ВАРИАЦИОННАЯ ТЕОРИЯ ПОЛЯ С ТОЧКИ ЗРЕНИЯ ПРЯМЫХ МЕТОДОВ

М. А. Сычев

Аннотация. Показано, что классическая теория поля Вейерштрасса — Гильберта может быть усилена, если использовать прямые методы. А именно, для любого поля экстремалей верно, что если экстремаль — элемент поля, то на ней достигается минимум в классе липшицевых функций с теми же граничными данными, что и у экстремали, и с графиками из множества, покрытого полем. Мы приводим два доказательства: современное (использующее теорему Тонелли о полунепрерывности снизу интегрального функционала относительно слабой сходимости пробных функций в $W^{1,1}$) и основанное только на аргументах, доступных в 19-м веке.

 $DOI\,10.17377/smzh.2017.58.516$

Ключевые слова: интегральный функционал, эллиптичность, уравнение Эйлера, минимайзер, теория поля, прямые методы.

Рассмотрим одномерную вариационную задачу

$$J(u) = \int_{a}^{b} L(x, u(x), \dot{u}(x)) dx \to \min, \tag{1}$$

$$u(a) = A, \quad u(b) = B. \tag{2}$$

Здесь и всюду далее в работе предполагаем $L(x, u, v) \in C^3(R^3), L_{vv} > 0$. Эти условия на L будем называть базисными.

Если C^1 -регулярная функция $u:[a,b]\to R$ доставляет задаче (1), (2) локальный минимум, т. е. $J(u)\leq J(u+\phi)$ для $\phi\in C^1_0[a,b]$ с достаточно малой $\|\phi\|_{C^1[a,b]}$, то выполнено уравнение Лагранжа — Эйлера

$$\frac{d}{dx}L_v(x, u(x), \dot{u}(x)) = L_u(x, u(x), \dot{u}(x)). \tag{3}$$

В этом случае по теореме Гильберта $u \in C^2[a,b]$ и уравнение (3) можно разрешить относительно второй производной функции u, т. е. выполнено уравнение Эйлера

$$\ddot{u} = \frac{L_u - L_{vx} - L_{vu}\dot{u}}{L_{vv}}.\tag{4}$$

Решения уравнения Эйлера (4) будем называть экстремалями.

Семейство непрерывных функций $w:[a,b]\to R$ будем называть *полем*, если оно покрывает без пересечений множество $G=\{(x,u)\in R^2:x\in [a,b],g(x)\leq u\leq f(x)\}$, где автоматически g,f принадлежат C[a,b] как элементы семейства и f>g всюду в [a,b]. Элементы поля могут быть параметризованы

их значениями в точке a, и тогда $w(\cdot, w(a))$ зависят непрерывно от параметра w(a) в C-норме.

Наиболее глубоким результатом классического одномерного вариационного исчисления является теория поля Вейерштрасса — Гильберта. Оказывается, если есть $u(\cdot,c)$ — поле экстремалей, которое зависит диффеоморфно от параметра c (не обязательно значения в a), то найдется калибратор $\Phi(x,u)$, т. е. $\Phi \in C^1(G)$, такой, что

$$L(x, u, p(x, u)) = \Phi_x(x, u) + \Phi_u(x, u)p(x, u),$$
 (5)

$$L(x, u, v) \ge \Phi_x(x, u) + \Phi_u(x, u)v, \tag{6}$$

где $p:G\to R$ — функция наклона поля $u(\cdot,c)$, т. е. $p(x,u)=\dot{u}(x,c(x,u))$ (здесь \dot{u} — значение производной экстремали поля, проходящей через точку (x,u) в точке x).

Формулы (5), (6) позволяют утверждать, что для каждой экстремали u поля выполнено

$$J(u) = \Phi(b, u(b)) - \Phi(a, u(a)). \tag{7}$$

Если $w[a,b] \to R$ — любая другая липшицева функция, принимающая те же граничные значения, что и u, с графиком в G, то

$$J(w) > \Phi(b, u(b)) - \Phi(a, u(a)) \tag{8}$$

и тем самым экстремаль u — единственное решение задачи (1), (2) в классе липшицевых функций с графиками из G. Современное изложение этой теории можно найти в последней монографии по одномерным вариационным задачам [1]. В предыдущих книгах 20-го века теория поля также излагалась на основе использования калибраторов.

Тем не менее в 20-м веке развивались прямые методы в вариационном исчислении. Тонелли доказал в [2], что функционал J полунепрерывен снизу относительно слабой сходимости в $W^{1,1}$.

