ПРОМЕЖУТОЧНО ВПОЛНЕ ИНВАРИАНТНЫЕ ПОДГРУППЫ АБЕЛЕВЫХ ГРУПП

А. Р. Чехлов

Аннотация. Описаны промежуточно вполне инвариантные подгруппы делимых и периодических групп; показано, что во вполне разложимой группе без кручения, каждая однородная компонента которой разложима, промежуточно вполне инвариантные подгруппы служат прямыми слагаемыми; для периодических групп выяснено, когда все их вполне инвариантные подгруппы служат промежуточно вполне инвариантными, а для групп без кручения этот вопрос сведен к редуцированному случаю. Показано, что в периодической группе, являющейся прямой суммой циклических групп, ее подгруппа промежуточно инертна тогда и только тогда, когда она соизмерима с некоторой промежуточно вполне инвариантной подгруппой.

 $DOI\,10.17377/smzh.2017.58.518$

Ключевые слова: вполне инвариантная подгруппа, сильно инвариантная подгруппа, соизмеримые подгруппы, промежуточно инертная подгруппа, ранг группы.

Напомним, что подгруппа H группы A называется вполне инвариантной, если $fH\subseteq H$ для всякого f из кольца эндоморфизмов E(A) группы A; если $nH=H\cap nA$ для всякого натурального n, то подгруппа H называется чистой. Группа без кручения A называется вполне транзитивной, если для любых $0\neq a,b\in A$ из условия на их характеристики $\chi(a)\leq \chi(b)$ следует, что $\alpha a=b$ для некоторого $\alpha\in E(A)$. Подгруппы H,K группы G называются соизмеримыми, если подгруппа $K\cap H$ имеет конечный индекс как в K, так и в H.

Через $\langle B \rangle_*$ обозначается чистая подгруппа, порожденная подмножеством B группы, \mathbb{N} — множество всех натуральных чисел, \mathbb{Z} — группа (кольцо) целых чисел, $\mathbb{Z}(n)$ — циклическая группа порядка $n, \ f \mid G$ — ограничение гомоморфизма $f:A \to B$ на подмножество $G \subseteq A, \ t(A)$ — тип однородной группы без кручения $A, \ t(x)$ — тип элемента x группы без кручения, o(a) — порядок элемента a группы.

Подгруппу N группы G будем называть cunbho uheapuahmhoй (сокращенно si-nodzpynnoй) и писать $N \leq si$ G, если $fN \subseteq N$ для всякого гомоморфизма $f:N \to G$. В каждой группе G ее подгруппа $G[n]=\{g\in G\mid ng=0\}$ сильно инвариантна; в группе без кручения A ее подгруппа $A(t)=\{a\in A\mid t(a)\geq t\}$, где t — некоторый тип, сильно инвариантна; в смешанной группе ее периодическая часть — сильно инвариантная подгруппа. Запись $H\nleq si$ G будет означать, что H не является si-подгруппой в G. Группа G называется si-npocmoù, если она не имеет нетривиальных $(\neq 0,G)$ сильно инвариантных подгрупп. Однородные вполне транзитивные группы без кручения идемпотентного типа si-просты, si-проста и всякая однородная вполне разложимая группа без кручения [1, предложение [1, предложение [2,]0 изучались группы, являющиеся обобщением вполне транзитивных групп.

В [1] упомянут класс промежуточно вполне инвариантных подгрупп, т. е. таких вполне инвариантных подгрупп K группы G, что подгруппа K вполне инвариантна во всякой подгруппе группы G, содержащей K. Такие подгруппы K будем кратко называть ifi-подгруппами (intermediately fully invariant subgroups) и писать $K \leq$ ifi G. Этот класс промежуточен между классом всех si-подгрупп и классом всех вполне инвариантных подгрупп данной группы. В [1, с. 443] по-казано, что такие классы различны, в данной статье также приведены соответствующие примеры. Аналогично si-простым группам определяются ifi-простые группы. Ясно, что ifi-простая группа будет si-простой.

Подгруппа H группы G называется enonhe $\mathit{unepmhoй}$, если фактор-группа $(H+\varphi H)/H$ конечна (эквивалентно подгруппа $H\cap\varphi H$ имеет конечный индекс в φH) для всякого $\varphi\in E(G)$. Вполне инертные подгруппы абелевых групп изучались в [6-10]. Согласно [11] термин $\mathit{unepmhas}$ $\mathit{nodepynna}$ предложен профессором Кегелем. $\mathit{Промежсуточно}$ $\mathit{unepmhoй}$ назовем такую подгруппу H группы G, что для каждой подгруппы $N\leq G$ со свойством $H\leq N$ $H\cap\varphi H$ имеет конечный индекс в φH для каждого $\varphi\in E(N)$. Ясно, что каждая конечная подгруппа и подгруппа, имеющая конечный индекс в некоторой промежуточно вполне инвариантной подгруппе, являются промежуточно инертными.

ПРИМЕР 1. 1. В $\mathbb Z$ каждая подгруппа является іfі-подгруппой и эта группа sі-проста.

- 2. Если G si-простая группа, то для всякого кардинального числа $\alpha>1$ группа $\bigoplus G$ ifi-проста.
- 3. Подгруппа $p\mathbb{Z}$ вполне инвариантна в $\mathbb{Z}\oplus\mathbb{Z}(p),$ но $p\mathbb{Z}$ не является іfіподгруппой.

Доказательство. 1. Действительно, всякая подгруппа в $\mathbb Z$ имеет вид $n\mathbb Z$ для некоторого натурального n. Если $n\mathbb Z\subseteq m\mathbb Z$, то m делит n, n=mk. Подгруппа $n\mathbb Z=k(m\mathbb Z)$ вполне инвариантна в $m\mathbb Z$.

