О СЛАБОЙ РАЗРЕШИМОСТИ ОБОБЩЕННОЙ МОДЕЛИ ВЯЗКОУПРУГОСТИ ФОЙГТА

В. П. Орлов, Д. А. Роде, М. А. Плиев

Аннотация. Устанавливаются существование и единственность слабого решения начально-краевой задачи для системы уравнений движения жидкости, являющейся дробным аналогом модели вязкоупругости Фойгта. Реологическое уравнение данной модели содержит производные дробного порядка.

 $DOI\,10.17377/smzh.2017.58.513$

Ключевые слова: вязкоупругая среда, уравнения движения, начально-граничная задача, слабое решение, модель вязкоупругости Фойгта, дробная производная.

1. Введение

Как хорошо известно, уравнение Коши движения жидкости, заполняющей ограниченную область $\Omega \subset R^N, \ N=2,3,\ \partial\Omega \in C^2$ (см. [1]) имеет вид

$$\rho\left(\frac{\partial v}{\partial t} + v_i \frac{\partial v}{\partial x_i}\right) = -\nabla p + \text{Div } \sigma + \rho f, \quad (t, x) \in Q_T = [0, T] \times \Omega. \tag{1.1}$$

Здесь $v(t,x)=(v_1(t,x),\ldots,v_N(t,x))$ — вектор скорости частицы в точке x области Ω в момент времени $t,\,\rho$ — плотность жидкости, p=p(t,x)— давление жидкости в точке x в момент времени $t,\,\sigma$ — девиатор тензора напряжений, f— плотность внешних сил, действующих на жидкость; Div σ — вектор, координатами которого являются дивергенции векторов-столбцов матрицы σ .

Тип сплошной среды (жидкости) определяется соответствующим уравнением состояния (реологическим соотношением) (см., например, [2, 3] и ссылки в них). Широкий спектр сплошных сред определяется с помощью реологического соотношения вида (см. [4])

$$\sum_{k=0}^{n} \sum_{i=0}^{s} b_{ki} D_{0t}^{k+\beta_{ki}} \sigma = \sum_{k=0}^{m} \sum_{i=0}^{r} a_{ki} D_{0t}^{k+\beta_{ki}} \varepsilon, \quad 0 \le \beta_k < 1,$$
(1.2)

где D_{0t}^{α} — дробная производная Римана — Лиувилля порядка $\alpha>0,\,\sigma$ — девиатор тензора напряжений, а ε — тензор деформации.

Частным случаем моделей (1.2) являются модели с целочисленными производными, такие как хорошо известные модели Ньютона, Максвелла, Фойгта, Джеффриса и др. (см., например, [2,3,5] и ссылки в них). При этом производные по времени в (1.2) могут быть обычными, субстанциональными и объективными.

Работа выполнена при финансовой поддержке Министерства образования и науки РФ (проект 14.Z50.31.0037).

Переход к моделям с дробными производными вызван потребностью изучения большого класса полимеров, в которых необходимо учитывать эффекты ползучести и релаксации. Оказывается, что подходящими для этого являются модели с дробными производными. Широко известными и используемыми являются модели Скотта Блэра, Зенера, Бюргерса, обобщенные модели Максвелла и Кельвина — Фойгта, описывающие специфические классы полимеров. В [6] дана механическая интерпретация этих моделей и приведен библиографический обзор.

В [7] отмечается, что многие авторы используют в равенстве (1.2) различные операторы дробного дифференцирования, например, дробные производные Грюнвальда — Летникова, Лиувилля, Капуто — Лиувилля, Римана — Лиувилля при условии обращения дифференцируемой функции в нуль в начале временного промежутка.

Простейшая дробная реологическая модель, устанавливающая пропорциональность напряжения дробной производной Римана — Лиувилля от деформации дана Скоттом Блэром [8]. А. Н. Герасимов [9] предложил аналогичное (1.2) соотношение с использованием дробной производной Римана — Лиувилля на всей числовой оси для изучения явлений аномального динамического поведения вязкоупругих материалов. Капуто и Майнарди [10, 11] построили модели, аналогичные моделям (1.2), с использованием дробных производных Капуто на всей числовой оси или полуоси.

В частности, использование производных Капуто приводит (см. [4]) к реологическому соотношению

$$\sum_{k=0}^{n} \sum_{i=0}^{s} b_{ki} D_{0t}^{\beta_{ki}} D^{k} \sigma = \sum_{k=0}^{m} \sum_{i=0}^{r} a_{ki} D_{0t}^{\beta_{ki}} D^{k} \varepsilon.$$
 (1.3)

Насколько нам известно, теорем о существовании и свойствах решений систем уравнений движения, соответствующих моделям с реологическими соотношениями, содержащими дробные производные, нет. Этому препятствует сингулярный характер интегральных представлений дробных производных и интегралов в отличие от целочисленных моделей (см. [12]).

Ниже мы ограничиваемся простейшим случаем дробной модели (1.3), являющейся аналогом модели Фойгта (см. [4]). Модель Фойгта (иногда называемая моделью Кельвина — Фойгта) определяется реологическим соотношением $\sigma = \mu_0 \mathscr{E} + \mu_1 D_t \mathscr{E}$ (см. [3, разд. 3.6]).

Данная дробная модель имеет механическую интерпретацию в виде параллельного соединения моделей Ньютона и Скотта Блэра (см. [6]). Элемент Ньютона $\mathcal N$ определяется реологическим соотношением $\sigma_1=\nu_1\dot{\varepsilon_1}$, а элемент Скотта Блэра SB — реологическим соотношением $\sigma_2=\nu_2D_{0t}^\alpha\varepsilon_2$, $0<\alpha<1$. Здесь

$$D_{0t}^{lpha}y(t)=\Gamma(1-lpha)\int\limits_{0}^{t}(t-s)^{-lpha}y'(s)\,ds$$

— дробная производная Капуто порядка α (Γ — гамма-функция Эйлера).

При параллельном соединении $\mathcal{N}||SB$ моделей Ньютона и Скотта Блэра справедливы соотношения $\sigma = \sigma_1 + \sigma_2$ и $\varepsilon = \varepsilon_1 = \varepsilon_2$, где σ и ε суть напряжение и деформация элемента $\mathcal{N}||SB$. Отсюда следует, что $\sigma = \nu\dot{\varepsilon_1} + \nu_2 D_{0t}^{\alpha}\varepsilon_2 = \nu\dot{\varepsilon} + \nu_2 D_{0t}^{\alpha}\varepsilon$.

Рассмотрим вязкоупругую жидкость с уравнением состояния вида $\sigma = \nu \dot{\varepsilon}_1 + \nu_2 D_{0t}^{\alpha} \varepsilon_2 = \nu \dot{\varepsilon} + \nu_2 D_{0t}^{\alpha} \varepsilon$. Полагая $\dot{\varepsilon} = \mathscr{E}(v)$ и выражая σ из уравнения состояния через тензор скоростей деформации $\mathscr{E}(v)$, получаем

$$\sigma = \mu_0 \mathscr{E}(v) + \mu_1 I_{0t}^{1-\alpha} \mathscr{E}(v), \quad 0 < \alpha < 1. \tag{1.4}$$

Здесь использовано соотношение $D_{0t}^{\alpha}y(t)=I_{0t}^{1-\alpha}y'(t)$, где

$$I_{0t}^{1-lpha}z(t)=rac{1}{\Gamma(1-lpha)}\int\limits_{0}^{t}(t-s)^{-lpha}\,z(s)\,ds$$

является дробным интегралом Римана — Лиувилля порядка $1-\alpha$ (см. [13, гл. 1, разд. 2.3]).

Подставляя полученное соотношение (1.4) в уравнение (1.1) и считая $\rho=1,$ получим начально-краевую задачу

$$\frac{\partial v}{\partial t} + \sum_{i=1}^{N} v_i \frac{\partial v}{\partial x_i} - \mu_0 \Delta v - \mu_1 \frac{1}{\Gamma(1-\alpha)} \operatorname{Div} \int_0^t (t-s)^{-\alpha} \mathscr{E}(v)(s,x) \, ds
+ \nabla p = f(t,x), \ (t,x) \in Q_T, \quad \operatorname{div} v(t,x) = 0, \ (t,x) \in Q_T, \quad (1.5)$$

$$v(0,x) = v^{0}(x), x \in \Omega, v(t,x) = 0, (t,x) \in [0,T] \times \partial\Omega.$$
 (1.6)

Здесь $\mathscr{E}(v)$ — тензор скоростей деформации, являющийся матрицей с компонентами

$$\mathscr{E}_{ij}(v) = rac{1}{2} \left(rac{\partial v_i}{\partial x_j} + rac{\partial v_j}{\partial x_i}
ight).$$

В настоящей работе устанавливается существование слабого решения начально-краевой задачи (1.5), (1.6). Структура работы следующая. В разд. 2 формулируется основной результат, в разд. 3 приводится доказательство существования решения, а в разд. 4 доказывается его единственность в плоском случае.