Теорема 1 (Тонелли [2]). Пусть L удовлетворяет базисным условиям и пусть $u_k \rightharpoonup u$ в $W^{1,1}[a,b]$ (здесь \rightharpoonup означает слабую сходимость). Тогда

$$\liminf_{k \to \infty} J(u_k) \ge J(u).$$

Прямым следствием этой теоремы является теорема существования решения задачи (1), (2) в классе соболевских функций, если существует минимизирующая последовательность, сходящаяся слабо в $W^{1,1}[a,b]$.

Следствие 2. Пусть L удовлетворяет базисным условиям и $L(x,u,v) \geq \theta(v)$, где $\theta(v)/|v| \to \infty$ при $|v| \to \infty$. Тогда задача (1), (2) имеет решение в классе соболевских функций $W^{1,1}[a,b]$.

Прямые методы установления регулярности решений задач (1), (2) в различных классах функций развивались автором (см. [3–6], а также недавние работы последователей [7–10]). Разумеется, результаты по регулярности решений задач (1), (2) устанавливались и другими авторами. Так, Тонелли еще в [11] доказал частичную регулярность решений. Но он использовал непрямые методы (см. [6, § 2]). Современные авторы также использовали непрямые методы (см. [12–14]).

Оказывается, прямые методы позволяют значительно усилить теорию поля, не прибегая к технике калибраторов. Верна

Теорема 3. Пусть L удовлетворяет базисным условиям, и пусть поле экстремалей покрывает множество $G = \{(x,u) \in R^2 : g(x) \le u \le f(x)\}$, где g,f автоматически имеют C^3 -регулярность, так как тоже является экстремалями поля.

Тогда для каждой экстремали $u:[a,b]\to R$ поля выполнено

$$J(w) > J(u), \tag{9}$$

где $w:[a,b]\to R$ — произвольная отличная от u липшицева функция, принимающая те же граничные значения, что и u, и c графиком в G.

Как видим, теория поля оказывается справедливой для произвольного поля экстремалей $u(\cdot,c)$ без всяких требований на зависимость от параметра c. В этой ситуации калибратор Φ может не существовать. Приведем простой пример. Пусть в дополнение к базисным условиям L=L(v). Тогда экстремалями являются аффинные функции. Рассмотрим поле $u(\cdot,c):[0,1]\to R$, где c=u(0), $c\in[0,1]$. Положим $u(x,c)=c+\eta(c)x$, где $\eta:[0,1]\to[0,1]$ — возрастающая непрерывная функция такая, что $\eta(0)=0,\ \eta(1)=1$. Нетрудно видеть, что если η — недостаточно регулярная функция, например имеет точки недифференцируемости или $\dot{\eta}=\infty$ при некоторых c, то Φ_u не будет существовать или также будет обращаться в бесконечность. Заметим, что неясно, до какой степени можно использовать теорию калибраторов понимая $(5),\ (6)$ в обобщенном смысле.

Приведем доказательство теоремы 3. Оно будет основано на следующих двух леммах.

Лемма 4. Пусть L удовлетворяет базисным условиям, и пусть имеется поле экстремалей $u(\cdot,c)$, покрывающее множество $G=\{(x,u)\in R^2: g(x)\leq u\leq f(x)\}$. Тогда функция наклона поля $p:G\to R$ непрерывна.

Лемма 5. Пусть L удовлетворяет базисным условиям и $g, f \in C^2[a, b],$ g < f всюду в $[a, b], M > \max\{\|\dot{f}\|_{C[a, b]}, \|\dot{g}\|_{C[a, b]}\}.$

Рассмотрим задачу (1), (2) в классе липшицевых функций $w:[a,b] \to R$ таких, что $g \le w \le f$, $|\dot{w}| \le M$ всюду на [a,b]. Если в этой задаче есть хотя бы одна допустимая функция (тогда автоматически $g(a) \le A \le f(a)$, $g(b) \le B \le f(b)$), то задача имеет решение u_M и все решения принадлежат классу $C^{1,1/2}[a,b]$.

Покажем, как теорема 3 вытекает из этих лемм. Сами леммы докажем позже.

Доказательство теоремы 3. Согласно лемме 4 функция наклона поля p ограничена, так как $p:G\to R$ непрерывна и G — компакт. Пусть M>|p|.

