_j(q)|-1$, поэтому a сопряжена в $N_j(q)$ с $i_1,\ i_2$ или i_3 . Теперь справедливость п. (4) вытекает из леммы 1.1 с помощью непосредственных вычислений.

Лемма 1.3. Если x — элемент порядка 4 из V(q), то $x^2 \in I_3(q)$ и $C_{S(q)}(x^2)$ — 2-группа. Если x и y — элементы порядка 4 из V(q) и $x^2 = y^2$, то [x,y] = 1.

Доказательство. По лемме 1.2(2)

$$d=egin{bmatrix}1&1&\cdot&\cdot\ \cdot&1&1&1\ \cdot&\cdot&1&\cdot\ \cdot&\cdot&\cdot&1\end{bmatrix}\in V(q)$$

и $d^2=i_3$. Очевидно, все элементы из D=dZ(q) перестановочны, и их квадраты равны i_3 . Кроме того, по лемме 1.1 (пп. (5) и (4))

$$\left| \bigcup_{h \in H(q)} D^h \right| = |H(q)||D| = (q-1)^2 \cdot |Z(q)| = (q-1)^2 q^2 = |V(q)| - |A_1(q) \cup A_2(q)|.$$

Таким образом, $\bigcup_{h\in H(q)} D^h$ исчерпывает все элементы порядка 4 из V(q), и D^h —

множество всех элементов порядка 4 из V(q), квадраты которых равны i_3^h . Отсюда вытекает заключение леммы.

Лемма 1.4. Пусть $L=L_2(q),\ q=2^m,\ m\geq 2,\$ и $L_1,\ L_2-2$ -подгруппы L, изоморфные соответственно $L_2(q_1)$ и $L_2(q_2),$ такие, что нормализатор в L_1 ее силовской 2-подгруппы содержится в L_2 . Тогда $L_1\leq L_2$.

Доказательство использует хорошо известное описание подгрупп группы $L_2(q)$ [17, теорема II.8.27]. Пусть V_1 — силовская 2-подгруппа L_1 и V_2 — содержащая ее силовская 2-подгруппа из L_2 . Тогда $C_{L_2}(V_1)=V_2$, поэтому

$$N_{L_1}(V_1) \le N_{L_2}(V_2) = V_2 \cdot H_2,$$

где H_2 — циклическая подгруппа порядка q_2-1 . Так как $N_{L_1}(V_1)=V_1\cdot H_1$, где H_1 — циклическая подгруппа порядка q_1-1 , по теореме Шура можно считать, что $H_1\leq H_2$. Далее, $C_{L_2}(H_1)=H_2$, поэтому $N_{L_1}(H_1)\leq N_{L_2}(H_2)$.

Поскольку $N_{L_1}(H_1) = H_1 \cdot \langle t \rangle$, где t — инволюция, имеем $t \in L_2$. Так как $L_1 = \langle N_{L_1}(V_1), t \rangle$, то $L_1 \leq L_2$. Лемма доказана.

Лемма 1.5. Пусть $S_1 \leq S_2$, где $S_i \simeq S_4(q_i)$, q_i — степень числа 2, для i=1,2. Пусть $V_1,\,V_2$ — силовские 2-подгруппы групп S_1 и S_2 соответственно и $V_1 \leq V_2$.

Eсли a и b — инволюции из V_1 , не сопряженные в S_1 , то a и b не сопряжены в S_2 .

Доказательство. Предположим противное. Отождествим S_1 с S(q), V_1 — с V(q). По лемме 1.2 можно считать, что $a,b\in\{i_1,i_2,i_3\}$. Если $a=i_3$, то по лемме 1.3 $a=x^2$ для некоторого $x\in V_1\leq V_2$. Поэтому $C_{S_1}(b)\leq C_{S_2}(b)$ — 2-группа, и b сопряжена с a в S_1 по лемме 1.2. Тем самым можно считать, что $a=i_1,\,b=i_2$.

По лемме 1.1(4), примененной к S_2 , $C_a = C_{V_2}(A_1(q))$ и $C_b = C_{V_2}(A_2(q))$ — максимальные элементарные абелевы нормальные подгруппы в V_2 . Если $C_a = C_b$, то $V(q) = A_1(q)A_2(q) \le C_a$, что невозможно, поскольку V(q) — неабелева группа. По условию $a^{N_{S_2}(V_2)} = b^{N_{S_2}(V_2)}$. По лемме 1.1(5) $ab \in a^{N_{S_2}(V)}$ и $C_{S_2}(a)$ не является 2-группой, а с другой стороны, $ab = i_3$, поэтому $C_{S_2}(ab)$ — 2-группа по лемме 1.3, примененной к S_2 . Полученное противоречие доказывает лемму.

