О ДИНАМИКЕ СТАЦИОНАРНЫХ ПРОЦЕССОВ СДВИГА С КАНТОРОВОЙ СТРУКТУРОЙ

Н. С. Аркашов, В. А. Селезнев

Аннотация. Для стационарных процессов, порожденных преобразованиями сдвига на самоподобных множествах, исследуются преобразования их спектральной плотности и устанавливается закон обмена энергии. Перенос энергии моделируется взаимодействием квазичастиц, представляющих упомянутые процессы, в гиперболической геометрии.

 $DOI\,10.17377/smzh.2017.58.502$

Ключевые слова: самоподобные множества, мера Хаусдорфа, псевдоевклидово пространство, эффект Комптона, спектральная плотность, стационарный процесс.

1. Введение

Вопросы моделирования процессов переноса в сингулярных фазовых пространствах ставились в работах [1–4] и др., где исследовалось моделирование процессов переноса в сплошных средах с фрактальной структурой, рассматриваемых как подмножества нулевой лебеговой и некоторой ненулевой хаусдорфовой меры. В качестве инструмента моделирования в этих работах применялся аппарат дробного интегродифференциального исчисления.

В данной работе мы отходим от парадигмы, согласно которой процессы переноса моделируются в сплошных средах с фрактальной структурой. В построенной модели сингулярные фазовые пространства появляются как носители меры изменения энергии и импульса стационарных процессов сдвига. Строится преобразование спектральной плотности, которое оказывается изометрией гиперболической геометрии, и на основании этого преобразования выводится уравнение динамики для рассматриваемых процессов сдвига (см. предложение 4 и теорему 1).

Формат динамики в виде процессов сдвига на символьном пространстве возник в данной работе не случайно. Именно в этом формате исследовались свойства хаотичности и эргодичности динамических систем (см., например, [5]).

В работе отмечена аналогия построенной модели с эффектом Комптона (см., например, [6]). Эта аналогия основана на реализации процессов сдвига квазичастицами в гиперболической геометрии. В частности, уравнение динамики, на котором основано описание эффекта Комптона, совпадает с уравнением динамики для квазичастиц. Установлено, что преобразование процессов сдвига при «взаимодействии» с белым шумом происходит в определенном диапазоне мощности шума, а мерой потери энергии процесса сдвига является изменение хаусдорфовой размерности канторова континуума.

Данную работу можно рассматривать как частичное решение проблемы моделирования переноса импульса и энергии в сингулярных фазовых пространствах.

Структура работы. В разд. 2 устанавливается связь между преобразованиями сдвига на множествах с самоподобной структурой и некоторым классом стационарных процессов. В случае, когда множества с самоподобной структурой представляют собой канторовские множества на числовой прямой, для соответствующих им стационарных процессов выводится гиперболическое соотношение между спектральными плотностями этих процессов (см. предложение 4).

В разд. 3 устанавливается соответствие между вышеуказанным классом стационарных процессов и отображениями со значениями в гильбертовом пространстве с индефинитной метрикой.

В разд. 4 вводится понятие квазичастицы как некоторого класса стационарных процессов. Для таких квазичастиц устанавливаются динамические соотношения, аналогичные тем, что возникают при взаимодействии фотона с покоящимся электроном (эффект Комптона). Кроме того, приводится геометрическая модель потери энергии при взаимодействии квазичастиц.

В разд. 5 приводятся доказательства всех основных утверждений.

2. Преобразования сдвига и стационарные процессы

Пусть X — метрическое пространство с метрикой ρ . На множестве подмножеств пространства X будем рассматривать семейство внешних мер Хаусдорфа $\{\mu^d\}_{d>0}$ (см., например, [7]).

Отметим, что для любого множества $A\subseteq X$ существует такое $d_0\in [0,+\infty]$, что $\mu^d(A)=0$ при всех $d>d_0$ и $\mu^d(A)=+\infty$ при всех $d< d_0$ (см. теорему 6.1.6 в [8]). Число d_0 называется хаусдорфовой размерностью A. Хаусдорфову размерность множества A будем обозначать через $\dim(A)$.