Пусть u — экстремаль поля. Рассмотрим задачу минимизации (1), (2) в классе липшицевых функций $w:[a,b]\to R$ с $\|\dot{w}\|_{L^\infty[a,b]}\le M$ и с графиками из множества G; граничные данные (2) заданы экстремалью. По лемме 5 эта задача имеет решение $u_M:[a,b]\to R$ и $u_M\in C^1[a,b]$. Если u_M не совпадает с u, то либо $u_M>u$ в некоторых точках, либо $u_M< u$ в некоторых точках. Рассмотрим первую ситуацию, вторая рассматривается аналогично. Найдется экстремаль поля \tilde{u} такая, что $\tilde{u}\ge u_M$ всюду в [a,b] и $\tilde{u}(x_0)=u_M(x_0)$ в некоторой точке $x_0\in]a,b[$. Тогда $\dot{\tilde{u}}(x_0)=\dot{u}_M(x_0)$ и, как следствие, u_M удовлетворяет уравнению Эйлера (4) в окрестности точки x_0 . Действительно, $|\dot{u}_M|< M$ в окрестности x_0 , так как $u_M\in C^1$. Следовательно, u_M допускает вариации в окрестности x_0 , поэтому удовлетворяет уравнению Эйлера в этой окрестности.

Но тогда $\tilde{u}=u_M$ в некоторой окрестности точки x_0 , так как обе функции являются решениями одной и той же задачи Коши для уравнения Эйлера (4) в точке x_0 . Далее $\tilde{u}=u_M$ всюду в [a,b] по той же причине. Это противоречие показывает, что $u_M=u$ всюду на [a,b], если M>0 достаточно большое.

Теорема 3 доказана. □

Перейдем к доказательству лемм.

ДОКАЗАТЕЛЬСТВО ЛЕММЫ 4. Производные множества элементов поля образуют условно равностепенно непрерывное семейство в силу уравнения (4). Напомним, что семейство $\Xi = \{\xi : [a,b] \to R\}$ непрерывных функций образуют условно равностепенно непрерывное семейство, если для любых $M>0, \, \epsilon>0$ найдется $\delta=\delta(M,\epsilon)>0$ такое, что если $\xi\in\Xi,\, |\xi(x_0)|\leq M,\,$ то $|\xi(x)-\xi(x_0)|\leq\epsilon$ для $|x-x_0|\leq\delta.$

Пусть $x_0 \in [a,b], \ u_0$ — экстремаль поля, $u(x_0) = u_0$. Требуется показать, что если u_k — другие экстремали поля такие, что $\|u_k - u_0\|_{C[a,b]} \to 0$ и $x_k \to x_0$, то $\dot{u}_k(x_k) \to \dot{u}_0(x_0)$. В силу условной равностепенности семейства достаточно показать, что $\dot{u}_k(x_0) \to \dot{u}(x_0), \ k \to \infty$. Рассмотрим случай $u_k \le u_0$ на [a,b], случай $u_k \ge u_0$ рассматривается аналогично. Предположим что для некоторого $\epsilon > 0$ выполнено $\dot{u}_k(x_0) \le \dot{u}(x_0) - \epsilon$. Пусть $x_0 \ne b$. Тогда из условия условной равностепенной непрерывности вытекает, что для достаточно малого $\delta > 0$ выполнено

$$\dot{u}_k(x) \le \dot{u}_0(x) - \epsilon/2, \quad x \in [x_0, x_0 + \delta].$$
 (10)

Так как $u_k(x_0) \to u_0(x_0)$, получаем, что в силу (10) u_k не сходятся к u_0 ; противоречие. Если $x_0 = b$, то из (10) и сходимости $u_k(b) \to u_0(b)$ вытекает, что графики экстремалей u_k пересекают график u_0 , что также невозможно. Таким образом, (10) неверно. Аналогично показывается, что невозможно неравенство $\dot{u}_k(x_0) \geq \dot{u}_0(x_0) + \epsilon$ для больших $k \in N$. Таким образом, $\dot{u}_k(x_0) \to \dot{u}_0(x_0)$, что и требовалось доказать. Лемма 4 доказана.

Доказательство леммы 5. Если в задаче есть хотя бы одна допустимая функция, то найдется минимизирующая последовательность $u_k:[a,b]\to R$. Можно выделить подпоследовательность такую, что $u_k\to u_M$ равномерно в [a,b] по теореме Арцела — Асколи. Тогда u_M тоже допустимая функция и по теореме 1 Тонелли выполнено

$$\liminf_{k \to \infty} J(u_k) \ge J(u_M),$$

т. е. u_M — решение рассматриваемой задачи. Осталось показать, что $u_M \in C^{1,1/2}[a,b]$.