Лемма 1.6. Пусть P — периодическая группа, содержащая инволюцию. Если каждый элемент четного порядка из P является инволюцией, то выполнено одно из следующих утверждений.

- (a) Bсе 2-элементы из P составляют подгруппу.
- (б) $P = A\langle i \rangle$, где A инвариантная в P абелева подгруппа, не содержащая инволюций.
- (в) $P \simeq L_2(Q)$, где Q некоторое локально конечное поле характеристики 2.

Доказательство. Поскольку из условия сразу следует, что централизатор любой инволюции в P — группа периода 2, заключение леммы является частным случаем теоремы 2 из [18].

$\S 2$. Локальное строение G

Пусть выполнены условия теоремы. Если K — конечная подгруппа из G, то через $\mathfrak{M}(K)$ обозначим множество всех подгрупп G, содержащих K и изоморфных элементам из \mathfrak{M} . По условию $\mathfrak{M}(K)$ непусто для любой конечной подгруппы K четного порядка, поэтому множество $\mathfrak{M}(1)$ также непусто.

Лемма 2.1. Пусть b — элемент порядка 4 из G, $i=b^2$. Тогда $U=C_G(i)$ — силовская 2-подгруппа в G. Она двуступенно нильпотентна, периода 4 и, в частности, локально конечна. Любая 2-подгруппа, содержащая b, содержится в U. Если x — элемент порядка 4 из U, то x^2 — инволюция из центра U.

ДОКАЗАТЕЛЬСТВО. Очевидно, $b \in U$. Пусть $c \in U$. Тогда $\langle b, b^c \rangle / \langle i \rangle$ порождается двумя инволюциями, поэтому $B = \langle b, b^c \rangle$ — конечная группа четного порядка. По условию $B \leq S \in \mathfrak{M}(1)$.

Отождествим S с S(q) для подходящего q и сохраним все обозначения \S 1. Пусть V — силовская 2-подгруппа из S, содержащая b. Можно считать, что V=V(q). По лемме 1.3 $i\in I_3(q)$. Так как $B\leq C_S(i)$, по лемме 1.2(1) B — 2-группа и $B\leq V$. Снова по лемме 1.3 $[b,b^c]=1$, так как $i=b^2=(b^c)^2$. Таким образом, $\langle b^U \rangle$ — абелева 2-группа. Если c — нетривиальный элемент нечетного порядка, то $\langle b,c \rangle = \langle b,b^c,b^{c^2},\dots \rangle \langle c \rangle$ — расширение конечной абелевой 2-группы посредством конечной циклической, поэтому $C=\langle b,c \rangle$ — конечная группа четного порядка, централизующая инволюцию $i=b^2$. Таких подгрупп среди элементов $\mathfrak{M}(C)$ нет по леммам 1.3 и 1.2. Таким образом, U — 2-группа периода 4, и по результату Санова [19] она локально конечна. Так как конечные подгруппы из U двуступенно нильпотентны, U двуступенно нильпотентна.

Пусть $U \leq R$, где R — силовская 2-подгруппа из G. Поскольку R периода 4 и поэтому локально конечна, для любого элемента r из R подгруппа $K = \langle b, r \rangle$ конечна. Если $V(q_1)$ — силовская 2-подгруппа из $S_1 \in \mathfrak{M}(K)$, содержащая K, то по лемме 1.3 $i=b^2 \in Z(q_1)$, откуда r централизует i, т. е. $r \in C_G(i) = U$.

Пусть B — любая 2-подгруппа, содержащая b. Тогда B локально конечна по теореме Санова и для любого $x \in B$ группа $\langle x,b \rangle$ конечна и содержится в некоторой силовской 2-подгруппе некоторого элемента $S \in \mathfrak{M}(\langle x,b \rangle)$. По лемме $1.3 \ x \in C_G(b^2) = U$ и $B \leq U$.

Если x — элемент порядка 4 из U, то рассуждения предыдущего абзаца, примененные к x вместо b, показывают, что $U \leq C_G(x^2)$, т. е. $x^2 \in Z(U)$. Лемма показана

Для дальнейшего зафиксируем подгруппу $S \in \mathfrak{M}(1)$, отождествим ее с $S_4(q)$ для подходящего числа q и будем использовать для нее все обозначения из § 1.