Напомним, что отображение $T: X \to X$ называется преобразованием подобия, если существует положительное r такое, что $\rho(T(x),T(y))=r\rho(x,y)$ для всех $x,y\in X$. Если r<1, то такое преобразование подобия называется сжимающим преобразованием подобия.

Выделим класс так называемых самоподобных множеств. Следуя [8], будем называть непустое компактное множество A самоподобным, если существуют такие сжимающие преобразования подобия T_1, \ldots, T_N , что имеет место представление

$$A = igcup_{i=1}^N T_i(A),$$

при этом $\mu^{\dim(A)}(T_i(A)\cap T_j(A))=0$ для всех $i\neq j.$

В дальнейшем будем рассматривать класс самоподобных множеств $\mathscr S$ таких, что $\mu^{\dim(A)}(A)=1$ для всех $A\in\mathscr S$.

Борелевскую σ -алгебру множеств в X будем обозначать через \mathscr{B} . Поскольку все представители класса \mathscr{S} являются самоподобными, а следовательно, компактными множествами, имеем $\mathscr{S}\subseteq\mathscr{B}$. Отметим, что сужение хаусдорфовой меры μ^d на \mathscr{B} является борелевской мерой (см., например, [8]).

Зафиксируем $E\in \mathscr{S}$ такое, что $E=\bigcup\limits_{i=1}^{N}T_{i}(E)$, где T_{1},\ldots,T_{N} — сжимающие преобразования подобия с коэффициентом r.

Пространство последовательностей Σ на N элементах $\{1,2,\ldots,N\}$ определим как множество всех бесконечных последовательностей $\sigma_1\sigma_2\ldots$, $\sigma_k\in\{1,2,\ldots,N\}$, $k=1,2,\ldots$ Расстояние между $\sigma=\sigma_1\sigma_2\sigma_3\ldots$ и $\tau=\tau_1\tau_2\tau_3\ldots$ определяется следующим образом: если $\sigma_1\neq\tau_1$, то $d(\sigma,\tau)=1$; если $\sigma_1=\tau_1,\ldots,\sigma_k=\tau_k$ и $\sigma_{k+1}\neq\tau_{k+1}$ для некоторого $k\geq 1$, то $d(\sigma,\tau)=r^k$; если $\sigma_k=\tau_k$ для всех $k\geq 1$, то $d(\sigma,\tau)=0$. Пространство последовательностей (Σ,d) является метрическим пространством (см. $[5,\S4.1;8,\S4.2]$). Пространство (Σ,d) будем называть симбольным пространством (см., например, [9]).

Следующее предложение (см. теорему 4.2.3 в [8]) позволяет «кодировать» каждую точку из E некоторой последовательностью из символьного пространства.

Предложение 1. Существует единственное непрерывное отображение $\Phi: (\Sigma, d) \to (E, \rho)$ такое, что для любого $\sigma = \sigma_1 \sigma_2 \sigma_3 \cdots \in \Sigma$ выполняется

$$\Phi(\sigma) = T_{\sigma_1}(\Phi(\sigma_2\sigma_3\dots)).$$

Кроме того, $\Phi(\Sigma) = E$.

Заметим, что если $T_i(E) \cap T_j(E) = \emptyset$ для всех $i \neq j$, то Φ является гомеоморфизмом пространств (Σ, d) и (E, ρ) (см. [10]).

Отображение $S: \Sigma \to \Sigma$, определенное следующим образом:

$$S(\sigma_1\sigma_2\sigma_3\dots)=\sigma_2\sigma_3\dots,$$

будем называть преобразованием сдвига.

В обозначении меры $\mu^{\dim(E)}(\cdot)$ в дальнейшем будем опускать верхний инлекс.