Сначала установим, как на интервале $[x_1,x_2]\subset [a,b]$ значение интеграла $J(u_M;[x_1,x_2])$ связано со значением на аффинной функции $l:[x_1,x_2]\to R$, где $l(x_1)=u_M(x_1),\, l(x_2)=u_M(x_2),\, \text{т. е. с интегралом }J(l;[x_1,x_2]).$ Вообще говоря, мы не можем утверждать, что $J(u_M;[x_1,x_2])\leq J(l;[x_1,x_2]),\, \text{так как график }l$ может пересекать график f или g. Поэтому определим функцию $\tilde{l}:[x_1,x_2]\to R$ такую, что $\tilde{l}(x)\in[g(x),f(x)],\, x\in[x_1,x_2].$ Если $|x_2-x_1|$ достаточно мало, то график $l:[x_1,x_2]\to R$ может пересекать график только одной из функций f,g. Рассмотрим первую ситуацию. Положим $Y=\{y\in[x_1,x_2]:l(y)\geq f(y)\},$ $y_1=\min Y,\, y_2=\max Y.$ Тогда возьмем $\tilde{l}=f$ на $[y_1,y_2],\, \tilde{l}=l$ в остальных точках $[x_1,x_2]$. Аналогично если график l пересекает график g, то полагаем $Z=\{z\in[x_1,x_2]:l(z)\leq g(z)\},\, z_1=\min Z,\, z_2=\max Z,\,$ и $\tilde{l}=g$ на $[z_1,z_2],$

 $\tilde{l}=l$ в остальных точках $[x_1,x_2]$. Функция \tilde{l} уже допустимая в задаче, и тогда выполнено

$$J(u_M; [x_1, x_2]) \le J(\tilde{l}; [x_1, x_2]). \tag{11}$$

В то же время

$$||l - \tilde{l}||_{C[x_1, x_2]} \le \max\{||\dot{g}||_C, ||\dot{f}||_C\}|x_2 - x_1| = c_1|x_2 - x_1|,$$

$$||\tilde{l} - \dot{l}||_{C[x_1, x_2]} \le \max\{||\ddot{f}||_C, ||\ddot{g}||_C\}|x_2 - x_1| = c_2|x_2 - x_1|.$$

Таким образом,

$$\int_{x_{1}}^{x_{2}} |L(x, l(x), \dot{l}(x)) - L(x, \tilde{l}(x), \dot{\tilde{l}}(x))| dx$$

$$\leq \int_{x_{1}}^{x_{2}} \max\{|L_{u}(x, u, v)| + |L_{v}(x, u, v)| : x \in [x_{1}, x_{2}], |u| \leq \text{const}, |v| \leq M\}$$

$$\times (c_{1} + c_{2})|x_{2} - x_{1}| dx \leq c_{3}|x_{2} - x_{1}|^{2}. \quad (12)$$

В силу (11), (12) выполнено

$$J(u_M; [x_1, x_2]) \le J(l; [x_1, x_2]) + c_3|x_2 - x_1|^2.$$
(13)

Так как неравенство (13) верно для любых $x_1, x_2 \in [a, b]$, для $x_3, x_4 \in [x_1, x_2]$ таких, что $|x_4 - x_3|e \ge |x_2 - x_1|$ (e -экспонента), выполнено

$$\left| \frac{u_M(x_2) - u_M(x_1)}{x_2 - x_1} - \frac{u_M(x_4) - u_M(x_3)}{x_4 - x_3} \right| \le c|x_2 - x_1|^{1/2}. \tag{14}$$

Более общий результат доказан в лемме 3.1 из [12]. Для удобства читателя также помещаем в конце работы доказательство требуемого нам результата (см. лемму 6).