Положим $i=i_3$ и $V=C_G(i)$. По леммам 1.3 и 2.1 V — силовская 2-подгруппа в G, содержащая V(q). По лемме 2.1 V двуступенно нильпотентна и периода 4. Положим $A_j=C_G(A_j(q)),\ j=1,2,\ Z=Z(V)$. Очевидно, $Z\leq A_j,\ j=1,2$.

Лемма 2.2. Любая инволюция из V сопряжена в G c инволюцией из Z(q).

Доказательство. По лемме $2.1\ V$ локально конечна. Пусть x — инволюция из $V,\ S_1\in\mathfrak{M}(1)$ — подгруппа, содержащая $\langle V(q),x\rangle,\ V_1$ — силовская 2-подгруппа из S_1 , содержащая $\langle V(q),x\rangle,$ и b — элемент порядка 4 из V(q), для которого $b^2=i$. Поскольку $b\in V_1$, то $i\in Z(V_1)$ по лемме 1.3. В силу леммы $1.2\ x$ сопряжена в S_1 с инволюцией из $Z(V_1)$, поэтому можно считать, что $x\in Z(V_1)$. По лемме 1.1(3)

$$Z(V(q)) = [V(q), V(q)] \le [V_1, V_1] \le Z(V_1).$$

Ни одна из инволюций i_1 и i_2 не может принадлежать $I_3(V_1)$, поскольку в противном случае ее централизатор в G является 2-группой, что неверно уже в S. Если $i_1, i_2 \in I_j(V_1)$, j равно 1 или 2, то их произведение по п. (5) леммы 1.1 также принадлежит $I_j(V_1)$, в то время как $i_1i_2 \in I_3(V)$, поэтому $C_{S_1}(i_1i_2)$ — 2-группа, что невозможно для элементов из $I_j(V_1)$.

Поскольку в S_1 по лемме 1.2 ровно три класса сопряженных инволюций, x сопряжена с одной из инволюций i, i_1, i_2 . Лемма доказана.

Лемма 2.3. Любая инволюция из G сопряжена c инволюцией из Z.

Доказательство. Пусть x — инволюция из G. Тогда $K=\langle i,x\rangle$ конечна и x сопряжена с инволюцией из силовской 2-подгруппы K, содержащей i, поэтому можно считать, что K — 2-группа. Если [i,x]=1, то $x\in V$, и утверждение вытекает из леммы 2.2. Если $[i,x]\neq 1$, то $t=(ix)^2$ — инволюция, централизующая i, поэтому $t\in V$, t сопряжена с инволюцией из Z(q), и поскольку t — квадрат элемента порядка 4, то $C_G(t)$ — 2-группа по лемме 2.1.

Из леммы 1.2 теперь вытекает, что t сопряжена с $i=i_3$. Таким образом, элемент x сопряжен с инволюцией из $C_G(i)=V$. По лемме 2.2 x сопряжен с элементом из $Z(q) \leq Z$.

Лемма 2.4. Любая силовская 2-подгруппа U из G, содержащая элемент x порядка 4, сопряжена c V, а x^2 сопряжен c i.

Доказательство. По лемме $2.1\ x^2\in Z(U)$ и $U=C_G(x^2)$. По лемме $2.3\ x^2$ сопряжен с элементом из Z, поэтому U содержит подгруппу U_1 , сопряженную с V. Поскольку U и U_1 — силовские подгруппы в G, то $U=U_1$. По лемме $2.2\ x^2$ сопряжен с инволюцией из Z(q). Так как $C_G(x^2)$ — 2-группа, x^2 сопряжен с $i_3=i$. Лемма доказана.

Лемма 2.5. Подгруппа A_j , j=1,2 (определенная после леммы 2.1), — нормальная в V элементарная абелева группа, и $V=A_1A_2$. Любая инволюция из V содержится в $A_1\cup A_2$, и $A_1\cap A_2=Z$.

Доказательство. Так как $i\in A_j(q)$, то $A_j=C_G(A_j(q))\leq C_G(i)=V$ по определению V. Поскольку $A_j\geq Z$, то $A_j\trianglelefteq V$. Пусть $x\in A_j$. Тогда $\langle V(q),x\rangle$ — конечная подгруппа из V, содержащаяся в силовской 2-подгруппе V_1 некоторой $S_1\in\mathfrak{M}(1)$. Пусть $a\in A_j(q)\setminus Z(q)$. Тогда $a\not\in Z(V_1)$ и по лемме 1.1(4) $C_{V_1}(a)$ — элементарная абелева группа. Так как $x\in C_{V_1}(a)$, то $x^2=1$. Таким образом, A_j — элементарная абелева группа.