- 2. Если подгруппа H вполне инвариантна в группе $\bigoplus_{\alpha} G$, то $H = \bigoplus_{\alpha} (H \cap G)$. Так как G si-проста, при условии нетривиальности подгруппы H существует $f \in \operatorname{Hom}(H \cap G, G)$ со свойством $f(H \cap G) \not\subseteq H \cap G$. Поэтому подгруппа $\bigoplus_{\alpha} (H \cap G)$ не вполне инвариантна в $G \oplus \bigoplus_{\alpha = 1} (H \cap G)$. Заметим, что если G редуцированная группа без кручения, то она (а значит, и $\bigoplus_{\alpha} G$) имеет нетривиальные вполне инвариантные подгруппы.
 - 3. Подгруппа $p\mathbb{Z}$ не вполне инвариантная в $p\mathbb{Z} \oplus \mathbb{Z}(p)$.

Если H — вполне инвариантная (сильно инвариантная) подгруппа в G, то подгруппа H^n вполне инвариантна (сильно инвариантна) в G^n для каждого $n \in \mathbb{N}$. Из п. 2 примера 1 следует, что это свойство для іfі-подгрупп в общем случае не справедливо.

ПРИМЕР 2. В группе без кручения G ранга 1 всякая вполне инвариантная подгруппа является іfі-подгруппой.

Действительно, пусть подгруппа H вполне инвариантна в G, $H \leq K \leq G$ и $f \in E(K)$. Так как K также является группой ранга 1, f действует как умножение на некоторое рациональное число m/n, где nK = K. Поскольку $t(K) \leq t(G)$, то nG = G и, следовательно, nH = H, откуда $f(H) \subseteq H$.

В частности, в группе без кручения G ранга 1 всякая подгруппа является іf-подгруппой тогда и только тогда, когда $pG \neq G$ для каждого простого числа p.

В группе без кручения A ранга 2 могут существовать вполне инвариантные подгруппы, не являющиеся іfі-подгруппами. Действительно, если в такой группе A кольцо эндоморфизмов E(A) изоморфно кольцу \mathbb{Z} , то всякая подгруппа в A будет вполне инвариантной, однако подгруппа \mathbb{Z} не вполне инвариантна в $\mathbb{Z} \oplus \mathbb{Z} \leq A$.

ПРИМЕР 3. Пусть $G=\langle a\rangle\oplus\langle b\rangle\oplus\langle c\rangle$, где $o(a)=p,\,o(b)=p^2,\,o(c)=p^3$. Тогда вполне инвариантные подгруппы $pG[p]=\langle pb\rangle\oplus\langle p^2c\rangle$ и $pG[p^2]=\langle pb\rangle\oplus\langle pc\rangle$ не являются іfi-подгруппами.

Действительно, эти подгруппы не вполне инвариантны в подгруппах $\langle a \rangle \oplus pG[p]$ и $\langle a \rangle \oplus pG[p^2]$ соответственно. Подобным образом строятся вполне инвариантные, но не ifi-подгруппы во всякой ограниченной p-группе, в цоколе которой имеются ненулевые элементы с различной высотой.

Приведем следующие простые свойства.

1. Сумма іfі-подгрупп снова является іfі-подгруппой.

Действительно, если
$$H_i \leq \inf G, \ H = \sum_{i \in I} H_i, \ H \leq K \leq G$$
 и $f \in E(K)$, то $f(H_i) \subseteq H_i$, откуда $f(H) = \sum_{i \in I} f(H_i) \subseteq H$.

Следующее свойство очевидно.

- **2**. Если $H \leq K \leq G$ и $H \leq \inf G$, $K/H \leq \inf G/H$, то $K \leq \inf G$.
- **3**. Если G группа без кручения и $H \leq \inf G$, то $H_* \leq \inf G$.

Это свойство вытекает из свойства 2, поскольку H_*/H совпадает с периодической частью фактор-группы G/H, а периодическая часть группы является іfі-подгруппой.

4. Если G — группа без кручения, а N — ее чистая ifi-подгруппа, то N^- также является ifi-подгруппой, где N^- — замыкание в Z-адической или p-адической топологии подгруппы N в группе G.

Это свойство вытекает из того, что делимая и p-делимая части группы являются іfі-подгруппами, а в данном случае N^-/N совпадает с делимой (соответственно с p-делимой) частью фактор-группы G/N.

ответственно с p-делимой) частью фактор-группы G/N. Если G — редуцированная p-группа с $G^1=\bigcap_{n\in\mathbb{N}}p^nG\neq 0$, то $G^1=0^-$ вполне инвариантная подгруппа в G, не являющаяся ifi-подгруппой.

Предложение 1. Пусть N — ifi-подгруппа группы $G = H \oplus K$. Тогда $N = (N \cap H) \oplus (N \cap K)$ и $N \cap H$, $N \cap K$ являются ifi-подгруппами в H и K соответственно. Обратно, если H_1 и K_1 — ifi-подгруппы в H и K соответственно, то $H_1 \oplus K_1$ является ifi-подгруппой в G тогда и только тогда, когда $\alpha(H_1) \subseteq K_1$ для каждого гомоморфизма $\alpha: H_1 \to K$ и $\beta(K_1) \subseteq H_1$ для каждого гомоморфизма $\beta: K_1 \to H$.

Доказательство. Если $N\cap H\leq A\leq H$ и $\varphi\in E(A)$, то $N\leq A\oplus K$ и $\overline{\varphi}\in E(A\oplus K)$, где $\overline{\varphi}\mid A=\varphi$ и $\overline{\varphi}\mid K=0$. По условию $\overline{\varphi}N\subseteq A\oplus K$, откуда $\varphi(N\cap H)\subseteq N\cap H$, т. е. $N\cap H\leq \mathrm{ifl}\, H$ и аналогично $N\cap K\leq \mathrm{ifl}\, K$.

НЕОБХОДИМОСТЬ второго утверждения очевидна.