Константы в неравенствах и цепочках неравенств, не зависящие от существенных параметров, обозначаются одной буквой M.

2. Формулировка результатов

Будем использовать следующие обозначения. Нам понадобятся функциональные пространства V и H (см. [14, гл. 1, разд. 1.4]) соленоидальных функций. Пространство $V=\left\{v\in W_2^1(\Omega)^N:v|_{\Gamma}=0,\ \mathrm{Div}\,v=0\right\}$ гильбертово со скалярным произведением

$$(v,u)_V = \sum_{i,j=1}^N \int\limits_{\Omega} \mathscr{E}_{ij}(u) \cdot \mathscr{E}_{ij}(v) \, dx$$

и соответствующей нормой. Эта норма в пространстве V эквивалентна норме, индуцированной из пространства $W_2^1(\Omega)^N$. Пространство H является замыканием V в норме пространства $L_2(\Omega)^N$, V^{-1} — пространство, сопряженное к V. Знак $\langle g,u \rangle$ означает действие функционала $g \in V^{-1}$ на элемент $u \in V$.

Нормы в пространствах H, $L_2(\Omega)^N$ и $L_2(\Omega)^{N \times N}$ будем обозначать через $|\cdot|_0$, в V — через $|\cdot|_1$, в пространстве $W_2^\beta(\Omega)$ для $\beta \in R^1$ — через $|\cdot|_\beta$. Нормы

в $L_2(0,T;H)$ и $L_2(0,T;L_2(\Omega))$ обозначаются через $\|\cdot\|_0$, нормы в $L_2(0,T;V)$ и $L_2(0,T;L_2(\Omega))$ — через $\|\cdot\|_{0,1}$, а норма в пространстве $L_2(0,T;V^{-1})$ — через $\|\cdot\|_{0,-1}$.

Символом (\cdot,\cdot) обозначается скалярное произведение в гильбертовых пространствах $L_2(\Omega),\,H,\,L_2(\Omega)^N,\,L_2(\Omega)^{N\times N},$ в каких именно, ясно из контекста.

Введем функциональное пространство

$$W(a,b) \equiv L_2(a,b;V) \cap L^{\infty}(a,b;H) \cap W_1^1(a,b;V^{-1}).$$

Определение 2.1. Слабым решением задачи (1.5), (1.6) называется функция $v \in W(0,T)$, удовлетворяющая тождеству

$$\frac{d(v,\varphi)}{dt} - \sum_{i=1}^{N} \left(v_{i}v, \frac{\partial \varphi}{\partial x_{i}} \right) + \mu_{0}(\mathscr{E}(v), \mathscr{E}(\varphi)) + \mu_{1} \frac{1}{\Gamma(1-\alpha)} \left(I_{0t}^{1-\alpha} \mathscr{E}(v)(s,x) \, ds, \mathscr{E}(\varphi) \right) = \langle f, \varphi \rangle \quad (2.1)$$

при любой $\varphi \in V$ и п. в. $t \in [0,T]$ и условию (1.6).

Так как слабое решение v принадлежит пространству W(0,T), известно (см. [14, теорема III.3.1]), что $W(0,T) \subset C_w([0,T],H)$, где $C_w([0,T],H)$ — пространство слабо непрерывных на [0,T] функций со значениями в H. Поэтому начальное условие (1.6) имеет смысл.

Сформулируем основные результаты.

Теорема 2.1. Пусть $f \in L_2(0,T;V^{-1}), v^0 \in H$. Тогда задача (1.5), (1.6) имеет по крайней мере одно слабое решение.

Теорема 2.2. При N=2 в условиях теоремы 2.1 слабое решение задачи $(1.5),\,(1.6)$ единственно.

3. Доказательство теоремы 2.1

3.1. Последовательные приближения. Построим последовательные приближения $v^n,\ n=1,2,\ldots,$ определяемые как слабые решения вспомогательных залач

$$\frac{\partial v^n}{\partial t} + \sum_{i=1}^N v_i^n (1 + n^{-1}|v^n|^2)^{-1} \frac{\partial v^n}{\partial x_i} - \mu_0 \Delta v^n + \nabla p^n = w^n, \quad \text{div } v^n = 0, \quad (3.1)$$

$$v^{n}(0,x) = v^{0}(x), \ x \in \Omega, \quad v^{n}|_{[0,T] \times \partial \Omega} = 0.$$
 (3.2)

Здесь $|z|=\left(\sum\limits_{i=1}^N z_i^2\right)^{1/2}$ для $z=(z_1,\ldots,z_N)$, приближение $v^0(t,x)$ определяется как $v^0(t,x)=v^0(x)$, а

$$w^{n} = f + \mu_{1} \frac{1}{\Gamma(1-\alpha)} \operatorname{Div} \int_{0}^{t} (t-s)^{-\alpha} \mathscr{E}(v^{n-1})(s,x) \, ds. \tag{3.3}$$

Обозначим $W^*(0,T) \equiv L_2(0,T;V) \cap C_w([0,T];H) \cap L_\infty(0,T;H) \cap W_2^1(0,T;V^{-1})$. Под слабым решением задачи (3.1)–(3.3) будем понимать функцию $v^n \in W^*(0,T)$, удовлетворяющую начальному условию (3.2) и тождеству

$$\frac{d(v^n,\varphi)}{dt} - \sum_{i=1}^N \left(v_i^n (1+n^{-1}|v|^2)^{-1} v^n, \frac{\partial \varphi}{\partial x_i} \right) + \mu_0(\mathscr{E}(v^n),\mathscr{E}(\varphi)) = \langle w^n, \varphi \rangle \quad (3.4)$$

при любой $\varphi \in V$ и п. в. t.

В [15, разд. 5.4] установлена

Лемма 3.1. При заданных $w^n \in L_2(0,T;V^{-1})$ и $v^0 \in H$ задача (3.1), (3.2) имеет слабое решение $v^n \in W^*(0,T)$, для которого справедливы оценки

$$\sup_{t} |v^{n}(t,\cdot)|_{0} + ||v^{n}||_{0,1} \le M_{0}(||w^{n}||_{0,-1} + |v^{0}|_{0}), \tag{3.5}$$

$$\left\| \frac{\partial v^n}{\partial t} \right\|_{L_1(0,T;V^{-1})} \le M_1(\|w^n\|_{0,-1} + |v^0|_0 + 1)^2 \tag{3.6}$$

c не зависящими от n константами M_0 и M_1 .

Покажем, что последовательные приближения v^n определены корректно. Для этого достаточно показать, что если v^{n-1} определено, то зависящая от v^{n-1} правая часть (3.1) w^n принадлежит $L_2(0,T;V^{-1})$.

Очевидно, что $w^1 \in L_2(0,T;V^{-1})$. Пусть найдено $v^{n-1} \in W(0,T)$. Покажем, что $w^n \in L_2(0,T;V^{-1})$. Легко видеть, что

$$|w^n|_{-1} \le |f|_{-1} + \mu_1 \frac{1}{\Gamma(1-\alpha)} \left| \text{Div} \int_0^t (t-s)^{\alpha-1} \mathscr{E}(v^{n-1})(s,\cdot) \, ds \right|_{-1}.$$
 (3.7)

Пусть $\mathscr{A}(x)$ — матричная функция. Нетрудно показать (см., например, [16, 17]), что $|\operatorname{Div}\mathscr{A}|_{-1} \leq M|\mathscr{A}|_0$. Следовательно,

$$\left| \text{Div} \int_{0}^{t} (t-s)^{\alpha-1} \mathcal{E}(v^{n-1})(s,\cdot) \, ds \right|_{-1} \le M \left| \int_{0}^{t} (t-s)^{\alpha-1} \mathcal{E}(v^{n-1})(s,\cdot) \, ds \right|_{0}. \quad (3.8)$$

Отсюда в силу неравенства

$$\left\| \int_{0}^{t} (t-s)^{\alpha-1} \varphi(s) ds \right\|_{L_{p}(0,T)} \le M T^{1-\alpha} \Gamma(1-\alpha) \|\varphi(s)\|_{L_{p}(0,T)},$$

$$1 \le p < +\infty, \quad \varphi(s) \in L_{p}(0,T)$$
(3.9)

(см. [13]), при p=2 следует, что

$$\left\| \operatorname{Div} \int_{0}^{t} (t-s)^{\alpha-1} \mathscr{E}(v^{n-1})(s,x) \, ds \right\|_{0,-1} \le MT^{1-\alpha} \|\mathscr{E}(v^{n-1})\|_{0} \le MT^{1-\alpha} \|v^{n-1}\|_{0,1}.$$
(3.10)

Из оценок (3.7) и (3.10) получаем, что

$$||w^n||_{0,-1} \le ||f||_{L_2(0,T;V^{-1})} + MT^{1-\alpha}||v^{n-1}||_{0,1}.$$
(3.11)

Отсюда вытекают принадлежность $w^n \in L_2(0,T;V^{-1})$, существование в силу леммы 3.1 решения $v^n \in W^*(0,T)$ задачи (3.1)–(3.3) и, следовательно, корректность определения приближений v^n .