Пусть $y\in V$. Тогда $K=\langle y,V(q)\rangle$ — конечная подгруппа из V, содержащаяся в некоторой силовской 2-подгруппе V_1 некоторой $S_1\in\mathfrak{M}_1(1)$. Поскольку i — квадрат некоторого элемента из V(q), по лемме 1.2(1) $i\in Z(V_1)$ и $V_1\leq C_G(i)=V$. По лемме 1.1(4) $V_1=C_{V_1}(A_1(q))\cdot C_{V_1}(A_2(q))\leq A_1A_2$. В частности, $y\in A_1A_2$ и $V=A_1A_2$. Если x — инволюция из V, то $\langle x,V(q)\rangle$ содержится в некоторой подгруппе $S_1\in\mathfrak{M}(1)$. По лемме 2.1 $V_1=V\cap S_1$ является силовской 2-подгруппой в S_1 , и по лемме 1.1(4) $x\in (A_1\cap V_1)\cup (A_2\cap V_1)$. Так как по доказанному выше $A_i=C_G(A_i\cap V_1),\, i=1,2$, то $x\in A_1\cup A_2$.

Поскольку $V=A_1A_2$ и A_i абелева, i=1,2, то $A_1\cap A_2\leq Z.$ С другой стороны, если $z\in Z,$ то z централизует $A_i(q),\ i=1,2,$ поэтому $z\in A_1\cap A_2.$ Лемма доказана.

Лемма 2.6. При j=1,2 подгруппа $N_j^0=N_G(A_j)\cap C_G(i_j)$ изоморфна расширению счетной 2-группы A_j посредством $L_2(Q_j)$, где Q_j — некоторое локально конечное поле характеристики 2.

Доказательство. Так как $i_j \in A_j$ и A_j абелева по лемме 2.5, $A_j \subseteq N_j^0$. Пусть \bar{c} — элемент четного порядка из N_j^0/A_j и c — его прообраз в N_j^0 . Поскольку A_j локально конечна, в N_j^0/A_j найдется конечная подгруппа X, содержащая $A_j(q)$, для которой $XA_j/A_j = \langle cA_j \rangle$.

Пусть S_1 — некоторая подгруппа из $\mathfrak{M}(1)$, содержащая X. По леммам 1.1(7) и 1.2(3) $C_{S_1}(i_j)=C_{S_1}(A_j(q))L$, где $L\simeq L_2(q_1)$ для некоторой степени q_1 числа 2, а $C_{S_1}(A_j(q))$ — элементарная абелева группа, нормальная в $C_{S_1}(i_j)$ и содержащаяся в A_1 . Положим $\overline{L}=C_{S_1}(ij)/C_{S_1}(A_j(q))$. Ясно, что $\overline{L}\simeq L$.

Таким образом, \overline{X} — циклическая группа четного порядка, содержащаяся в \overline{L} , и, следовательно, \overline{c} — инволюция.

Из леммы 1.5 без труда вытекает, что N_j^0/A_j изоморфна $L_2(Q_j)$ для некоторого поля Q_j характеристики 2.

Осталось доказать счетность A_i .

Поскольку $\overline{N} = C_G(i_j) \cap N_G(A_j)/A_j$ счетна, множество $\mathfrak N$ подгрупп \overline{N} , изоморфных $L_2(r)$, где $r=2^m, \ m=2,3,\ldots$, также счетно. Поэтому множество $\mathfrak A = \{\langle A_j(q)^X\rangle \mid X\in \mathfrak N\}$ также счетно. Докажем, что $A_j = \bigcup \{Y\mid Y\in \mathfrak A\}$.

Пусть $a \in A_j$, $S \in \mathfrak{M}(1)$, $S \geq \langle A_j(q), a \rangle$. Тогда $(S \cap N)/A_j \cap S = X \simeq L_2(r)$ для некоторого $r = 2^m$, $m = 2, 3, \ldots$, а $A_j \cap S = \langle A_j(q)^X \rangle$. Итак, $A_j = \bigcup \{Y \mid Y \in \mathfrak{A}\}$.

Поскольку $\mathfrak A$ счетно, а каждая Y конечна, A_j счетна. Лемма доказана.

Лемма 2.7. Пусть $C=C_G(i_k)$, где k равно 1 или 2. Тогда $V\leq C$ и любая силовская 2-подгруппа из C, содержащая элемент порядка 4, сопряжена в C c V.

Доказательство. Предположим противное. Обозначим $t=i_k$. По лемме 1.1(3) $t\in Z(V(q))=[V(q),V(q)]\leq [V,V]\leq Z$, поэтому $V\leq C_G(t)$. Пусть T- силовская 2-подгруппа из C, содержащая элемент b порядка 4. По лемме 2.4 $T\leq C_G(b^2)$.