ДОСТАТОЧНОСТЬ. Пусть $H_1 \oplus K_1 \leq A \leq G$, $\varphi \in E(A)$, а π и θ — проекции группы G на H и K соответственно. Имеем $\underline{A} = (A \cap H) \oplus (A \cap K) \leq A \leq \pi A \oplus \theta A = \overline{A}$ и $H_1 \leq A \cap H$, $K_1 \leq A \cap K$, т. е. $H_1 \oplus K_1 \leq \underline{A}$. Если $\psi = \pi \varphi \pi + \pi \varphi \theta + \theta \varphi \pi + \theta \varphi \theta$, то ψ можно рассматривать как элемент группы $\operatorname{Hom}(\underline{A}, \overline{A})$. Имеем $\pi \varphi \pi(H_1) \subseteq H_1$ и $\theta \varphi \pi(H_1) \subseteq K_1$, а $\pi \varphi \theta(H_1) = \theta \varphi \theta(H_1) = 0$. Аналогично

 $\theta \varphi \theta(K_1) \subseteq K_1$ и $\pi \varphi \theta(K_1) \subseteq H_1$, а $\pi \varphi \pi(K_1) = \theta \varphi \pi(K_1) = 0$. Поэтому $\psi(H_1 \oplus K_1) \subseteq H_1 \oplus K_1$. Осталось заметить, что $\psi \mid (H_1 \oplus K_1) = \varphi \mid (H_1 \oplus K_1)$. \square

Теорема 1. 1. Если G — редуцированная или делимая p-группа, то всякая ее нетривиальная ifi-подгруппа N имеет вид $G[p^n]$, где n — некоторое натурального число, в частности, все ifi-подгруппы группы G являются si-подгруппами.

- 2. Пусть $G = D \oplus R$ нередуцированная p-группа, где $D \neq 0$ делимая, а R редуцированная части группы G. Тогда всякая нетривиальная ifi-подгруппа группы G совпадает c одной из следующих подгрупп: D, $D \oplus R[p^m]$, $D[p^n] \oplus R[p^n]$, где $m, n \in \mathbb{N}$.
- 3. В делимой группе D ifi-подгруппы или совпадают с D, или служат ifi-подгруппами ее периодической части, т. е. являются прямыми суммами ifi-подгрупп ее p-компонент.

ДОКАЗАТЕЛЬСТВО. 1. Для делимых групп утверждение очевидно, поэтому перейдем к редуцированному случаю. Предположим сначала, что N — ограниченная группа, т. е. $p^nN=0$ для некоторого минимального натурального n. Тогда $N=\bigoplus_{i\in I}C_i$, где C_i — циклические группы порядка $\leq p^n$, причем хотя бы одна C_i , скажем C_1 , изоморфна $\mathbb{Z}(p^n)$. Далее $N\subseteq G[p^n]$ и $G[p^n]=\bigoplus_{j\in J}X_j$, где X_j также циклические группы порядка $\leq p^n$, причем будем считать, что $X_1=C_1$. Если $N\neq G[p^n]$, то найдется $X_j\nsubseteq N$. Эпиморфизм $C_1\to X_j$ продолжается до эндоморфизма f подгруппы $G[p^n]$, и $f(N)\nsubseteq N$; противоречие. Следовательно, $N=G[p^n]$.

Допустим, что N — неограниченная группа. Если $g \in G[p] \setminus N$, то $\langle N, g \rangle = \langle g \rangle \oplus N$. Поэтому найдется гомоморфизм $0 \neq f : N \to \langle g \rangle$. Данное противоречие показывает, что $G[p] \subseteq N$. Пусть $G[p^{n-1}] \subseteq N$, но $G[p^n] \nsubseteq N$ (если $G[p^m] \subseteq N$ для каждого натурального m, то N = G, что противоречит нетривиальности N).

Если $x\in G[p^n]\setminus N$, то $px\in N$. Так как группа N неограниченная, найдется такой ее элемент c, что $\langle c\rangle$ — прямое слагаемое в N и $o(c)>p^n$; $N=\langle c\rangle\oplus B$. Тогда $px=p^k(lc)+b$, где $k>1,\,1\leq l\leq p-1$, а $b\in B$ и b=py для некоторого $y\in G$. Далее $x-p^{k-1}(lc)-y\in G[p]\subseteq N$ и $y\notin N$ (так как $x\notin N$). Заметим, что $\langle N,y\rangle=\langle c\rangle\oplus \langle B,y\rangle$. Действительно, если $\langle c\rangle\cap\langle B,y\rangle\neq 0$, то mc=z+y для некоторого $m\in \mathbb{N}$, где $z\in B$ и $mc\neq 0$. Имеем $pmc=pz+py\in B$ и $mc-z-y\in G[p]\subseteq N$, откуда $y\in N$; противоречие.

Итак, $\langle N,y\rangle=\langle c\rangle\oplus\langle B,y\rangle$, а поскольку o(c)>o(y), существует гомоморфизм $f\colon \langle c\rangle\to\langle y\rangle$ со свойством $f(c)=y,\,f$ продолжается до эндоморфизма подгруппы $\langle N,y\rangle$ и $fN\not\subseteq N$. Следовательно, случай неограниченности N невозможен.

 Π . 2 вытекает из п. 1 и предложения 1. Π . 3 следует из того, что делимые группы без кручения не имеют нетривиальных вполне инвариантных подгрупп. \square

В частности, из теоремы 1 следуют описание іfі-подгрупп периодических групп, а также тот факт, что іfі-подгруппы редуцированной p-группы образуют цепь. В нередуцированном случае пересечение іfі-подгрупп может не являться іfі-подгруппой. Действительно, пусть $G=D\oplus R$, где $D\neq 0$ — делимая, а $R\neq 0$ — редуцированная p-группы. Тогда D и $G[p]=D[p]\oplus R[p]$ — іfі-подгруппы, однако подгруппа $D\cap G[p]=D[p]$ не вполне инвариантна в G[p], поэтому $D[p]\nleq$ іfі G. Заметим, что $D[p]\leq$ іfі D и $D\leq$ іfі G.