Из неравенства (14) уже нетрудно вывести $C^{1,1/2}$ -регулярность функции u_M . Пусть $x_3, x_4 \in [x_1, x_2]$. Найдется $k \in N$ такое, что

$$\frac{|x_2 - x_1|}{e^k} \le |x_4 - x_3| \le \frac{|x_2 - x_1|}{e^{k-1}}.$$

Найдутся также промежутки $\begin{bmatrix} x_1^i, x_2^i \end{bmatrix}, i \in \{0, \dots, k-1\}$, такие, что $x_1^0 = x_1, x_2^0 = x_2, \left| x_2^i - x_1^i \right| = \left| x_2^{i-1} - x_1^{i-1} \right| / e$ для рассматриваемых $i \geq 1$ и также $\begin{bmatrix} x_1^i, x_2^i \end{bmatrix} \subset \begin{bmatrix} x_1^{i-1}, x_2^{i-1} \end{bmatrix}$ для этих $i, [x_3, x_4] \subset \begin{bmatrix} x_1^{k-1}, x_2^{k-1} \end{bmatrix}$, при этом $|x_4 - x_3| \geq |x_2^{k-1} - x_1^{k-1}| / e$. В силу (14)

$$\left| \frac{u_{M}(x_{2}) - u_{M}(x_{1})}{x_{2} - x_{1}} - \frac{u_{M}(x_{4}) - u_{M}(x_{3})}{x_{4} - x_{3}} \right| \\
\leq \left(\sum_{i=1}^{k-1} \left| \frac{u_{M}(x_{2}^{i}) - u_{M}(x_{1}^{i})}{x_{2}^{i} - x_{1}^{i}} - \frac{u_{M}(x_{2}^{i-1}) - u_{M}(x_{1}^{i-1})}{x_{2}^{i-1} - x_{1}^{i-1}} \right| \right) \\
+ \left| \frac{u_{M}(x_{2}^{k-1}) - u_{M}(x_{1}^{k-1})}{x_{2}^{k-1} - x_{1}^{k-1}} - \frac{u_{M}(x_{4}) - u_{M}(x_{3})}{x_{4} - x_{3}} \right| \\
\leq \left(\sum_{i=0}^{k-1} c \left| x_{2}^{i} - x_{1}^{i} \right|^{1/2} \right) \leq \sum_{i=0}^{\infty} c \left| \frac{x_{2} - x_{1}}{e^{i}} \right|^{1/2} \\
= c \sum_{i=0}^{\infty} (1/e^{i})^{1/2} |x_{2} - x_{1}|^{1/2} = \tilde{c}|x_{2} - x_{1}|^{1/2}. \quad (15)$$

Тогда существует производная $\dot{u}_M(x)$ в каждой точке $x \in [a,b]$ и, более того,

$$|\dot{u}_M(x) - \dot{u}_M(y)| \le 2\tilde{c}|x - y|^{1/2}.$$
 (16)

Неравенство (16) доказывает лемму 5. □

Теорему 3 можно использовать для доказательства классических достаточных условий слабого и сильного локального минимума. Однако в доказательстве леммы 5 мы использовали теорему 1 Тонелли, которая не была доступна в 19-м веке. Оказывается, можно избежать использования этой теоремы, так как полунепрерывность снизу на минимизирующей последовательности u_k вытекает из сравнения $J(u_k)$ со значениями функционала на кусочно аффинных аппроксимациях u_k . Можно также избежать рассмотрения задачи минимизации в теореме 3 и лемме 5 в классе липшицевых функций. Вместо этого можно рассмотреть минимизацию в классе кусочно C^1 -регулярных функций, т. е. таких непрерывных функций, что для каждой функции этого класса существует разбиение интервала [a,b] на конечное число подынтервалов, сужение функции на замыкание каждого из которых C^1 -регулярно.

Как и в доказательстве леммы 5, можно выбрать равномерно сходящуюся к u_M минимизирующую последовательность u_k . Тогда $J(u_k) \leq I + \epsilon_k$, где I — инфимум в задаче минимизации и $\epsilon_k \to 0$, $k \to \infty$. Если $x_1, x_2 \in [a, b]$, то

$$J(u_k; [x_1, x_2]) \le L(\tilde{l}_k; [x_1, x_2]) + \epsilon_k \tag{17}$$

и тогда в силу (12) получаем

 $J(u_k;[x_1,x_2]) \leq J(l_k;[x_1,x_2]) + c_3|x_2 - x_1|^2 + \epsilon_k \leq J(l_k;[x_1,x_2]) + 2c_3|x_2 - x_1|^2,$ (18) если $k \in N$ достаточно большое. Тогда (14) выполнено для фиксированных $x_1,x_2 \in [a,b]$ и фиксированных $x_3,x_4 \in [x_1,x_2]$ с $|x_2-x_1| \leq e|x_4-x_3|$ для функций u_k при достаточно больших значениях $k \in N$ и подходящем c > 0. Но тогда (14) выполнено также и для u_M , а следовательно, верно (16), т. е. $u_M \in C^{1,1/2}[a,b]$.