Предположим вначале, что $ib^2=b^2i$. Тогда $ib^2\in C_G(i)=V,\ i\in C_G(b^2)=T$, поэтому $\langle b^2,i\rangle\leq V\cap T$. Если $V\cap T$ содержит элемент y порядка 4, то $T\leq C_G(y^2)=V,\ T\leq V,$ откуда T=V, и заключение леммы справедливо. Поэтому $D=V\cap T$ — элементарная абелева группа.

Так как $C_C(D) \leq C_C(i) \cap C_C(b^2) = V \cap T = D$, то $C_V(D) = D$ и V- силовская 2-подгруппа в $N_G(D)$. Пусть $\bar{a} \in V/D$, $\bar{b} \in T/D$ — инволюции, тогда $\langle \bar{a}, \bar{b} \rangle$ — конечная группа и с точностью до сопряжения в $C \langle \bar{a}, \bar{b} \rangle$ —2-группа.

Пусть R — силовская 2-подгруппа из C, для которой $R/D \geq \langle \bar{a}, \bar{b} \rangle$. Поскольку в полном прообразе $\langle \bar{a} \rangle$ содержится элемент порядка 4, $R \leq V$ по лемме 2.1, откуда R = V. Точно так же V = T.

Если $ib^2 \neq b^2i$, то снова можно считать, что $\langle i,b^2 \rangle - 2$ -группа. В $\langle i,b^2 \rangle$ содержится элемент c порядка 4, и $\langle i,b^2 \rangle \leq U = C_C(c^2)$. Так как $[c^2,i]=1$, как показано выше, U=V с точностью до сопряжения в C, т. е. можно считать, что $c \in V$ и $[c^2,b^2]=1$. Снова, как и выше, T=V с точностью до сопряжения в C. Лемма доказана.

Лемма 2.8. Элементы i_1 и i_2 не сопряжены в G.

ДОКАЗАТЕЛЬСТВО. Предположим противное. Пусть $i_1=i_2^x, x\in G$. Тогда V и V^x содержатся в $C(i_1)$ и по лемме 2.7 существует такой $y\in C(i_1)$, что $V=V^{xy}$. Таким образом, i_1 и i_2 сопряжены элементом t=xy из нормализатора V. Теперь $\langle V(q),t\rangle\leq S_2\in\mathfrak{M}(1)$. Пусть $S_1=S(q),\,V_1=V(q)$ и V_2 — силовская 2-подгруппа в S_2 , содержащая $V_1,\,a=i_1,\,b=i_2$. Тогда по лемме 1.5 a и b не сопряжены в S_2 ; противоречие. Лемма доказана.

Лемма 2.9. Элементы из A_j , j=1,2, сопряженные c i_j в G, вместе c 1 составляют группу I_j . Ее централизатор C_j в $N_G(A_j)$ совпадает c централизатором в $N_G(A_j)$ любой инволюции из I_j . Фактор-группа $N_G(A_j)/C_j$ является локально циклической группой. В частности, $N_G(A_j)$ — счетная локально конечная группа.

Доказательство. Пусть a, b — инволюции из A_j , сопряженные с i_j в G. По лемме $2.4\ X = \langle A_j(q), a, b \rangle$ — конечная элементарная абелева 2-группа. По условию она содержится в $S_1 \in \mathfrak{M}(1)$. Так как $C_{S_1}(A_j(q)) \leq C_G(A_j(q)) = A_j$ — элементарная абелева группа, $C_{S_1}(X) = C_{S_1}(A_j(q))$ — максимальная элементарная абелева 2-подгруппа в S_1 , лежащая в $C_{S_1}(i_j)$. Элементы a, b сопряжены с i_j в S_1 по лемме 1.5. По лемме 1.1(6) все элементы из $C_{S_1}(X)$, сопряженные в S_1 с i_j , образуют подгруппу. В частности, $ab \in I_j$.

Пусть $a\in I_j,\ x\in N_G(A_j),\ X=\langle x,a,A_j(q)\rangle$. Очевидно, X — конечная группа, содержащаяся, следовательно, в некоторой подгруппе $S\in\mathfrak{M}(1)$. Поэтому $X\cap A_j$ содержится в $C_S(A_j(q))$. Если при этом x централизует i_j , то по пп. (5) и (6) леммы 1.1 x централизует a, и наоборот. Таким образом, $C_{N_G(A_j)}(a)=C_{N_G(A_j)}(i_j)$.