Пересечение ifi-подгрупп может не являться ifi-подгруппой и в группе без кручения.

ПРИМЕР 4. Пусть E_1, \ldots, E_4 — группы без кручения ранга 1, p, q, p_2, p_3 — различные простые числа, типы групп E_1, E_2, E_3 попарно не сравнимы и

$$E_1\cong E_4,\quad p_2E_2=E_2,\quad p_3E_3=E_3,\quad pE_1\neq E_1,\quad pE_2\neq E_2,\quad pE_3\neq E_3,$$

$$p_2E_1\neq E_1,\quad p_2E_3\neq E_3,\quad p_3E_1\neq E_1,\quad p_3E_2\neq E_2,$$

$$qE_1\neq E_1,\quad qE_2\neq E_2,\quad qE_3\neq E_3.$$

Группу G будем строить как подгруппу в некоторой делимой группе без кручения с помощью векторного пространства над полем рациональных чисел $\mathbb Q$. Положим

$$A = \langle E_1, E_2, p^{-\infty}(e_1 + e_2) \rangle, \quad B = \langle E_3, E_4, q^{-\infty}(e_3 + e_4) \rangle, \quad G = A \oplus B,$$

где $0 \neq e_i \in E_i, i=1,\ldots,4$, а $p^{-\infty}a$ обозначает бесконечное множество элементов $p^{-1}a, p^{-2}a,\ldots$ Заметим, что $\operatorname{Hom}(A,B)=0$. Действительно, в группе A элементы подгруппы E_2 делятся на любую степень числа p_2 , а в группе B нет ненулевых элементов с таким свойством, поэтому если $f \in \operatorname{Hom}(A,B)$, то E_2 содержится в ядре $\ker f$ гомоморфизма f. Тогда $f(e_1) \in p^{-\infty}B=0$, т. е. $E_1 \subseteq \ker f$ и, значит, f=0. Тем самым $A \le \operatorname{ifi} G$. Заметим, что $E_1 \le \operatorname{ifi} A$. Далее $E_1 \oplus E_4 = G(t(E_1)) \le \operatorname{ifi} G$. Однако $E_1 = A \cap G(t(E_1)) \nleq \operatorname{ifi} G$, так как подгруппа E_1 не вполне инвариантна в $E_1 \oplus E_4$. Аналогично $B \le \operatorname{ifi} G$ и $E_4 = B \cap G(t(E_1)) \nleq \operatorname{ifi} G$.

Итак, множество всех ifi-подгрупп в общем случае не образует подрешетку в полной решетке вполне инвариантных подгрупп группы. Кроме того, из условия $H \leq \inf K \leq \inf G$ не обязательно следует, что $H \leq \inf G$.

Предложение 2. 1. Всякая однородная сепарабельная группа без кручения G ранга ≥ 2 является іfі-простой.

- 2. Если G вполне разложимая группа без кручения, каждая однородная компонента которой имеет ранг ≥ 2 , то всякая ifi-подгруппа группы G совпадает c некоторым ее (вполне инвариантным) прямым слагаемым.
- 3. Если $G = \bigoplus_{i \in I} G_i$, где все группы G_i ifi-просты, то всякая ifi-подгруппа группы G совпадает c некоторым ее (вполне инвариантным) прямым слагаемым.

Доказательство. 1. Пусть $0 \neq N \leq \inf G$ и $a \in G \setminus N$. Имеем $G = \langle a \rangle_* \oplus B$ и $N = (N \cap \langle a \rangle_*) \oplus (N \cap B)$. Из сепарабельности и однородности группы G следует, что $N \cap \langle a \rangle_* \neq 0$ и $N \cap \langle a \rangle_* \neq \langle a \rangle_*$. Согласно предложению $1 \ N \cap \langle a \rangle_* \leq \inf \langle a \rangle_*$. Однако $\langle a \rangle_*$ как группа ранга 1 si-проста, а каждый элемент группы B можно вложить в прямое слагаемое, изоморфное $\langle a \rangle_*$, поэтому подгруппа N не будет вполне инвариантной в группе $(N \cap \langle a \rangle_*) \oplus B$; противоречие.

2. Пусть $G=\bigoplus_{t\in\Omega}G_t$ — вполне разложимая группа без кручения, где G_t — однородные типа t компоненты группы G. Если $N\leq \text{ifi }G$, то $N=\bigoplus_{t\in\Omega}(N\cap G_t)$, где $N\cap G_t\leq \text{ifi }G_t$ для каждого $t\in\Omega$. Согласно п. 1 $N\cap G_t=G_t$ при $N\cap G_t\neq 0$. Поэтому $N=\bigoplus_{t\in\Delta}G_t$ — прямое слагаемое группы G, где $\Delta=\{t\in\Omega\mid N\cap G_t\neq 0\}$.

П. 3 доказывается аналогично п. 2. \Box

Предложение 3. 1. Пусть G — сепарабельная группа без кручения такая, что для каждого ее прямого слагаемого A ранга 1 в дополнительном прямом слагаемом имеется прямое слагаемое, изоморфное A, а Ω — множество типов всех прямых слагаемых ранга 1 группы G. Тогда всякая ifi-подгруппа группы G чиста в G и имеет вид $\sum_{t\in \Delta} G(t)$, где $\Delta\subseteq \Omega$.

2. Если G — алгебраически компактная группа без кручения, каждая ненулевая p-адическая компонента которой разложима, то всякая ifi-подгруппа группы G является плотной чистой ifi-подгруппой некоторого вполне инвариантного прямого слагаемого в G.