Установим некоторые свойства v^n .

Лемма 3.2. Пусть T достаточно мало. Для решения v^n задачи (3.1)–(3.3) справедливы оценки

$$\sup_{t} |v^{n}(t,\cdot)|_{0} + ||v^{n}||_{0,1} \le M(||f||_{0,-1} + |v^{0}|_{0}), \tag{3.12}$$

$$\left\| \frac{\partial v^n}{\partial t} \right\|_{L_1(0,T;V^{-1})} \le M(\|f\|_{0,-1} + |v^0|_0 + 1)^2. \tag{3.13}$$

Доказательство. Из оценок (3.5) и (3.10) следует, что

$$||v^{n}||_{0,1} \leq M_{0} \left(||f||_{0,-1} + \left\| \operatorname{Div} \int_{0}^{t} (t-s)^{\alpha-1} \mathscr{E}(v^{n-1})(s,x) \, ds \right\|_{0,-1} + |v^{0}|_{0} \right)$$

$$\leq M_{0} (||f||_{0,-1} + M_{1} T^{1-\alpha} ||\mathscr{E}(v^{n-1})||_{0} + |v^{0}|_{0})$$

$$= M_{0} (||f||_{0,-1} + |v^{0}|_{0}) + M_{0} M_{1} T^{1-\alpha} ||v^{n-1}||_{0,1} = \mathscr{M}(f,v^{0}) + q ||v^{n-1}||_{0,1}.$$
 (3.14)

Здесь $\mathcal{M}(f,v^0)=M_0(\|f\|_{0,-1}+|v^0|_0).$ Пусть T_0 таково, что $q=M_1T_0^{1-\alpha}<1.$ Пусть $T\leq T_0.$ Используя оценку (3.14), получаем

$$||v^{n}||_{0,1} \leq \mathcal{M}(f, v^{0}) + q(\mathcal{M}(f, v^{0}) + q||v^{n-2}||_{0,1}) \leq \mathcal{M}(f, v^{0}) + \mathcal{M}(f, v^{0})q$$

$$+ q^{2}||v^{n-2}||_{0,1} \leq \mathcal{M}(f, v^{0})(1+q) + q^{2}(\mathcal{M}(f, v^{0}) + q^{2}||v^{n-3}||_{0,1})$$

$$= \mathcal{M}(f, v^{0})(1+q+q^{2}) + q^{3}||v^{n-3}||_{0,1} \leq \mathcal{M}(f, v^{0}) \sum_{k=0}^{n} q^{k} + q^{n}||v^{0}||_{0,1}$$

$$\leq \mathcal{M}(f, v^{0})(1-q)^{-1} + M|v^{0}|_{0}. \quad (3.15)$$

Из оценок (3.5), (3.11) и (3.15) легко следует неравенство

$$\sup_{t} |v^{n}(t,\cdot)|_{0} \le M(\|f\|_{0,-1} + |v^{0}|_{0}). \tag{3.16}$$

Из (3.15) и (3.16) вытекает, что при всех n справедлива оценка (3.12).

Установим оценку (3.13). Из неравенств (3.6), (3.11) и (3.12) вытекает справедливость неравенства

$$\left\| \frac{\partial v^n}{\partial t} \right\|_{L_1(0,T;V^{-1})} \le M(\|w^n\|_{0,-1} + |v^0|_0 + 1)^2 \le M(\|f\|_{0,-1} + \|v^{n-1}\|_{0,1} + 1)^2. \tag{3.17}$$

Оценка (3.12) установлена.

Лемма 3.2 доказана.

Из оценок (3.16) и (3.17) следует (см. [18]), что последовательность v^n сходится к некоторой v слабо в $L_2(0,T;V)$, *-слабо в $L_\infty(0,T;H)$ и сильно в $L_2(Q_T)^N$ (с точностью до подпоследовательности).

3.2. Предельный переход. Сделаем предельный переход в задаче (3.1)— (3.3). Из определения слабого решения задачи (3.1)–(3.3) вытекает, что справедливо тождество

$$egin{aligned} &(v^n(T,\cdot),arphi(\cdot)) - \sum_{i=1}^N \int\limits_0^T \left(v_i^n(1+n^{-1}|v^n|^2)^{-1}v^n,rac{\partialarphi}{\partial x_i}
ight)\,ds \ &+ \mu_0 \int\limits_0^T (\mathscr{E}(v^n)(s,\cdot),\mathscr{E}(arphi)(\cdot))\,ds \end{aligned}$$

$$+ \mu_1 \frac{1}{\Gamma(1-\alpha)} \int_0^T \left(\int_0^t (t-s)^{-\alpha} \mathscr{E}(v^{n-1})(s,\cdot) \, ds, \mathscr{E}(\varphi)(\cdot) \right) \, ds dt$$

$$= \int_0^T \langle f, \varphi \rangle \, ds + (v^0, \varphi), \quad \varphi \in V. \quad (3.18)$$

Пусть

$$egin{align} I_1(n) &= (v^n(T,\cdot),arphi(\cdot)), \quad I_2(n) = \sum_{i=1}^N \int\limits_0^T \left(v_i^n(1+n^{-1}|v^n|^2)^{-1}v^n,rac{\partialarphi}{\partial x_i}
ight)\,ds, \ I_3(n) &= \mu_0 \int\limits_0^T (\mathscr{E}(v^n)(s,\cdot),\mathscr{E}(arphi)(\cdot))\,ds, \ I_4(n) &= \int\limits_0^T \left(\int\limits_0^t (t-s)^{-lpha}\,\mathscr{E}(v^{n-1})(s,x)\,ds,\mathscr{E}(arphi)(\cdot)
ight)dsdt. \ \end{aligned}$$

Запишем тождество (3.18) в виде

$$I_1(n)-I_2(n)+I_3(n)+\mu_1rac{1}{\Gamma(1-lpha)}I_4(n)=\int\limits_0^T\langle f,arphi
angle\,ds+(v^0,arphi)$$

и перейдем в (3.18) и (3.2) к пределу при $n \to +\infty$.

Из оценки (3.16) вытекает ограниченность v^n в $L_2(0,T;V)$, а из (3.17) и слабой непрерывности $v(t,\cdot)$ — ограниченность $v^n(T,x)$ в H. Без ограничения общности будем считать, что v^n слабо сходится к v в $L_2(0,T;H)$, а $v^n(T,x)$ слабо сходится к v(T,x) в H. Следовательно,

$$\lim_{n \to \infty} I_1(n) = (v(T, \cdot), \varphi(\cdot)), \quad \lim_{n \to \infty} I_3(n) = \int_0^T (\mathscr{E}(v)(s, \cdot), \mathscr{E}(\varphi)(\cdot)) dt. \tag{3.19}$$

Слабая сходимость v^n к v в $L_2(0,T;V)$ и сильная в $L_2(0,T;H)$ позволяют утверждать (см. [15, разд. 5.4]), что

$$\lim_{n \to \infty} I_2(n) = \sum_{i=1}^{N} \int_{0}^{T} \left(v_i v, \frac{\partial \varphi}{\partial x_i} \right) ds. \tag{3.20}$$