Покажем, что $N_G(A_j)/C_j$ — локально циклическая группа. Пусть $x,y\in N_G(A_j),\ a=i_j^x,\ b=i_j^y,\ S$ — подгруппа из $\mathfrak{M}(1)$, содержащая $X=\langle A_j(q),a,b\rangle,$ $N=N_S(C_S(X))$. По лемме $1.1(4)\ N/C_S(X)$ — циклическая группа $\langle d\rangle$, действующая свободно и транзитивно на множестве инволюций I_j при сопряжении в N, поэтому найдутся числа r и s, для которых $i_j^{xd}=i_j,\ i_j^{yd^s}=i_j$ и, таким образом, $\langle x,y\rangle C_S(X)\leq \langle d\rangle C_S(X)$. Так как $C_S(X)\leq A_j$, то $\langle x,y\rangle A_j\leq \langle d\rangle A_j$, т. е. $\langle x,y\rangle A_j/A_j$ — циклическая группа, откуда вытекает, что $N_G(A_j)/C_j$ — локально циклическая и, в частности, локально конечная счетная группа. Лемма доказана.

Лемма 2.10. $C_G(i_i) \leq N_G(A_i), j = 1, 2.$

Доказательство. Обозначим $a=i_j,\ b=i_{3-j}$. Пусть $c\in C=C_G(ij)$. Тогда $K=\langle a,b,b^c\rangle$ — конечная подгруппа, содержащаяся в некотором элементе R из $\mathfrak{M}(K)$. По лемме 1.2(1) $C_R(a)$ изоморфна расширению элементарной абелевой 2-группы A посредством $L_2(r)$ для некоторого $r=2^s$. При этом по лемме 1.2(2) b и b^c содержатся в A и поэтому перестановочны.

Таким образом, $B = \langle b^C \rangle$ — элементарная абелева 2-группа, инвариантная относительно C. В частности, B инвариантна относительно $A_{j}(q)$, поэтому $BA_{i}(q)$ — локально конечная группа.

Предположим, что $B \nleq C_G(A_j(q))$. Тогда найдется $c \in C$ такой, что $b^c \not\in C_G(A_j(q))$. Пусть $\langle b^c, A_j(q) \rangle \leq R \in \mathfrak{M}(1)$. По леммам 1.2 и 1.1(7) $C_R(a) =$ AL, где A — элементарная абелева 2-группа, $L\simeq L_2(q_1),\ q_1=2^{r_1}.$ По лемме 1.1(4) $A_{j}(q) \leq A$, откуда $b^{c} \in A \leq C_{R}(A_{j}(q))$; противоречие. Поэтому $B \le C_G(A_j(q)) = A_j.$

Покажем, что $B = A_j$. Действительно, по лемме 2.9 A_j счетна и элементы из A_j , сопряженные в $N_G(A_j)$ с i_j , вместе с 1 составляют подгруппу. Поэтому A_j является объединением возрастающей цепи подгрупп $A_j(q) < A_j(q_1) < A_j(q_2) <$ \ldots , где $A_j(q_k)=A_j\cap S_k$ для некоторой подгруппы $S_k\simeq S_4(q_k)$. По лемме 1.2(3) $B_k=\langle b^c\mid c\in C(a)\cap N_{S_k}(A_j(q_k))
angle=A_j(q_k).$ Стало быть, $A_j\geq B\geq \bigcup_{i=1}^\infty B_k=0$ $igcup_{k=1}^{\infty}A_j(q_k)=A_j$, откуда $B=A_j$. Так как C нормализует B, то $C\leq N_G(A_j)$. Лемма доказана.

Лемма 2.11. Пусть $L_j = [P_j(q), P_j(q)], j = 1, 2$ (подгруппа $P_j(q)$ определена в лемме 1.1(7)). Тогда $C=C_G(L_i)\simeq L_2(Q)$ для некоторого локально конечного поля Q характеристики 2. B частности, C локально конечна.

ДОКАЗАТЕЛЬСТВО. Покажем вначале, что любой элемент четного порядка из C является 2-элементом. Предположим противное, и пусть x — элемент четного порядка из C, не являющийся 2-элементом. Тогда $L_j \leq C_G(x)$ и $\langle L_j, x \rangle \leq S \in \mathfrak{M}(1)$. Если t — инволюция из $\langle x \rangle$, то $\langle L_j, x \rangle \leq C_S(t)$. По лемме $1.2~C_S(t)$ — расширение 2-группы посредством группы $L_2(q_1)$ для некоторой степени q_1 числа 2. Поэтому для нетривиального элемента y нечетного порядка из $\langle x \rangle$ подгруппа $\langle L_j, y \rangle = L_j \times \langle y \rangle$ изоморфна подгруппе группы $L_2(q_1)$. Так как в $L_2(q_1)$ централизаторы инволюций являются 2-группами, эта ситуация невозможна.