Доказательство. 1. Пусть $N \leq \inf G$ и $a \in N$. Тогда $G = X \oplus Y$, где $a \in X = G_1 \oplus \cdots \oplus G_n$ и $r(G_i) = 1$. Имеем $N \cap X = (N \cap G_1) \oplus \cdots \oplus (N \cap G_n)$. Если $N \cap G_i \neq 0$, то $G_i \subseteq N$ (это следует из доказательства п. 1 предложения 2 и условия на прямые слагаемые ранга 1 группы G) и G_i — прямое слагаемое в N. Допустим, что $N \cap G_i \neq 0$ при всех $i = 1, \ldots, n$ (напомним, что $\pi G = N \cap \pi G$ для всякой проекции π группы G). Тогда X — прямое слагаемое в K0. Отсюда, в частности, следует чистота K1. Подгруппа K2 также является сепарабельной группой (всякая вполне инвариантная подгруппа сепарабельной группы сепарабельна).

Обозначим через Δ множество типов всех прямых слагаемых ранга 1 группы N. Покажем, что $\Delta\subseteq\Omega$. Пусть $N=C\oplus K$, где $r(C)=1,\ 0\neq x\in C$ и $x\in H=G_1\oplus\cdots\oplus G_n$, где H — прямое слагаемое в G, а $r(G_i)=1$. Тогда $t(C)=t(x)\leq t(G_i)$ для каждого $i=1,\ldots,n$ (предполагаем, что $\pi_ix\neq 0$ при всех $i=1,\ldots,n$, где π_i — проекции группы G на G_i , значит, как и выше, $G_i\subseteq N$ для всех $i=1,\ldots,n$). Если θ — проекция группы N на C, то $\theta(G_{i_0})\neq 0$ хотя бы для одного $1\leq i_0\leq n$. В противном случае $G_i\subseteq K$ для всех $i=1,\ldots,n$, $H\subseteq K$ и, значит, $C\subseteq K$; противоречие. Итак, $\theta(G_{i_0})\neq 0$ для некоторого i_0 , значит, $t(G_{i_0})\leq t(\theta(G_{i_0}))\leq t(C)$. Отсюда $t(C)=t(\theta(G_{i_0}))$ и включение $\Delta\subseteq\Omega$ доказано. Группа G_{i_0} — прямое слагаемое в N и в G. Для каждого $y\in G(t(C))$ найдутся $z\in G_{i_0}$ и гомоморфизм $f:G_{i_0}\to G$ со свойством fz=y, f продолжается до эндоморфизма группы G, поэтому $G(t(C))\subseteq N$. Следовательно, $N=\sum_{t\in\Delta}G(t)$.

2. Пусть $G=D\oplus R$, где D- делимая, R- редуцированная части группы G, а $0\neq N\leq$ ifi G. Имеем $N=(N\cap D)\oplus (N\cap R)$. Если $N\cap D\neq 0$ или $N\cap R\neq 0$, то $D\subseteq N$ и $N=D\oplus (N\cap R)$. Если R=0, то N=D, так как делимые группы без кручения ifi-просты. Поэтому считаем далее, что D=0 и G=R. Как редуцированная алгебраически группа без кручения R имеет вид $R=\prod_{p\in\pi}R_p$, где R_p-p -адические компоненты группы R, а $\pi-$ некоторое множество простых чисел. Каждая группа R_p является однородной идемпотентного типа вполне транзитивной группой, а ее вполне инвариантные подгруппы имеют вид nR_p , где $n\in\mathbb{N}$. По условию группа R_p разложима, $R_p=H\oplus K$, где $H,K\neq 0$. Если n>1, то подгруппа $nH\oplus nK$ не вполне инвариантна в $nH\oplus K$, что непосредственно следует из строения p-адических алгебраически компактных групп. Поэтому $R_p\subseteq N$ при $N\cap R_p\neq 0$. Если $\sigma=\{p\in\pi\,|\,N\cap R_p\neq 0\}$, то $\bigoplus_{p\in\sigma}R_p\subseteq N\subseteq R'=\prod_{p\in\sigma}R_p$ и R'— вполне инвариантное прямое слагаемое в R. Поскольку $\bigoplus_{p\in\sigma}R_p$ — плотная подгруппа в R', подгруппа N плотна в R'. Покажем, что N— чистая подгруппа в R'. Пусть $a\in N$ и a=pb для некоторых

простого числа p и $b \in R'$. Так как рассматриваются группы без кручения, достаточно показать, что $b \in N$. Если $pR' \neq R'$, то $R_p \subseteq R'$ и $R' = R_p \oplus B$, a = x + y, b = u + v, где $x, u \in R_p$, $y, v \in B$, а $B = \prod_{q \in \sigma \setminus \{p\}} R_q$. Имеем $N = R_p \oplus A$, где $A = N \cap B$ и x = pu, y = pv. Осталось заметить, что $v \in N$. Действительно, если $v \notin N$, то $A \neq pA$. Группа B p-делима, значит, можно определить эндоморфизм $f \in E(R')$ следующим образом: f действует на R_p как тождественный эндоморфизм, а на B — как деление на p. Тогда $fN \nsubseteq N$; противоречие. \square

ПРИМЕР 5. 1. В группе без кручения G ранга 1 всякая подгруппа промежуточно инертна.

2. В группе без кручения конечного ранга всякая конечно порожденная подгруппа N максимального ранга промежуточно инертна.

Действительно, пусть $N \leq H \leq G$ и $f \in E(H)$ — ненулевой эндоморфизм. В п. 1 f продолжается до автоморфизма группы \mathbb{Q} , поэтому f действует как умножение на некоторое рациональное число m/n. Имеем $n(N+fN)\subseteq N$. Значит, фактор-группа $(N+fN)/N\cong fN/(N\cap fN)$ конечна как ограниченный гомоморфный образ группы fN ранга ≤ 1 . В п. 2 подгруппа N существенна, тем самым фактор-группа $fN/(N\cap fN)$ конечна как периодический гомоморфный образ свободной группы N конечного ранга.