Рассмотрим $I_4(n)$. Меняя порядок интегрирования в $I_4(n)$, имеем

$$\begin{split} I_4(n) &= \int\limits_0^T \left(\int\limits_0^t (t-s)^{-\alpha} \mathscr{E}(v^{n-1})(s,x) \, ds, \mathscr{E}(\varphi)(x) \right) \, dy ds dt \\ &= \int\limits_0^T \left(\int\limits_\Omega \mathscr{E}(v^{n-1})(s,y) : \int\limits_s^T (t-s)^{-\alpha} \mathscr{E}(\varphi)(y) \right) \, dt dy ds \end{split}$$

$$=\int\limits_0^T\int\limits_\Omega\mathscr{E}(v^{n-1})(s,y):\psi(s,y)\,dyds,\quad \psi(s,y)=\int\limits_s^T(t-s)^{-\alpha}\mathscr{E}(\varphi)(y)\,dt.\quad (3.21)$$

Таким образом, в подынтегральном выражении члена

$$I_4(n) = \int\limits_0^T \int\limits_\Omega \mathscr{E}(v^{n-1}(s,y)) : \psi(s,y) \, ds dy \tag{3.22}$$

первый сомножитель сходится слабо в $L_2(Q_T)^{N\times N}$. Отсюда вытекает, что в (3.22) допустим предельный переход при $n\to +\infty$ и

$$I_4 = \lim_{n o +\infty} I_4(n) = \int\limits_0^T (\mathscr{E}(v)(s,\cdot), \int\limits_s^T \mathscr{E}(arphi)(\cdot)) \, ds dt.$$

Меняя порядок интегрирования, получаем

$$I_4 = \int\limits_0^T \int\limits_0^t (\mathscr{E}(v)(s,\cdot)), \mathscr{E}(arphi)(\cdot) \, ds dt.$$

Из установленной сходимости слагаемых $I_i(n)$ следует справедливость

$$(v(T,\cdot),\varphi(\cdot)) - \int_{0}^{T} \left(v_{i}v, \frac{\partial \varphi}{\partial x_{i}}\right) ds + \mu_{0} \int_{0}^{T} (\mathscr{E}(v)(t,\cdot),\mathscr{E}(\varphi)(\cdot)) dt + \mu_{1} \frac{1}{\Gamma(1-\alpha)} \int_{0}^{T} \int_{0}^{t} (t-s)^{-\alpha} (\mathscr{E}(v)(s,\cdot)), \mathscr{E}(\varphi)(\cdot) dt = \int_{0}^{T} \langle f, \varphi \rangle dt \quad (3.23)$$

при любой гладкой φ .

Используя плотность множества гладких функций в V, нетрудно показать, что (3.23) справедливо при любой $\varphi \in V$ и любом $t \in (0,T)$ вместо T.

Меняя в (3.23) T на t и дифференцируя по t при почти всех t, получаем, что v удовлетворяет (2.1).

Для завершения доказательства теоремы 2.1 осталось показать, что найденное v принадлежит W(0,T). Поскольку $v \in L_2(0,T;V)$, для этого достаточно показать, что $\partial v/\partial t \in L_1(0,T;V^{-1})$.

Так как v является слабым пределом последовательности v^n в $L_2(0,T;V)$ и *-слабым пределом в $L_{+\infty}(0,T;H)$, то (см. [19, гл. 5, разд. 1])

$$\|v\|_{0,1} \leq \underline{\lim_{n \to +\infty}} \|v^n\|_{0,1}, \quad \|v\|_{L_{\infty}(0,T;H)} \leq \underline{\lim_{n \to +\infty}} \|v^n\|_{L_{\infty}(0,T;H)}.$$

Из последних неравенств и (3.16) вытекает, что $\|v\|_{L_{\infty}(0,T;H)} + \|v\|_{0,1} \le M(\|f\|_0 + |v^0|_0)$. Отсюда и из слабой непрерывности $v(t,\cdot)$ как функции со значениями в H следует, что

$$\sup_{0 \le t \le T} |v(t, \cdot)|_0 + ||v||_{L_2(0, T; V)} \le M(||f||_0 + |v^0|_0). \tag{3.23'}$$

Запишем (2.1) в виде

$$\frac{d(v,\varphi)}{dt} - \sum_{i=1}^{N} \left(v_i v, \frac{\partial \varphi}{\partial x_i} \right) + \mu_0(\mathscr{E}(v), \mathscr{E}(\varphi)) = \langle w, \varphi \rangle, \tag{3.23''}$$

где

$$w=f+\mu_1rac{1}{\Gamma(1-lpha)}\operatorname{Div}\int\limits_0^t(t-s)^{-lpha},\mathscr{E}(v)(s,x)\,ds.$$

В [15, теорема 5.4] установлено, что если $v \in L_2(0,T;V)$ удовлетворяет тождеству (3.23") при $w \in L_2(0,T;V^{-1})$, то $\partial v/\partial t \in L_1(0,T;V^{-1})$ и v является слабым решением задачи

$$rac{\partial v}{\partial t} + \sum_{i=1}^N v_i rac{\partial v}{\partial x_i} - \mu_0 \Delta = w, \quad \operatorname{div} v(t,x) = 0, \quad (t,x) \in Q_T,$$

$$v(0,x) = v^{0}(x), x \in \Omega, v(t,x) = 0, (t,x) \in [0,T] \times \partial\Omega.$$

Докажем, что $w\in L_2(0,T;V^{-1})$. Так же, как при доказательстве оценки (3.11), показывается, что $\|w\|_{0,-1}\leq \|f\|_{L_2(0,T;V^{-1})}+MT^{1-\alpha}\|v\|_{0,1}$. Отсюда и из (3.23') вытекает, что $w\in L_2(0,T;V^{-1})$. Следовательно, $\partial v/\partial t\in L_1(0,T;V^{-1})$.

Теорема 2.1 для случая малого T доказана. Обозначим это T через T_0 .

Отметим, что для найденного решения v задачи (1.5), (1.6) справедливо неравенство (3.23') при $T=T_0$.

Докажем теорему 2.1 для случая произвольного T. Установим разрешимость задачи в случае произвольного T. Считая без ограничения общности $K = T/T_0$ целым, рассмотрим последовательность задач при $k = 1, 2 \dots K$ на $[0, T_k]$, где $T_k = T_0 k$:

$$\frac{\partial v}{\partial t} + \sum_{i=1}^{N} v_i \frac{\partial v}{\partial x_i} - \mu_0 \Delta v - \mu_1 \frac{1}{\Gamma(1-\alpha)} \operatorname{Div} \int_0^t (t-s)^{-\alpha} \mathscr{E}(v)(s,x) \, ds + \nabla p$$

$$= f(t,x), \quad (t,x) \in Q_k = [0,T_k] \times \Omega, \quad \operatorname{div} v(t,x) = 0, \quad (t,x) \in Q_k, \quad (3.24)$$

$$v(0,x) = v^{0}(x), x \in \Omega, v(t,x) = 0, (t,x) \in [0, T_{k}] \times \partial\Omega.$$
 (3.25)

Считая, что известно решение задачи (3.24), (3.25) на $[0, T_k]$, удовлетворяющее оценке

$$\sup_{0 \le t \le T_k} |v(t, \cdot)|_0 + ||v||_{L_2(0, T_k; V)} \le M(||f||_0 + |v^0|_0), \tag{3.25'}$$

продолжим его на $[T_k, T_{k+1}]$. Обозначим это решение через $\bar{v}(t,x)$ и построим его продолжение на $[T_k, T_{k+1}]$.

Рассмотрим на $[T_k, T_{k+1}]$ задачу

$$\frac{\partial v}{\partial t} + \sum_{i=1}^{N} v_i \frac{\partial v}{\partial x_i} - \mu_0 \Delta v - \mu_1 \frac{1}{\Gamma(1-\alpha)} \operatorname{Div} \int_{T_k}^t (t-s)^{-\alpha} \mathscr{E}(v)(s,x) \, ds + \nabla p = F,$$

$$\operatorname{div} v(t,x) = 0, \ (t,x) \in [T_k, T_{k+1}] \times \Omega, \tag{3.26}$$

$$v(T_k, x) = \bar{v}(T_k, x), \ x \in \Omega, \quad v(t, x) = 0, \ (t, x) \in [T_k, T_{k+1}] \times \partial \Omega.$$
 (3.27)

Здесь

$$F(t,x) = f(t,x) + \mu_1 \frac{1}{\Gamma(1-\alpha)} \text{Div} \int_0^{T_k} (t-s)^{-\alpha} \mathscr{E}(\bar{v})(s,x) \, ds, \quad (t,x) \in [T_k, T_{k+1}] \times \Omega.$$
(3.28)

Слабым решением задачи (3.26), (3.27) называется функция $v \in W(T_k, T_{k+1})$, удовлетворяющая соответствующим тождеству и начальному условию.