Далее, по лемме 2.1~C не содержит элементов порядка 4, поэтому удовлетворяет условиям леммы 1.5. Поскольку по лемме 1.1(8) C содержит подгруппу, изоморфную $L_2(q)$, по лемме $1.5~C\simeq L_2(Q)$ для некоторого локально конечного поля Q характеристики 2. Лемма доказана.

Лемма 2.12. Для любого $j \in \{1,2\}$ существует содержащая $N_G(A_i)$ подгруппа G_j группы G, изоморфная $S_4(Q_j)$, где Q_j — поле, определенное в лемме 2.6.

Доказательство. По лемме $2.9 \ N_G(A_i)$ — локально конечная счетная группа, поэтому $N_G(A_j) = \{N_j(q), n_1, n_2, \dots, n_k, \dots\}$ для некоторого счетного множества $\{n_1, n_2, \ldots, n_k, \ldots\}$ элементов из $N_G(A_j)$. Построим по индукции последовательность подгрупп $S_0=S(q),\,S_1\simeq S_4(q_1),\,\ldots\,,\,S_k\simeq S_4(q_k),\,\ldots\,$ группы *G*, удовлетворяющую следующим условиям:

- $(1)\ N_k^j = S_k \cap N_G(A_j) \geq N_{k-1}^j = S_{k-1} \cap N_G(A_j)$ для $k=1,2,\ldots;$

 $(2) \bigcup_{j=1}^{\kappa} N_k^j = N_G(A_j);$ $(3) S_0 \leq S_1 \leq \cdots \leq S_k \leq \cdots$ Пусть $\langle N_j(q), n_1 \rangle \leq S_1 \in \mathfrak{M}(1), S_1 \simeq S_4(q_1).$ Тогда $A_j(q) \leq S_1$ и $C_G(A_j(q)) = S_1$ A_j , поэтому $C_{S_1}(A_j(q)) = A_j \cap S_1$ и $N_1^j = S_1 \cap N_G(A_j) = N_{S_1}(A_j \cap S_1) \ge N_j(q)$. Теперь $C_{S_1}(L_j) \simeq L_2(q_1)$ и $\langle C_S(L_j), C_{S_1}(L_j) \rangle \leq C_G(L_j)$, тем самым $C_{S_1}(L_j)$ содержится в $L_2(q_2)$. По лемме $1.4\,C_S(L_j) \le C_{S_1}(L_j)$. Отсюда $S_0 = \langle N_j(q), C_{S_0}(L_j) \rangle \le \langle N_1^j, C_{S_1}(L_j) \rangle = S_1$. Аналогично строятся S_2, \ldots . Очевидно, что объединение G_j последовательности (3) изоморфно $S_4(Q_j)$. Лемма доказана.

Лемма 2.13. G_j содержит $N_G(A_{3-j})$.

Доказательство. $N_G(A_{3-j})=A_{3-j}K_{3-j}\geq N_{G_j}(A_{3-j})=A_{3-j}\cdot K_j$, где $K_j\simeq GL_2(Q_j),\ K_{3-j}\simeq GL_2(Q_{3-j}),$ откуда Q_j изоморфна подполю поля Q_{3-j} . Симметрично, Q_{3-j} изоморфно подполю поля Q_j . Отсюда $Q_j=Q_{3-j}$, и лемма доказана.

Лемма **2.14.** $G_1 = G$.

Доказательство. По леммам 2.10 и 2.13 G_1 содержит $C_G(i_1)$ и $C_G(i_2)$. Так как $V \leq G_1$, то $C_G(i_3) \leq G_1$ и G_1 содержит централизатор любой своей инволюции. Пусть a — инволюция из G. Тогда a не сопряжена с i_1 или i_2 . Не нарушая общности, можно считать, что a не сопряжена с i_1 , поэтому ai_1 — элемент четного порядка, лежащий в централизаторе инволюции x из $\langle ai_1 \rangle$. В силу того, что x централизует i_1 , имеем $x \in G_1$. Поскольку a централизует x, то $a \in G_1$.