Предложение 4. 1. В группе без кручения G ранга 1 всякая промежуточно инертная подгруппа соизмерима c некоторой ifi-подгруппой тогда и только тогда, когда $pG \neq G$ для всякого простого числа p.

2. Если G — группа без кручения конечного ранга > 1, имеющая ненулевые эндоморфизмы c ненулевыми ядрами, то всякая ее промежуточно инертная подгруппа соизмерима c некоторой ifi-подгруппой тогда и только тогда, когда G является свободной группой.

Доказательство. 1. Необходимость. Если pG=G для некоторого простого p, то каждая іfі-подгруппа группы G будет p-делимой; p-делимой будет и соизмеримая с ней подгруппа, что противоречит примеру 5.

Достаточность. Пусть $N \leq H \leq G$ и $pG \neq G$ для всякого простого числа p. Группа H тоже является группой ранга 1, и $pH \neq H$ для всякого простого числа p, поэтому ее кольцо эндоморфизмов изоморфно кольцу целых чисел, значит, подгруппа N будет вполне инвариантной в H.

2. НЕОБХОДИМОСТЬ. Свободная существенная подгруппа N группы G промежуточно инертна. Если она соизмерима с ifi-подгруппой F, то $nF\subseteq N$ для некоторого натурального n. Подгруппа свободной группы свободна, значит, свободна и F. Пусть $H\le G$ и ранг подгруппы H меньше ранга G. Найдется $K\le G$ такая, что $K\cap H=0$ и подгруппа $K\oplus H$ существенна в G. Если K_1 и H_1 —свободные существенные подгруппы в K и H соответственно, то $K_1\oplus H_1$ —существенная промежуточно инертная подгруппа в G и $K_1\oplus H_1\le K_1\oplus H$; $K_1\oplus H_1$ соизмерима с некоторой свободной ifi-подгруппой X, которая также существенна в G. Поэтому в силу конечного ранга $mX\subseteq (X\cap K_1)\oplus (X\cap H_1)$ для некоторого натурального m. Отсюда ввиду свободности подгруппы $X\cap K_1$ следует, что некоторое натуральное кратное подгруппы H содержится в H0. Значит, подгруппа H1 свободна. Итак, всякая подгруппа группы H2 срежится в H3 с ненулевым ядром. Тогда ker H4—свободное прямое слагаемое в H6—свободным прямым слагаемым. Поэтому свободна и группа H6.

ДОСТАТОЧНОСТЬ. Как подгруппа свободной группы промежуточно инертная подгруппа N группы G является свободной того же ранга, что и G. Поэтому фактор-группа G/N конечна как периодическая группа конечного ранга. \square

В [12] несвободные группы без кручения, у которых все собственные сервантные подгруппы свободны, названы сервантно свободными (в [12] чистые подгруппы называются сервантными). Ранг таких групп конечен, они сильно неразложимы, а их алгебра квазиэндоморфизмов является полем алгебраических чисел [12, следствие 5.3] (см. также [13]).

Лемма 1. Пусть $K \leq H$ — подгруппы группы G такие, что фактор-группа H/K конечна. Подгруппа K промежуточно инертна в G тогда и только тогда, когда H — промежуточно инертная подгруппа в G.

Доказательство. Пусть $H \leq A$ и $\varphi \in E(A)$. Из конечности факторгрупп H/K и $\varphi H/\varphi K$ следует конечность фактор-группы $(H+\varphi H)/(K+\varphi K)$. Поскольку $(H+\varphi H)/(K+\varphi K)\cong ((H+\varphi H)/K)/((K+\varphi K)/K)$, конечность $(K+\varphi K)/K$ влечет конечность $(H+\varphi H)/K$, откуда вытекает конечность $(H+\varphi H)/H$. Если конечна $(H+\varphi H)/H$, то конечна $(H+\varphi H)/K$. Так как $K+\varphi K\subseteq H+\varphi H$, конечна и фактор-группа $(K+\varphi K)/K$. \square

Лемма 2. Подгруппа H периодической группы G промежуточно инертна в G тогда и только тогда, когда каждая p-компонента H_p подгруппы H промежуточно инертна в G_p , причем почти все H_p промежуточно вполне инвариантны в G_p .

Доказательство. Необходимость. Утверждение о промежуточной инертности очевидно, поскольку каждая H_p — прямое слагаемое в H и $\varphi(H_p)\subseteq G_p$ для всех эндоморфизмов φ всякой подгруппы $K\le G$, содержащей H. Если $H_p\nleq$ if G для некоторого бесконечного множества Π простых p, то для каждого такого p найдутся подгруппа $K_p\le G_p$, где $H_p\le K_p$, и $\psi_p\in E(K_p)$ такие, что $\psi_p(H_p)\nsubseteq H_p$. Если $\psi=\bigoplus_p\psi_p$, где $\psi_p(H_p)=0$ при $p\notin \Pi$, то фактор-группа $(H+\psi H)/H$ бесконечна; противоречие.

Достаточность очевидна.

Предложение 5 [8, предложение 1.4]. *Если* G-p-группа, то ее подгруппы H и K соизмеримы тогда и только тогда, когда для некоторой подгруппы $C \leq G$ имеют место равенства $H = F \oplus C$ и $K = F' \oplus C$, где подгруппы F и F' конечны.

Предложение 6. Всякая ограниченная промежуточно инертная подгруппа H p-группы G соизмерима c промежуточно вполне инвариантной подгруппой.