Осталось показать, что $J(u_k) \to J(u_M)$. Для каждого $n \in N$ рассмотрим разбиение [a,b] на n равных интервалов и функцию $p_k^n: [a,b] \to R$, аффинную на каждом интервале и равную u_k в концах интервала. Аналогично кусочно аффинная функция $p^n: [a,b] \to R$ строится для предельной функции u_M . Тогда $J(p_k^n) \to J(p^n), k \to \infty$, и $J(p^n) \to J(u_M), n \to \infty$. Осталось показать, что для любого $\epsilon > 0$ при достаточно больших n справедливо

$$J(u_k) \ge J(p_k^n) - \epsilon \tag{19}$$

равномерно по $k \in N$. Пусть $x_1, x_2 \in [a, b]$. Рассмотрим интегранд

$$\widetilde{L}(x, u, v) = L(x, u, v) - L_v(x_1, u_k(x_1), \widetilde{k})v - L(x_1, u_k(x_1), \widetilde{k}),$$
(20)

где $\tilde{k} = \dot{l}_k = (u_k(x_2) - u_k(x_1))/(x_2 - x_1)$. Имеем

$$J(u_k; [x_1, x_2]) - J(l_k; [x_1, x_2]) = \widetilde{J}(u_k; [x_1, x_2]) - \widetilde{J}(l_k; [x_1, x_2]).$$
 (21)

Интегранд $\widetilde{L}(x_1,u_k(x_1),v)$ переменного v достигает минимума в точке $v=\widetilde{k},$ который равен нулю. Для $x\in [x_1,x_2]$ имеем $|u_k(x)-u_k(x_1)|\leq M|x_2-x_1|$ и тогда

$$\widetilde{L}(x, l_k(x), \dot{l}_k(x)) - \widetilde{L}(x, u_k(x), \dot{u}_k(x)) \leq \{\widetilde{L}(x, l_k(x), \dot{l}_k(x)) - \widetilde{L}(x_1, l_k(x_1), \tilde{k})\}
+ \{\widetilde{L}(x_1, u_k(x_1), \tilde{k}) - \widetilde{L}(x_1, u_k(x_1), \dot{u}_k(x))\}
+ \{\widetilde{L}(x_1, u_k(x_1), \dot{u}_k(x)) - \widetilde{L}(x, u_k(x), \dot{u}_k(x))\}
\leq c_1(M)|x_2 - x_1| + 0 + c_2(M)|x_2 - x_1| \leq c(M)|x_2 - x_1|.$$
(22)

Тем самым в силу (21), (22) получаем

$$J(p_k^n) - J(u_k) \le nc(M)(|b - a|/n)^2$$
(23)

и действительно выполнено (19) при всех достаточно больших $n \in N$ равномерно по $k \in N$.

Таким образом, теорема 3 и все вытекающие следствия для локальных минимумов могли быть доказаны изложенными прямыми методами еще в 19-м веке, даже до работ Вейерштрасса и Гильберта по теории поля. Однако исторически сложилось, что в 19-м веке математики предпочитали развивать непрямые методы в вариационном исчислении и развитие прямых методов было отложено до настоящего времени.

Приложение. Для $u:[a,b]\to\mathbb{R}$ и $x_1,x_2\in[a,b]$ с $x_2>x_1$ определим $l_{x_1,x_2}:[x_1,x_2]\to\mathbb{R}$ как аффинную функцию, принимающую те же граничные значения в точках x_1,x_2 , что и функция u, т. е. $l_{x_1,x_2}(x_1)=u(x_1),\ l_{x_1,x_2}(x_2)=u(x_2)$. Тогда выполнено

$$\dot{l}_{x_1,x_2}(x) = \frac{u(x_2) - u(x_1)}{x_2 - x_1}, \quad x \in [x_1, x_2].$$

Как и ранее, будем использовать обозначение

$$J(u;[x_1,x_2]) := \int_{x_1}^{x_2} L(x,u(x),\dot{u}(x)) dx.$$

Лемма 6. Пусть $K \subset \mathbb{R}^2$ является компактным выпуклым множеством и M>0. Пусть $u:[a,b]\to R$ является M-липшицевой функцией c графиком в K. Пусть также $x_1\leq x_3\leq x_4\leq x_2$ — точки интервала [a,b] такие, что $|x_4-x_3|e\geq |x_2-x_1|,\,|x_2-x_1|\leq 1$.