Покажем, что так же, как и для задачи (1.5), (1.6) на $[0, T_0]$, при заданных $F \in L_2(T_k, T_{k+1}; V^{-1})$ и $\bar{v}(T_k, x) \in H$ существует решение задачи (3.26), (3.27) на $[T_k, T_{k+1}]$, удовлетворяющее оценкам

$$\sup_{T_k \leq t \leq T_{k+1}} |v(t,\cdot)|_0 + ||v||_{L_2(T_k,T_{k+1};V)} \leq M(||F||_{L_2(T_k,T_{k+1};V^{-1})} + |\bar{v}(T_k,\cdot)|_0), \quad (3.29)$$

$$\left\|\frac{\partial v}{\partial t}\right\|_{L_1(T_k,T_{k+1};V^{-1})} \leq M(\|F\|_{L_2(T_k,T_{k+1};V^{-1})} + |\bar{v}(T_k,\cdot)|_0 + 1)^2$$
 с не зависящими от $k,\,f$ и \bar{v} константами. Обозначим

$$f_1 = \mu_1 \frac{1}{\Gamma(1-\alpha)} \operatorname{Div} \int_0^{T_k} (t-s)^{-\alpha} \mathscr{E}(\bar{v})(s,x) \, ds, \quad (t,x) \in Q_{k,k+1} = [T_k, T_{k+1}] \times \Omega,$$

и рассмотрим задачу (3.26), (3.27) на $[T_k, T_{k+1}]$ при $F = f + f_1$. Сначала покажем, что $F \in L_2(T_k, T_{k+1}; V^{-1})$. Для этого достаточно доказать, что $f_1 \in$ $L_2(T_k,T_{k+1};V^{-1})$, а так как сужение f на $[T_k,T_{k+1}]$ принадлежит пространству $L_2(T_k,T_{k+1};V^{-1})$ и $\|f\|_{L_2(T_k,T_{k+1};V^{-1})} \le \|f\|_{0,-1}$, то $F \in L_2(T_k,T_{k+1};V^{-1})$.

Лемма 3.3. Справедливы принадлежность $f_1 \in L_2(T_k, T_{k+1}; V^{-1})$ и оценка

$$||f_1||_{L_2(T_k, T_{k+1}; V^{-1})} \le M(||f||_{0, -1} + |v^0|_0),$$
 (3.31)

Доказательство. Обозначим через $\hat{v}(t,x)$ продолжение $\bar{v}(t,x)$ нулем с промежутка $[0,T_k]$ на $(-\infty,+\infty)$, а через K(s) — продолжение $s^{-\alpha}$ нулем с $[0,T_k]$ на $(-\infty, +\infty)$. Тогда с помощью замены переменной имеем

$$f_{1} = \mu_{1} \frac{1}{\Gamma(1-\alpha)} \operatorname{Div} \int_{0}^{T_{k}} (t-s)^{-\alpha} \mathscr{E}(\bar{v})(s,x) ds$$

$$= \mu_{1} \frac{1}{\Gamma(1-\alpha)} \operatorname{Div} \int_{-\infty}^{+\infty} K(t-s) \mathscr{E}(\hat{v})(s,x) ds$$

$$= \mu_{1} \frac{1}{\Gamma(1-\alpha)} \operatorname{Div} \int_{-\infty}^{+\infty} K(\xi) \mathscr{E}(\hat{v})(t-\xi,x) d\xi. \quad (3.32)$$

Проводя стандартные оценки с использованием интегрального неравенства Минковского и пользуясь инвариантностью $L_2(-\infty, +\infty)$ нормы относительно

$$||f_{1}||_{L_{2}(T_{k},T_{k+1};V^{-1})} \leq M \left\| \int_{-\infty}^{+\infty} K(\xi)\mathscr{E}(\hat{v})(t-\xi,x) d\xi \right\|_{L_{2}(T_{k},T_{k+1};L_{2}(\Omega))}$$

$$\leq M \left\| \int_{-\infty}^{+\infty} K(\xi)|\hat{v}(t-\xi,\cdot)|_{1} d\xi \right\|_{L_{2}(T_{k},T_{k+1})} \leq M \int_{-\infty}^{+\infty} K(\xi)||\hat{v}(t-\xi,\cdot)|_{1}||_{L_{2}(T_{k},T_{k+1})} d\xi$$

$$\leq M \int_{-\infty}^{+\infty} K(\xi) d\xi ||\hat{v}(t,\cdot)|_{1}||_{L_{2}(T_{k},T_{k+1})} \leq M \int_{-\infty}^{+\infty} K(\xi) d\xi ||\hat{v}(t,x)||_{L_{2}(-\infty,+\infty;V)}$$

$$\leq M T_{k}^{1-\alpha} (1-\alpha)^{-1} ||\bar{v}(t,x)||_{L_{2}(0,T_{k};V)}. \quad (3.33)$$

Пользуясь оценкой (3.25') для $v = \bar{v}$ на $[0, T_k]$, приходим к неравенству

$$||f_1||_{L_2(T_k,T_{k+1};V^{-1})} \le MT_k^{1-\alpha}(1-\alpha)^{-1}||\bar{v}(t,x)||_{L_2(0,T_k;V)} \le MT_k^{1-\alpha}(||f||_{L_2(0,T_k;V^{-1})} + |v^0|_0) \le M(||f||_{0,-1} + |v^0|_0).$$
(3.34)

Отсюда следует оценка (3.29). Лемма 3.3 доказана.

Ввиду леммы 3.3 $F \in L_2(T_k, T_{k+1}; V^{-1})$ и справедлива оценка

$$||F||_{L_2(T_k,T_{k+1};V^{-1})} \le M(||f||_{0,-1} + |v^0|_0).$$
 (3.34')

Из оценки (3.23') вытекает, что $\bar{v}(T_k,x)\in H$ и $|\bar{v}(T_k,x)|_0\leq M(\|f\|_{0,-1}+|v^0|_0).$

С помощью замены $t=T_k+\tau,\ \tau\in[0,T_0]$, и очевидных преобразований задача (3.24), (3.25) на $[T_k,T_{k+1}]$ при $F=f+f_1$ сводится к соответствующей задаче вида (1.5), (1.6) на $[0,T_0]$, для которой установлены существование решения и его оценки. Поэтому задача (3.24), (3.25) на $[T_k,T_{k+1}]$ имеет решение, обозначим его через \tilde{v} , для которого в силу неравенства (3.23') при $T=T_k$, f=F и $v=\bar{v}$ и неравенства (3.34") справедлива оценка

$$\sup_{T_{k} \le t \le T_{k+1}} |\tilde{v}(t,\cdot)|_{0} + \|\tilde{v}\|_{L_{2}(T_{k},T_{k+1};V)} \le M(\|F\|_{0,-1} + |\tilde{v}(T_{k},\cdot)|_{0}) \le M(\|f\|_{0,-1} + |v^{0}|_{0}).$$

$$(3.34'')$$

Полагая $v=\bar{v}$ на $[0,T_k]$ и $v=\tilde{v}$ на $[T_k,T_{k+1}]$, получаем решение v задачи (1.5), (1.6) на $[0,T_{k+1}]$.

Отметим, что для полученного решения v на $[0,T_{k+1}]$ справедлива оценка (3.5) с заменой T_k на T_{k+1} , что гарантирует возможность продолжения на следующий отрезок $[T_{k+1},T_{k+2}]$. Очевидно, что, осуществляя (конечный) процесс продолжения на следующий отрезок и т. д., получим решение задачи (1.5), (1.6) на [0,T]. Отметим также, что длина каждого отрезка $[T_k,T_{k+1}]$ равна T_0 . Теорема 2.1 доказана.

4. Доказательство теоремы 2.2

Доказательство теоремы 2.2 проведем в несколько этапов.

4.1. Свойства слабых решений задачи (1.5), (1.6).