ДОКАЗАТЕЛЬСТВО. Пусть $p^n H = 0$ для некоторого минимального натурального n. Тогда $H = \bigoplus_{k=1}^n \bigoplus_{i \in I_k} C_i$, где C_i для каждого $i \in I_k$ суть циклические группы порядка p^k . Если группа H бесконечна, то для некоторого максимального $m \le n$ множество I_m также бесконечно, а подгруппа $H' = \bigoplus_{k=1}^m \bigoplus_{i \in I_k} C_i$ имеет конечный индекс в H. Далее $H' \subseteq G[p^m]$ и как ограниченная чистая подгруппа $\bigoplus_{i \in I_m} C_i$ прямое слагаемое в $G[p^m]$. Если H' не соизмерима с подгруппой $G[p^m]$, то найдется счетное множество элементов $x_n \in G[p^m] \setminus H'$. Подгруппа $\langle x_n \mid n \in \mathbb{N} \rangle$ является эпиморфным образом группы $\bigoplus_{i \in I_m} C_i$, и этот эпилеги.

морфизм f продолжается до эндоморфизма φ группы $G[p^m]$, причем H' имеет бесконечный индекс в $H' + \varphi(H')$. Полученное противоречие показывает, что подгруппа H конечна или соизмерима некоторой подгруппе $G[p^m]$. \square

Лемма 3 [9, свойство 5]. Пусть H- вполне инертная подгруппа группы $G=A\oplus B, \ \pi:G\to A$ и $\theta:G\to B-$ соответствующие проекции. Тогда подгруппа $H\cap A$ вполне инертна в A, подгруппы $(H\cap A)\oplus (H\cap B)$ и $\pi H\oplus \theta H$ соизмеримы c H, а если $\varphi\in \mathrm{Hom}(B,A)$, то подгруппа $H\cap A+\varphi(H\cap B)$ соизмерима c $H\cap A$.

Лемма 4 [10, лемма 7]. Пусть $G = \bigoplus_{i \in I} G_i$ и $\pi_i : G \to G_i$ — соответствующие проекции. Тогда если H — вполне инертная подгруппа в G, то H имеет конечный индекс в подгруппе $\sum_{i \in I} \pi_i(H)$.

Теорема 2. Если G — периодическая группа, являющаяся прямой суммой циклических групп, то ее подгруппа H промежуточно инертна тогда и только тогда, когда H соизмерима c некоторой промежуточно вполне инвариантной подгруппой.

Доказательство. Необходимость. По лемме 2 почти все p-компоненты группы H промежуточно вполне инвариантны в G_p . Поэтому достаточно показать, что каждая не промежуточно вполне инвариантная p-компонента H_p соизмерима с некоторой промежуточно вполне инвариантной подгруппой. Пусть H_p — неограниченная редуцированная группа (см. предложение 6). Запишем G_p в виде $G_p = \bigoplus_{n \in \mathbb{N}} C_n$, где C_n — прямая сумма некоторого числа циклических групп порядка p^n . Ввиду лемм 1 и 4 можно считать, что $H_p = \bigoplus_{n \in \mathbb{N}} (H_p \cap C_n)$. Допустим, что индекс подгруппы H_p в G_p бесконечен. Тогда выберем такие возрастающие последовательности натуральных чисел $n_1 < n_2 < \ldots$ и $m_1 < m_2 < \ldots$, что $H_p \cap C_{n_k} \neq C_{n_k}$, $n_k \neq m_s$ для всех $k,s \in \mathbb{N}$, причем подгруппа $H' = \bigoplus_{s \in \mathbb{N}} (H_p \cap C_{m_s})$ неограниченная. Если $x_{n_k} \in C_{n_k} \setminus H_p$, то $\{x_{n_k}\} \subseteq f(H')$ для некоторого гомоморфизма $f \in \text{Hom}(H',K)$, где $K = \bigoplus_{k \in \mathbb{N}} C_{n_k}$. Полагая $f \mid K = 0$, имеем $f \in E(H' \oplus K)$, и индекс подгруппы H_p в $H_p + f(H_p)$ бесконечен; противоречие.

ДОСТАТОЧНОСТЬ. Пусть H соизмерима с іfі-подгруппой K. Тогда $H_p = K_p$ для почти всех p. Если $H_p \neq K_p$, то по предложению 5 $H_p = F_p \oplus C_p$, $K_p = F_p' \oplus C_p$, где подгруппы F_p и F_p' конечны. По лемме 1 подгруппа $C_p \leq K_p$ промежуточно инертна, поэтому по этой же лемме промежуточно инертна и подгруппа H_p . Ссылка на лемму 2 заканчивает доказательство. \square

Теорема 3. 1. Пусть $G=\bigoplus_{p\in\Pi}(D_p\oplus R_p)$ — периодическая группа, где D_p — делимая, а R_p — редуцированная части ее p-компоненты G_p . В группе G все вполне инвариантные подгруппы служат ifi-подгруппами тогда и только тогда, когда каждая R_p является прямой суммой циклических групп одного и того же порядка, причем если $D_p\neq 0$, то $R_p=0$.

- 2. В группе без кручения G все вполне инвариантные подгруппы служат ifi-подгруппами тогда и только тогда, когда этим свойством обладает ее редуцированная часть R.
- 3. Пусть $G = A \oplus T$ смешанная расщепляющаяся группа с периодической частью T. В группе G всякая вполне инвариантная подгруппа является ifi-

подгруппой тогда и только тогда, когда этим свойством обладают группы A и T, причем pA = A для всякого простого числа p со свойством $pT_p \neq T_p$.

Доказательство. П. 1 сводится к случаю, когда G является p-группой. Итак, пусть $G=D\oplus R-p$ -группа, где D— делимая, а R— ее редуцированная части.

НЕОБХОДИМОСТЬ. Если $D,R\neq 0$, то для каждого натурального n подгруппа $D[p^n]$ вполне инвариантна в G, но не является вполне инвариантной подгруппой в $D[p^n]\oplus R$. Поэтому перейдем к группе R. В p-группе R ее подгруппа $R^1=\bigcap_{n\in\mathbb{N}}p^nR$ будет промежуточно инвариантной только в том случае,

когда R^1 совпадает с делимой частью группы R. Тем самым группа R сепарабельная. Если группа R неограниченная, то она имеет и неограниченные вполне инвариантные подгруппы, что противоречит теореме 1, согласно которой іfi-подгруппы группы R имеют вид $R[p^n]$, $n \in \mathbb{N}$. Значит, R — ограниченная группа. Если элементы ее цоколя имеют разную высоту, то из примера 3 следует, что такая группа R содержит вполне инвариантные подгруппы, не являющиеся іfi-подгруппами.