Итак, G_1 содержит все инволюции из G и потому содержит нормальную подгруппу G_0 из G, содержащую все инволюции. Если $G_0 \neq G$, то пусть $x \in G \setminus G_0$. Так как G_0 локально конечна, $\langle i, x \rangle$ — конечная группа четного порядка, содержащаяся по условию в простой подгруппе S. Поскольку $i \in G_0 \cap S \leq S$, то $G_0 \cap S = S$, откуда $x \in G_0$; противоречие. Поэтому $G = G_0 \leq G_1$ и $G_1 = G$. Лемма доказана. Вместе с ней доказана и теорема.

ЛИТЕРАТУРА

- **1.** *Мальцев А. И.* Об изоморфном представлении бесконечных групп матрицами // Мат. сб. 1940. Т. 8, N2 3. С. 405–422.
- 2. Kegel O. H., Wehrfritz B. A. F. Locally finite groups. Amsterdam: North-Holland, 1973.
- **3.** Беляев В. В. Локально конечные группы Шевалле // Исследования по теории групп. Свердловск: УНЦ АН СССР, 1984. С. 39–50.
- Боровик А. В. Вложения конечных групп Шевалле и периодические линейные группы // Сиб. мат. журн. 1983. Т. 24, № 6. С. 26–35.
- Hartley B., Shute G. Monomorphisms and direct limits of finite groups of Lie type // The Quat. J. Math. Oxford, Ser. 2. 1984. V. 35, N 137. P. 49–71.
- Thomas S. The classification of the simple periodic linear groups // Arch. Math. 1983. V. 41. P. 103–116.
- Лыткина Д. В. О группах, насыщенных конечными простыми группами // Алгебра и логика. 2009. Т. 48, № 5. С. 628–653.
- 8. Лыткина Д. В., Мазуров В. Д. Периодические группы, насыщенные группами $L_3(2^m)$ // Алгебра и логика. 2007. Т. 46, № 5. С. 606–626.
- 9. Лыткина Д. В., Тухватуллина Л. Р., Филиппов К. А. Периодические группы, насыщенные конечными простыми группами $U_3(2^m)$ // Алгебра и логика. 2008. Т. 47, № 3. С. 288–306.
- 10. Лыткина Д. В., Шлёпкин А. А. Периодические группы, насыщенные конечными простыми группами типов U_3 и L_3 // Алгебра и логика. 2016. Т. 55, № 4. С. 441–448.
- 11. Рубашкин А. Г., Филиппов К. А. О периодических группах, насыщенных группами $L_2(p^n)$ // Сиб. мат. журн. 2005. Т. 46, № 6. С. 1388–1392.
- Созутов А. И., Шлёпкин А. К. О некоторых группах с конечной инволюцией, насыщенных конечными простыми подгруппами // Мат. заметки. 2002. Т. 72, № 3. С. 433–447.
- 13. Филиппов К. А. О периодических группах, насыщенных конечными простыми группами // Сиб. мат. журн. 2012. Т. 53, № 2. С. 430–438.
- Шлёпкин А. К. О некоторых периодических группах, насыщенных конечными простыми группами // Мат. тр. 1998. Т. 1, № 1. С. 129–138.

- 15. Bray J. N., Holt D. F., Roney-Dougal C. M. The maximal subgroups of the low-dimensional finite classical groups. Cambridge: Camb. Univ. Press, 2013. (Lond. Math. Soc. Lect. Note Ser.).
- 16. Aschbacher M., Seitz G. Involutions in Chevalley groups over fields of even order // Nagoya Math. J. 1976. V. 63, N 1. P. 1–91. Correction in: Nagoya Math. J. 1978. V. 72, N 1. P. 135–136.
- 17. Huppert B. Endliche Gruppen. I. Berlin; Heidelberg; New York: Springer-Verl., 1979.
- 18. Мазуров В. Д. О бесконечных группах с абелевыми централизаторами инволюций // Алгебра и логика. 2000. Т. 39, № 1. С. 74–86.
- 19. *Санов И. Н.* Решение проблемы Бернсайда для показателя 4 // Уч. зап. Ленингр. гос. ун-та. Сер. мат. 1940. № 55. С. 166–170.

Статья поступила 9 июня 2017 г.

Лыткина Дарья Викторовна

Сибирский гос. университет телекоммуникаций и информатики,

ул. Кирова, 86, Новосибирск 630102;

Новосибирский гос. университет,

ул. Пирогова, 2, Новосибирск 630090

daria.lytkin@gmail.com

Мазуров Виктор Данилович

Институт математики им. С. Л. Соболева СО РАН,

пр. Академика Коптюга, 4, Новосибирск 630090;

Новосибирский гос. университет,

ул. Пирогова, 2, Новосибирск 630090

mazurov@math.nsc.ru