Лемма 4.1. Пусть $N=2,\ f\in L_2(0,T;V^{-1})$ и $v^0\in H$. Тогда решение v задачи $(1.5),\ (1.6)$ принадлежит $W^*(0,T).$

Доказательство леммы. Перепишем задачу (1.5), (1.6) в виде

$$\frac{\partial v}{\partial t} + \sum_{i=1}^{2} v_i \frac{\partial v}{\partial x_i} - \mu_0 \Delta = w, \quad \operatorname{div} v(t, x) = 0, \quad (t, x) \in Q_T, \tag{4.1}$$

$$v(0,x) = v^{0}(x), x \in \Omega, v(t,x) = 0, (t,x) \in [0,T] \times \partial\Omega.$$
 (4.2)

Здесь

$$w=f+\mu_1rac{1}{\Gamma(1-lpha)}\operatorname{Div}\int\limits_0^t(t-s)^{-lpha}\mathscr{E}(v)(s,x)\,ds\equiv f+Q.$$

Из теоремы 3.1 и доказательства теоремы 3.2 в гл. III из [14] вытекает, что при N=2 для любых заданных $w\in L_2(0,T;V^{-1}),\ v^0\in H$ задача (4.1), (4.2) имеет единственное слабое решение $v\in W^*(0,T)$, для которого справедливы оценки

$$\sup_{t} |v(t,\cdot)|_0 + ||v||_{0,1} \le C(||w||_{0,-1} + |v^0|), \tag{4.3}$$

$$\left\| \frac{\partial v}{\partial t} \right\|_{L_2(0,T;V^{-1})} \le C(\|w\|_{0,-1} + |v^0| + 1)^2. \tag{4.4}$$

Покажем, что при $v \in W(0,T)$ верно соотношение $w \in L_2(0,T;V^{-1})$. Очевидно, что

$$||w||_{0,-1} \le ||f||_{0,-1} + ||Q||_{0,-1}. \tag{4.5}$$

Оценим $\|Q\|_{0,-1}$. Легко видеть, что $\|Q\|_{0,-1}^2 \le MZ_2(T)$, где $Z_2(T)$ определяется ниже формулой (4.18) при t=T.

Из оценки (4.20) вытекает, что $Z_2(T) \leq M \|v\|_{0,1}^2$. Отсюда и из (4.20) следует, что

$$||Q||_{0,-1} \le M||v||_{0,1}^2. \tag{4.6}$$

Значит, $Q \in L_2(0,T;V^{-1})$, а так как w = f + Q, то и $w \in L_2(0,T;V^{-1})$. Лемма доказана.

4.2. Оценки слабых решений задачи (1.5), (1.6).

Лемма 4.2. Пусть $N=2, f\in L_2(0,T;V^{-1})$ и $v^0\in H$. Тогда решение v задачи (1.5), (1.6) удовлетворяет оценкам

$$\sup_{t} |v(t,\cdot)|_0 + ||v||_{0,1} \le M(||f||_{0,-1} + |v^0|_0). \tag{4.7}$$

$$\left\| \frac{\partial v}{\partial t} \right\|_{L_2(0,T;V^{-1})} \le C(\|f\|_{0,-1} + |v^0| + 1)^2. \tag{4.8}$$

Замечание. Отметим, что подобные оценки были получены выше для найденного решения задачи (1.5), (1.6). Однако утверждение леммы 4.2 справедливо для любого решения.

Доказательство. Предположим сначала, что решение v принадлежит $W^*(0,T)$, и получим оценки (4.7) и (4.8). Для функции $v \in W^*(0,T)$ верно соотношение $|dv(t,\cdot)/dt|_0^2=2(v(t,\cdot),v(t,\cdot))$ (см. [14, гл. III, лемма 1.2]). Умножая скалярно в H (1.5) на v(t,x), пользуясь этим соотношением и проводя стандартные преобразования с использованием леммы 1.2 (см. [14]), получаем

$$\frac{1}{2} \frac{d}{dt} |v(t,\cdot)|_0^2 + \mu_0 |\mathscr{E}(v)(t,\cdot)|_0^2
= (f(t,x), v(t,x)) - \mu_1 \frac{1}{\Gamma(1-\alpha)} \left(\int_0^t (t-s)^{-\alpha} \mathscr{E}(v)(s,x) \, ds, \mathscr{E}(v)(t,x) \right) ds. \quad (4.9)$$

Меняя t на s в (4.9) и интегрируя на промежутке $[0,t] \subset [0,T]$ по s, имеем

$$\frac{1}{2}|v(t,\cdot)|_{0}^{2} + \mu_{0} \int_{0}^{t} |v(s,\cdot)|_{1}^{2} ds = \int_{0}^{t} (f(s,x),v(s,x)) ds$$

$$-\mu_{1} \frac{1}{\Gamma(1-\alpha)} \int_{0}^{t} \left(\int_{0}^{s} (s-\tau)^{-\alpha} \mathscr{E}(v)(\tau,x) d\tau, \mathscr{E}(v)(s,x) \right) ds. \quad (4.10)$$

Для первого слагаемого справа в (4.10) находим

$$\left| \int_{0}^{t} (f(s,x), v(s,x)) \, ds \right| \leq \int_{0}^{t} |f(s,\cdot)|_{-1} |v(s,\cdot)|_{1} \, ds$$

$$\leq C_{\varepsilon} \int_{0}^{t} |f(s,\cdot)|_{-1}^{2} \, ds + \varepsilon \int_{0}^{t} |v(s,\cdot)|_{1}^{2} \, ds \leq \frac{1}{2} C_{\varepsilon} ||f||_{0,-1}^{2} + \varepsilon ||v||_{L_{2}(0,t;V)}^{2}. \tag{4.11}$$

Далее, легко видеть, что в силу неравенства Корна

$$m_1 \|v\|_{L_2(0,t:V)}^2 \le \int_0^t |\mathscr{E}(v)(t,\cdot)|_0^2 ds \le m_2 \int_0^t |v(s,\cdot)|_1^2 ds \le m_3 \|v\|_{L_2(0,t:V)}^2, \quad m_i > 0.$$

$$(4.12)$$

Рассмотрим последнее слагаемое в (4.10) и запишем его в виде

$$\mu_1 \frac{1}{\Gamma(1-\alpha)} \int_0^t \left(\int_0^s (s-\tau)^{-\alpha} \mathscr{E}(v)(\tau,x) \, d\tau, \mathscr{E}(v)(s,x) \right) ds = \int_0^t Z(s) \, ds, \quad (4.13)$$

где

$$Z(t) = \mu_1 \frac{1}{\Gamma(1-\alpha)} \left(\int_0^t (t-s)^{-\alpha} \mathscr{E}(v)(s,x) \, ds, \mathscr{E}(v)(t,x) \right). \tag{4.14}$$

Делая элементарные оценки, при произвольном $\varepsilon > 0$ имеем

$$|Z(t)| \le M \int_{0}^{t} (t-s)^{-\alpha} |v(s,\cdot)|_{1} ds |v(t,\cdot)|_{1}$$

$$\le M_{1}(\varepsilon) \left(\int_{0}^{t} (t-s)^{-\alpha} |v(s,\cdot)|_{1} ds \right)^{2} + \varepsilon |v(t,x)|_{1}^{2}. \quad (4.15)$$

Таким образом,

$$\int_{0}^{t} Z(s) ds \leq M(\varepsilon) \int_{0}^{t} \left(\int_{0}^{s} (s-\tau)^{-\alpha} |v(\tau,\cdot)|_{1} d\tau \right)^{2} ds + \varepsilon \int_{0}^{t} |v(s,\cdot)|_{1}^{2} ds. \quad (4.16)$$

Используя (4.11), (4.16), (4.12) и выбирая ε достаточно малым, из (4.10) получаем

$$\frac{1}{2}|v(t,\cdot)|_{0}^{2} + \mu_{0} \int_{0}^{t} |v(s,\cdot)|_{1}^{2} ds$$

$$\leq M \left(\|f\|_{L_{2}(0,t;V^{-1})}^{2} + |v|_{0}^{2} + \int_{0}^{t} \left(\int_{0}^{s} (s-\tau)^{-\alpha} |v(\tau,\cdot)|_{1} d\tau \right)^{2} ds \right). \quad (4.17)$$

Обозначая последнее слагаемое через $Z_2(t)$, имеем

$$Z_2(t) = \int_0^t \left(\int_0^s (s-\tau)^{-\alpha} |v(\tau,\cdot)|_1 d\tau \right)^2 ds = \left\| \int_0^s (s-\tau)^{-\alpha} |v(\tau,\cdot)|_1 d\tau \right\|_{L_2(0,t)}^2.$$
 (4.18)

Обозначим продолжение $v(\tau,x)$ нулем с [0,t] на $(-\infty,+\infty)$ через $\tilde{v}(\tau,x)$, а $K(\xi)=\xi^{-\alpha}$ при $t>\xi>0,\ K(\xi)=0$ при $\xi\notin(0,t]$. Тогда с помощью замены переменной $\xi=s-\tau$ получаем

$$\int_{0}^{s} (s-\tau)^{-\alpha} |v(\tau,\cdot)|_{1} d\tau = \int_{-\infty}^{+\infty} K(s-\tau) |\tilde{v}(\tau,\cdot)|_{1} d\xi = \int_{-\infty}^{+\infty} K(\xi) |\tilde{v}(s-\xi,\cdot)|_{1} d\xi.$$
 (4.19)