Пусть L является C^1 -регулярным интеграндом в множестве $K \times [-M, M]$, т. е.

$$|L(x, u, v) - L(\bar{x}, \bar{u}, \bar{v})| \le c_1(|x - \bar{x}| + |u - \bar{u}| + |v - \bar{v}|), \quad c_1 > 0,$$
 (24)

для $(x,u),(\bar x,\bar u)\in K,\ |v|,|\bar v|\le M,\ и$ пусть L эллиптична по v на множестве $K\times [-M,M],$ т. е. существует $\mu>0$ такое, что

$$L(x, u, v_2) - L(x, u, v_1) - L_v(x, u, v_1)(v_2 - v_1) \ge \mu |v_2 - v_1|^2, \tag{25}$$

если $(x, u) \in K, |v_1|, |v_2| \leq M.$

Предположим, что

$$J(u;[x_1,x_2]) \le J(l_{x_1,x_2};[x_1,x_2]) + c_2|x_2 - x_1|^2, \tag{26}$$

$$J(u; [x_3, x_4]) \le J(l_{x_3, x_4}; [x_3, x_4]) + c_2|x_4 - x_3|^2.$$
(27)

Тогда

$$\left[\frac{u(x_2) - u(x_1)}{x_2 - x_1} - \frac{u(x_4) - u(x_3)}{x_4 - x_3}\right] \le 2e \left[\frac{c_2 + 2c_1(1+M)}{\mu}\right]^{1/2} |x_2 - x_1|^{1/2}.$$
(28)

Доказательство. Сначала получим оценки экцесса производных на интервалах $[x_1,x_2]$ и $[x_3,x_4]$, т. е. оценки интегралов

$$\int_{x_1}^{x_2} |\dot{u}(x) - \dot{l}_{x_1, x_2}|^2 dx, \quad \int_{x_3}^{x_4} |\dot{u}(x) - \dot{l}_{x_3, x_4}|^2 dx.$$

Ввиду (24)

$$|L(x_1, u(x_1), \dot{u}(x)) - L(x, u(x), \dot{u}(x))| \le c_1(|x_1 - x| + M|x_1 - x|),$$

$$|L(x_1, u(x_1), \dot{l}_{x_1, x_2}(x)) - L(x, l_{x_1, x_2}(x), \dot{l}_{x_1, x_2}(x))| \le c_1(|x_1 - x| + M|x_1 - x|).$$

Поэтому если определим $\widetilde{L}(\cdot) := L(x_1, u(x_1), \cdot)$, то согласно (26) выполнено

$$\widetilde{J}(u;[x_1,x_2]) \leq J(u;[x_1,x_2]) + c_1(1+M)|x_2 - x_1|^2
\leq J(l_{x_1,x_2};[x_1,x_2]) + c_2|x_2 - x_1|^2 + c_1(1+M)|x_2 - x_1|^2
\leq \widetilde{J}(l_{x_1,x_2};[x_1,x_2]) + c_2|x_2 - x_1|^2 + 2c_1(1+M)|x_2 - x_1|^2.$$
(29)

Тогда в силу (25)

$$\begin{split} \widetilde{J}(u;[x_1,x_2]) - \widetilde{J}(l_{x_1,x_2};[x_1,x_2]) \\ = \int\limits_{x_1}^{x_2} \{\widetilde{L}(\dot{u}(x)) - \widetilde{L}(\dot{l}_{x_1,x_2}) - \widetilde{L}_v(\dot{l}_{x_1,x_2})(\dot{u} - \dot{l}_{x_1,x_2})\} \, dx \geq \mu \int\limits_{x_1}^{x_2} |\dot{u} - \dot{l}_{x_1,x_2}|^2 \, dx. \end{split}$$

Следовательно, из (29) вытекает неравенство

$$\int_{x_1}^{x_2} |\dot{u}(x) - \dot{l}_{x_1, x_2}|^2 dx \le \frac{c_2 + 2c_1(1+M)}{\mu} |x_2 - x_1|^2.$$
 (30)

Аналогично

$$\int_{x_0}^{x_4} |\dot{u}(x) - \dot{l}_{x_3, x_4}|^2 dx \le \frac{c_2 + 2c_1(1+M)}{\mu} |x_4 - x_3|^2.$$
 (31)