Достаточность. В делимой p-группе D всякая вполне инвариантная подгруппа имеет вид $D[p^n]$, $n \in \mathbb{N}$, и все они являются іfі-подгруппами. Если D=0 и R — редуцированная p-группа, то по условию R — прямая сумма циклических групп фиксированного порядка p^n . Вполне инвариантные подгруппы такой группы имеют вид $R[p^m]$, где $m \in \mathbb{N}$ и $m \leq n$, и все они являются іfі-подгруппами.

- П. 2 следует из того, что если $N \neq 0$ вполне инвариантная подгруппа в G, то $N = D \oplus (N \cap R)$, где D делимая часть группы G.
- 3. НЕОБХОДИМОСТЬ. Поскольку $T \leq \inf G$, то T должна удовлетворять указанным свойствам. Если $pA \neq A$ и $pT_p \neq T_p$ для некоторого p, то по п. 1 T_p прямая сумма циклических групп одного и того же порядка p^n . Тогда p^nA вполне инвариантная подгруппа группы G, не являющаяся вполне инвариантной в группе $p^nA \oplus T_p$.

Достаточность. Пусть N- вполне инвариантная подгруппа в G. Тогда $N=(N\cap A)\oplus (N\cap T)$, где подгруппы $N\cap A$ и $N\cap T$ вполне инвариантны в A и в T соответственно. По условию $N\cap T\leq \inf T$. Так как $T\leq \inf G$, при условии $N\cap A=0$ имеем $N\cap T=N\leq \inf G$. Если $N\cap A\neq 0$, то делимая часть группы G содержится в N ввиду инъективности. Если группа T делима, то $T\subseteq N$ и $N=(N\cap A)\oplus T\leq \inf G$. Если группа T не делима, то каждая ее неделимая p-компонента T_p есть редуцированная группа, при этом группа A p-делима, значит, p-делима и $N\cap A$. Отсюда следует, что образ всякого гомоморфизма $N\cap A\to T$ содержится в делимой части группы T, которая, как замечено выше, содержится в $N\cap T$. Поэтому по предложению 1 $N\leq \inf G$.

Заметим, что ввиду п. 1 теоремы 3 если в T вполне инвариантные подгруппы служат іfі-подгруппами и T — периодическая группа с конечным числом p-компонент, то T выделяется прямым слагаемым во всякой смешанной группе, в которой она служит периодической частью. Отметим, что в [14] изучались группы, все собственные вполне инвариантные подгруппы которых изоморфны, близкие вопросы рассматривались в [15]. Сильно инвариантные подгруппы изучались также в [16].

ЛИТЕРАТУРА

- 1. Călugăreanu G. Strongly invariant subgroups // Glasg. Math. J. 2015. V. 57, N 2. P. 431–443.
- Чехлов А. Р. О прямой сумме неприводимых групп // Мат. заметки. 2015. Т. 97, № 5. С. 798–800.
- 3. Чехлов А. Р. О вполне квазитранзитивных абелевых группах // Сиб. мат. журн. 2016. Т. 57, № 5. С. 1184–1192.
- 4. Chekhlov A. R., Danchev P. V. On commutator fully transitive Abelian groups // J. Group Theory. 2015. V. 18, N 4. P. 623–647.
- Chekhlov A. R., Danchev P. V. On projectively Krylov transitive and projectively weakly transitive Abelian p-groups // J. Group Theory. 2017. V. 20, N 1. P. 39–59.
- Dikranjan D., Giordano Bruno A., Salce L., Virili S. Fully inert subgroups of divisible Abelian groups // J. Group Theory. 2013. V. 16, N 6. P. 915–939.
- Dikranjan D., Salce L., Zanardo P. Fully inert subgroups of free Abelian groups // Period. Math. Hungar. 2014. V. 69, N 1. P. 69–78.
- Goldsmith B., Salce L., Zanardo P. Fully inert subgroups of Abelian p-groups // J. Algebra. 2014. V. 419, N 1. P. 332–349.
- Чехлов А. Р. Вполне инертные подгруппы вполне разложимых групп конечного ранга и их соизмеримость // Вестн. Томск. ун-та. Математика и механика. 2016. № 3. С. 42–50.
- Чехлов А. Р. О вполне инертных подгруппах вполне разложимых групп // Мат. заметки. 2017. Т. 101, № 2. С. 302–312.
- Беляев В. В. Инертные подгруппы в бесконечных простых группах // Сиб. мат. журн. 1993. Т. 34, № 4. С. 17–23.
- **12.** Фомин А. А. Сервантно свободные группы // Абелевы группы и модули. Томск, 1986. С. 145–164.
- 13. Фомин А. А. Абелевы группы со свободными подгруппами бесконечного индекса и их кольца эндоморфизмов // Мат. заметки. 1984. Т. 36, № 2. С. 179–187.
- Chekhlov A. R., Danchev P. V. On Abelian groups having all proper fully invariant subgroups isomorphic // Comm. Algebra. 2015. V. 43, N 12. P. 5059–5073.
- Kemoklidze T. Endomorphisms of a cotorsion hull and full transitivity // J. Math. Sci. 2016.
 V. 216, N 4. P. 558–563.
- 16. Чехлов А. Р. О сильно инвариантных подгруппах абелевых групп // Мат. заметки. 2017. Т. 102, № 1. С. 125–132.

Статья поступила 5 октября 2016 г.

Чехлов Андрей Ростиславович Томский гос. университет, пр. Ленина, 36, Томск 634050 cheklov@math.tsu.ru