Применяя интегральное неравенство Минковского в (4.18) и пользуясь инвариантностью $L_2(-\infty, +\infty)$ нормы относительно сдвига, имеем

$$Z_{2}(t) \leq \left\| \int_{-\infty}^{+\infty} K(\xi) |\tilde{v}(s-\xi,\cdot)|_{1} d\xi \right\|_{L_{2}(-\infty,+\infty)}^{2}$$

$$\leq \left(\int_{-\infty}^{+\infty} K(\xi) |||\tilde{v}(s-\xi,\cdot)|_{1}||_{L_{2}(-\infty,+\infty)} d\xi \right)^{2}$$

$$\leq \left(|||\tilde{v}(s,\cdot)|_{1}||_{L_{2}(-\infty,+\infty)} \int_{-\infty}^{+\infty} K(\xi) d\xi \right)^{2} = \left(|||\tilde{v}(s,\cdot)|_{1}||_{L_{2}(-\infty,+\infty)} \int_{0}^{t} \xi^{-\alpha} d\xi \right)^{2}$$

$$\leq M((1-\alpha)^{-1} t^{1-\alpha})^{2} ||v(s,x)||_{L_{2}(0,t;V)}^{2}.$$

Таким образом,

$$Z_2(t) \le M((1-\alpha)^{-1}t^{1-\alpha})^2 \|v(s,x)\|_{L_2(0,t;V)}^2.$$
(4.20)

Из соотношений (4.17) и (4.20) следует, что при $0 < t \le t_0$, где $t_0 > 0$ достаточно мало, справедлива оценка

$$|v(t,\cdot)|_0^2 + \int_{t_0}^t |v(s,\cdot)|_1^2 ds \le M(\|f\|_{0,-1}^2 + \|v\|_0^2). \tag{4.21}$$

Оценка (4.7) в случае $0 < T \le t_0$ установлена.

Рассмотрим теперь случай произвольного $T>t_0$. Пусть $t>t_0$. Запишем $Z_2(t)$ в виде

$$Z_{2>}(t) = \int_{0}^{t_0} \left(\int_{0}^{s} (s-\tau)^{-\alpha} |v(\tau,\cdot)|_1 d\tau \right)^2 ds$$
$$+ \int_{t_0}^{t} \left(\int_{0}^{s} (s-\tau)^{-\alpha} |v(\tau,\cdot)|_1 d\tau \right)^2 ds = Z_{21} + Z_{22}. \quad (4.22)$$

Ясно, что $Z_{21}=Z_{2}(t_{0}),$ а из (4.20) следует, что

$$Z_{21} \le M t_0^{2(1-\alpha)} \|v(s,\cdot)\|_{L_2(0,t_0;V)}^2. \tag{4.23}$$

Рассмотрим \mathbb{Z}_{22} и запишем его в виде

$$Z_{22} = \int_{t_0}^{t} \left(\int_{0}^{s-t_0} (s-\tau)^{-\alpha} |v(\tau,\cdot)|_1 d\tau ds + \int_{s-t_0}^{s} (s-\tau)^{-\alpha} |v(\tau,\cdot)|_1 d\tau \right)^2 ds$$

$$\leq 2 \left(\int_{t_0}^{t} \left(\int_{0}^{s} (s-t_0)^{-\alpha} |v(\tau,\cdot)|_1 d\tau \right)^2 ds + \int_{t_0}^{t} \left(\int_{s-t_0}^{s} (s-\tau)^{-\alpha} |v(\tau,\cdot)|_1 d\tau \right)^2 ds \right)$$

$$= 2(Z_{221} + Z_{222}). \quad (4.24)$$

Для Z_{221} имеем

$$Z_{221} \leq t_0^{-2\alpha} \int_{t_0}^t \left(\int_0^{s-t_0} |v(\tau,\cdot)|_1 d\tau \right)^2 ds \leq (t-t_0) t_0^{-2\alpha} \int_0^t \int_0^s |v(\tau,\cdot)|_1^2 d\tau ds$$

$$\leq M_1 \int_{t_0}^t \int_0^s |v(\tau,\cdot)|_1^2 d\tau ds. \quad (4.25)$$

Оценим Z_{222} . С помощью замены переменной $\xi=s- au$ приходим к соотношению

$$Z_{222} \leq M \int_{t_0}^t \left(\int_0^{t_0} \xi^{-\alpha} |v(s-\xi,\cdot)|_1 d\xi \right)^2 ds = M \left\| \int_0^{t_0} \xi^{-\alpha} |v(s-\xi,\cdot)|_1 d\xi \right\|_{L_2(t_0,t)}^2. \tag{4.26}$$

Так же, как при выводе оценки (4.21), с помощью интегрального неравенства Минковского получаем, что

$$Z_{222} \le \left(\int_{0}^{t_0} \xi^{-\alpha} d\xi\right)^2 \|v(s,x)\|_{L_2(0,t:V)}^2 \le M(1-\alpha)^{-2} t_0^{2(1-\alpha)} \|v\|_{L_2(0,t:V)}^2. \tag{4.27}$$

Из оценок (4.23), (4.25) и (4.27) следует, что

$$Z_{2>}(t) \le M_1 \int_{t_0}^t \int_0^s |v(\tau,\cdot)|_1^2 d\tau ds + M(1-\alpha)^{-2} t_0^{2(1-\alpha)} \int_0^t |v(\tau,\cdot)|_1^2 d\tau. \tag{4.28}$$

Пользуясь неравенством (4.28) для оценки последнего слагаемого $Z_2 = Z_{2>}$ в (4.17) и считая t_0 достаточно малым, несложными преобразованиями получаем

$$|v(t,\cdot)|_0^2 + \int\limits_0^t |v(au,\cdot)|_1^2 \,d au \leq M(\|f\|_{0,-1} + |v^0|_0)^2 + M_1 \int\limits_{t_0}^t \int\limits_0^s |v(au,\cdot)|_1^2 \,d au ds. \quad (4.29)$$

Отбрасывая в (4.29) первое слагаемое, приходим к неравенству Гронуолла для $\varphi(t)=\int\limits_0^t|v(\tau,x)|_1^2\,d\tau,\, \text{из которого}$

$$\varphi(t) \le M_2(\|f\|_{0,-1} + |v^0|_0)^2, \quad t_0 \le t \le T.$$
(4.30)

Из (4.30) следует (4.7).

(4.32)

Установим оценку (4.8). Из (4.5), (4.6), разрешимости задачи (4.1), (4.2) для $w \in L_2(0,T;V^{-1})$ и оценки (4.4) при w = f + Q вытекает, что $v \in W^*(0,T)$ и справедлива оценка (4.8).

Лемма 4.2 доказана.

4.3. Доказательство единственности слабого решения задачи (1.5), (1.6). Предположим, что слабое решение задачи (1.5), (1.6) не единственно. Пусть v^1 и v^2 являются слабыми решениями задачи (1.5), (1.6). Тогда функция v принадлежит $v^1 - v^2 \in W^*(0,T)$ и удовлетворяет соотношениям

$$\frac{\partial v}{\partial t} + \sum_{i=1}^{2} v_{i} \frac{\partial v}{\partial x_{i}} - \mu_{0} \Delta v + \nabla p$$

$$= \mu_{1} \frac{1}{\Gamma(1-\alpha)} \operatorname{Div} \int_{0}^{t} (t-s)^{-\alpha} \mathscr{E}(v)(s,x) \, ds + \sum_{i=1}^{2} v_{i} \frac{\partial v^{2}}{\partial x_{i}} + \sum_{i=1}^{2} v_{i}^{1} \frac{\partial v}{\partial x_{i}}, \quad (4.31)$$

$$\operatorname{div} v(t,x) = 0,$$

$$v(0,x) = 0, \quad x \in \Omega, \quad v(t,x) = 0, \quad (t,x) \in [0,T] \times \partial \Omega.$$