Тогда из неравенства Гёльдера и (30), (31) получаем

$$\begin{split} \int\limits_{x_3}^{x_4} |\dot{l}_{x_1,x_2} - \dot{l}_{x_3,x_4}| \, dx &\leq \int\limits_{x_3}^{x_4} |\dot{l}_{x_3,x_4} - \dot{u}(x)| \, dx + \int\limits_{x_1}^{x_2} |\dot{l}_{x_1,x_2} - \dot{u}(x)| \, dx \\ &\leq \left(\int\limits_{x_3}^{x_4} |\dot{l}_{x_3,x_4} - \dot{u}(x)|^2 \, dx \right)^{1/2} |x_4 - x_3|^{1/2} + \left(\int\limits_{x_1}^{x_2} |\dot{l}_{x_1,x_2} - \dot{u}(x)|^2 \, dx \right)^{1/2} |x_2 - x_1|^{1/2} \\ &\leq \left[\frac{c_2 + 2c_1(1+M)}{\mu} \right]^{1/2} \{|x_4 - x_3|^{3/2} + |x_2 - x_1|^{3/2}\} \\ &\leq \left[\frac{c_2 + 2c_1(1+M)}{\mu} \right]^{1/2} 2|x_2 - x_1|^{3/2} \end{split}$$

и, стало быть,

$$|\dot{l}_{x_1,x_2} - \dot{l}_{x_3,x_4}| \le \left[\frac{c_2 + 2c_1(1+M)}{\mu}\right]^{1/2} 2e|x_2 - x_1|^{1/2},$$

т. е. (28) справедливо. \square

ЛИТЕРАТУРА

- Buttazzo G., Giaquinta M., Hildebrandt S. One-dimensional variational problems. An introduction. Oxford: Oxf. Univ. Press, 1998.
- Tonelli L. Sur une méthode directe du calcul des variations // Rend. Circ. Mat. Palermo. 1915. V. 39. P. 233–264.
- Сычев М. А. О регулярности решений одномерных вариационных задач // Тр. 27-й Всесоюз. студенческой конф. «Студент и научно-технический прогресс» (Новосибирск, 1989). Новосибирск: НГУ, 1989. Р. 60–65.
- **4.** *Сычев М. А.* О регулярности решений вариационных задач // Мат. сб. 1992. Т. 183, \mathbb{N}^2 4. С. 118–142.
- Sychev M. A., Mizel V. J. A condition on the value function both necessary and sufficient for full regularity of minimizers of one-dimensional variational problems // Trans. Amer. Math. Soc. 1998. V. 350. P. 119–133.
- 6. Sychev M. A. Another theorem of classical solvability 'in small' for one-dimensional variational problems // Arch. Ration. Mech. Anal. 2011. V. 202. P. 269–294.
- 7. Гратвик Р., Сычев М. А., Терсенов А. С. Теория регулярности для одномерных вариационных задач с сингулярной эллиптичностью // Докл. АН. 2016. Т. 470, № 1. С. 10–12.
- Gratwick R., Sychev M. A., Tersenov A. S. Regularity and singularity phenomena for one-dimensional variational problems with singular ellipticity // Pure Appl. Funct. Anal. 2016. V. 1, N 3. P. 397–416.
- Gratwick R., Sedipkov A. A., Sychev M. A., Tersenov A. S. Pathological solutions of the Euler– Lagrange equation and existence/regularity of minimizers in one-dimensional variational problems // C. R. Math. Sci. Paris. 2017. T. 355, N 3. P. 359–362.
- Mandallena J.-P. On the regularity of solutions of one-dimensional variational obstacle problems // Adv. Calc. Var. https://doi.org/10.1515/acv-2016-0030.
- 11. Tonelli L. Fondamenti di calcolo delle variazioni. Bologna: Zanichelli, 1921–1923. V. II.
- Ball J. M., Mizel V. J. One-dimensional variational problems whose minimizers do not satisfy the Euler-Lagrange equation // Arch. Ration. Mech. Anal. 1985. V. 90, N 4. P. 325–388.
- Clarke F. H., Vinter R. B. Existence and regularity in the small in the calculus of variations // J. Differ. Equ. 1985. V. 59. P. 336–354.
- 14. Clarke F. H., Vinter R. B. Regularity properties of solutions to the basic calculus of variations // Trans. Amer. Math. Soc. 1985. V. 289, N 1. P. 73–98.

Статья поступила 12 января 2017 г.

Сычев Михаил Андреевич Институт математики им. С. Л. Соболева СО РАН, пр. Академика Коптюга, 4, Новосибирск 630090; Новосибирский гос. университет, ул. Пирогова, 2, Новосибирск 630090 masychev@math.nsc.ru