Умножая скалярно в H (1.5) на v(t,x), как и при доказательстве леммы 4.2, получаем

$$\frac{d}{dt}|v(t,\cdot)|_{0}^{2} + 2\mu_{0}|\mathscr{E}(v)(t,\cdot)|_{0}^{2}$$

$$= \mu_{1} \frac{2}{\Gamma(1-\alpha)} \left(\int_{0}^{t} (t-s)^{-\alpha} \mathscr{E}(v)(s,\cdot) \, ds, \mathscr{E}(v)(t,\cdot) \right)$$

$$+ 2 \left(\sum_{i=1}^{2} v_{i}^{1}(t,\cdot) \frac{\partial v(t,\cdot)}{\partial x_{i}}, v(t,\cdot) \right) + 2 \left(\sum_{i=1}^{2} v_{i}(t,\cdot) \frac{\partial v^{2}(t,\cdot)}{\partial x_{i}}, v(t,\cdot) \right). \quad (4.33)$$

Интегрируя на промежутке $[0,t] \subset [0,T]$, имеем

$$|v(t,\cdot)|_{0}^{2} + 2\mu_{0} \int_{0}^{t} |v(s,\cdot)|_{1}^{2} ds$$

$$= 2\mu_{1} \frac{1}{\Gamma(1-\alpha)} \int_{0}^{t} \left(\int_{0}^{s} (s-\tau)^{-\alpha} \mathscr{E}(v)(\tau,\cdot) d\tau, \mathscr{E}(v)(s,\cdot) \right) ds$$

$$+ 2 \int_{0}^{t} \left(\sum_{i=1}^{2} v_{i}(s,\cdot) \frac{\partial v^{2}(s,\cdot)}{\partial x_{i}}, v(s,\cdot) \right) ds$$

$$+ 2 \int_{0}^{t} \left(\sum_{i=1}^{2} v_{i}^{1}(s,\cdot) \frac{\partial v(s,\cdot)}{\partial x_{i}}, v(s,\cdot) \right) ds = P_{1} + P_{2} + P_{3}. \quad (4.34)$$

Введем обозначения

$$R_1(t) = \mu_1 rac{1}{\Gamma(1-lpha)} \Biggl(\int\limits_0^t (t-s)^{-lpha} \mathscr{E}(v)(s,\cdot) \, ds, \mathscr{E}(v)(t,\cdot) \Biggr),$$

$$R_2(t) = \Bigg(\sum_{i=1}^2 v_i^1(t,x) \frac{\partial v(t,\cdot)}{\partial x_i}, v(t,\cdot)\Bigg), \quad R_3(t) = \Bigg(\sum_{i=1}^2 v_i(t,\cdot) \frac{\partial v^2(t,\cdot)}{\partial x_i}, v(t,\cdot)\Bigg).$$

Для первого слагаемого $P_1(t)=2\int\limits_0^t R_1(s)\,ds=2\int\limits_0^t Z(s)\,ds$ (см. (4.14)) справа в (4.31) при малом t_0 справедлива оценка (4.16).

Оценим слагаемые $P_i(t)$ и $P_i(t)=2\int\limits_0^t R_i(s)\,ds,\,i=2,3.$ В [14] показано (см. разд. (iii) доказательства теоремы 3.2, гл. III), что справедливы соотношения

$$R_2(t) = 0, \quad R_3(t) \le 2\mu_0 |v(t,\cdot)|_1^2 + \mu_0^{-1} |v(t,\cdot)|_0^2 |v(s,\cdot)|_1^2.$$
 (4.35)

Подставляя (4.15) и (4.35) в правую часть (4.34) и считая $\varepsilon > 0$ и $t_0 > 0$ достаточно малыми, несложными преобразованиями получаем, что справедливо соотношение

$$|v(t,\cdot)|_0^2 \le M \int_0^t |v(s,\cdot)|_0^2 |v^2(s,\cdot)|_1^2 ds.$$

Отсюда в силу суммируемости $|v^2(t,\cdot)|_1^2$ на [0,T] вытекает, что $v(t,x)\equiv 0$ на $[0,t_0]$ при достаточно малом t_0 . Единственность решения на $[0,t_0]$ установлена.

Докажем единственность решения в случае произвольного T. Обозначим найденное t_0 через T_0 . Считая без ограничения общности $K=T/T_0$ целым, рассмотрим последовательность задач (4.31), (4.32) при $k=1,2\ldots K$ на $[T_k,T_{k+1}]$, где $T_k=T_0k$. Такими же рассуждениями, которые использовались при продолжении решения задачи (1.5), (1.6) на $[T_k,T_{k+1}]$, устанавливается равенство нулю решений этих задач. При этом учитывается справедливость априорных оценок (4.7) на [0,T] для решения v^1 и v^2 задачи (1.5)–(1.6) и нулевые начальные данные задач (4.31), (4.32) при $k=1,2\ldots K$.

Отсюда следует единственность решения задачи (1.5), (1.6) на [0,T] при произвольном T.

ЛИТЕРАТУРА

- Дьярмати И. Неравновесная гидродинамика. Теория поля и вариационные принципы. М.: Изд-во иностр. лит., 1974.
- 2. Звягин В. Г. О разрешимости некоторых начально-краевых задач для математических моделей движения нелинейно-вязких и вязкоупругих жидкостей // Современная математика. Фундаментальные направления. М.: ВИНИТИ, 2003. Т. 2. С. 57–69. (Итоги науки и техники).
- **3.** Звягин В. Г., Турбин М. В. Математические вопросы гидродинамики вязкоупругих сред. М.: Крассанд, 2012.
- Zvyagin V. G., Orlov V. P. Some mathematical models in thermomechanics of continua // J. Fixed Point Theory Appl. 2014. V. 15, N 1. P. 3–47.
- 5. Огородников Е. Н., Радченко В. П., Яшагин Н. С. Реологические модели вязкоупругого тела с памятью и дифференциальные уравнения дробных осцилляторов // Вестн. Самар. гос. техн. ун-та. Сер. Физ.-мат. науки. 2011. Т. 22, № 1. С. 255–268.
- Mainardi F., Spada G. Creep, relaxation and viscosity properties for basic fractional models in rheology // The Eur. Phys. J. Special Topics. 2011. V. 193. P. 133–160.
- Kilbas A. A., Trujillo J. J. Differential equations of fractional order: methods, results and problems // Appl. Anal. 2001. V. 78. P. 153–192.
- Scott Blair G. W. A survey of general and applied rheology. London: Sir Isaac Pitman and Sons, 1949.
- Герасимов А. Н. Обобщение линейных законов деформирования и его применение к задачам внутреннего трения // Прикл. математика и механика. 1948. Т. 12, № 3. С. 251–260.

- Caputo M., Mainardi F. Linear models of dissipation in anelastic solids // Riv. Nuovo Cimento. 1971. V. 1, N 2. P. 161–198.
- Caputo M., Mainardi F. A new dissipation model based on memory mechanism // Pure Appl. Geophys. 1971. V. 91, N 1. P. 134–147.
- 12. Осколков А. П. О некоторых квазилинейных системах, встречающихся при изучении движения вязких жидкостей // Зап. науч. семинаров ЛОМИ. 1975. Т. 52. С. 128–157.
- **13.** Самко С. Г., Килбас А. А., Маричев О. И. Интегралы и производные дробного порядка и некоторые их приложения. Минск: Наука и техника, 1987.
- **14.** *Темам Р.* Уравнения Навье Стокса. М.: Мир, 1981.
- Звягин В. Г., Дмитриенко В. Т. Аппроксимационно-топологический подход к исследованию задач гидродинамики. Система Навье — Стокса. М.: Едиториал УРСС, 2004.
- Соболевский П. Е. Об уравнениях параболического типа в банаховом пространстве // Тр. Моск. мат. о-ва. 1961. Т. 10. С. 297–350.
- Orlov V. P., Sobolevskii P. E. On mathematical models of a viscoelasticity with a memory // Differ. Integral Equ. 1991. V. 4, N 1. P. 103–115.
- 18. Звягин В. Г., Дмитриенко В. Т. О слабых решениях регуляризованной модели вязкоупругой жидкости // Дифференц. уравнения. 2002. Т. 38, № 12. С. 1633–1645.
- 19. Иосида К. Функциональный анализ. М.: Мир, 1967.

Статья поступила 19 марта 2017 г.

Орлов Владимир Петрович Воронежский гос. университет, НИИ математики, Университетская пл., 1, Воронеж 394018 orlov_vp@mail.ru

Роде Дмитрий Анатольевич Воронежский гос. университет, Университетская пл., 1, Воронеж 394018 dmitryrode@gmail.com

Плиев Марат Амурханович Южный математический институт ВНЦ РАН, ул. Маркуса, 22, Владикавказ 362027; Российский университет дружбы народов, ул. Миклухо-Маклая, 6, Москва 117198 plimarat@yandex.ru