Через $\mathscr{B}(E)$ будем обозначать σ -алгебру борелевских множеств в E, т. е. $\mathscr{B}(E)=\{B\cap E:B\in\mathscr{B}\}.$

Пусть B_0 — множество всех точек из E таких, что для каждого $x \in B_0$ прообраз $\Phi^{-1}(x)$ состоит из более чем одной точки (структура множества B_0 представлена в [10]). Отметим, что $\mu(B_0)=0$ и $B_0\in \mathscr{B}(E)$ (см. [10]). Выбрав в каждом из прообразов $\Phi^{-1}(x),\ x\in B_0$, ровно одну любую точку, в итоге получим множество $\Sigma_{B_0}\subseteq\Phi^{-1}(B_0)$. Обозначим $\Phi^{-1}(E\backslash B_0)$ через $\Sigma_{E\backslash B_0}$ и $\Sigma_{B_0}\cup\Sigma_{E\backslash B_0}$ через Σ' . Отображение $\Phi:\Sigma'\to E$ взаимно однозначное (при этом заметим, что отображение Φ , действующее из $(\Sigma_{E\backslash B_0},d)$ на $(E\backslash B_0,\rho)$, является гомеоморфизмом, см. [10])). Сужение отображения Φ на множество Σ' будем обозначать через Φ_0 .

Пополним σ -алгебру $\mathscr{B}(E)$, а именно обозначим через $\mathscr{B}^*(E)$ совокупность всех множеств вида $B \cup C$, где $B \in \mathscr{B}(E)$ и $C \subset B_0$. Очевидно, что $\mathscr{B}^*(E)$ является σ -алгеброй (см. [10]). Итак, $(E, \mathscr{B}^*(E), \mu)$ — пространство с мерой. Рассмотрим отображение $\Pi = \Phi \circ S \circ \Phi_0^{-1} : E \to E$. Определим функцию

Рассмотрим отображение $\Pi = \Phi \circ S \circ \Phi_0^{-1} : E \to E$. Определим функцию $\nu : \Sigma \to \mathbb{R}$, полагая $\nu(\sigma_1, \sigma_2, \dots) = \sigma_1$. С помощью ν определим функцию $\eta : E \to \mathbb{R}$, положив $\eta(\omega) = \nu(\Phi_0^{-1}(\omega))$. Зададим последовательность функций $\xi_n : E \to \mathbb{R}$, $n \geq 0$, следующим образом: $\xi_n(\omega) = \eta(\Pi^n(\omega))$. В предложении 2 утверждается, что функции $\xi_n : (E, \mathscr{B}^*(E), \mu) \to (\mathbb{R}, \mathscr{B}(\mathbb{R})), \ n \geq 0$, измеримы, кроме того, μ является вероятностной мерой, поэтому в дальнейшем функции ξ_n будем называть *случайными величинами*.

Рассмотрим последовательность отображений $Z_n = \Pi^n : E \to E, n \ge 0$. Отметим, что отображение $Z_n, n \ge 0$, можно понимать как случайный элемент, действующий из вероятностного пространства $(E, \mathscr{B}^*(E), \mu)$ в $(E, \mathscr{B}^*(E))$.

Предложение 2. Функции $\xi_n: (E, \mathscr{B}^*(E), \mu) \to (\mathbb{R}, \mathscr{B}(\mathbb{R})), \ n \geq 0$, измеримы. Случайные величины $(\xi_n)_{n\geq 0}$ независимые одинаково распределенные, при этом ξ_0 имеет равномерное распределение на множестве $\{1, 2, \dots, N\}$. Кроме того, для всех $\omega \in E \setminus B_0$ выполняется равенство

$$Z_n(\omega) = \Phi(\xi_n(\omega), \xi_{n+1}(\omega), \dots). \tag{1}$$

Последовательность $(Z_n)_{n\geq 0}$ будем называть *процессом сдвига*. В дальнейшем при вычислении спектральных характеристик процесса $(Z_n)_{n\geq 0}$ будем использовать именно равенство (1) (верное с точностью до множества меры нуль).

Отметим следующее утверждение (см. [10]).

Предложение 3. Для почти всех $\omega \in E$ траектория точки ω (т. е. последовательность $(Z_n(\omega))$) всюду плотна в E.

Выделим из класса самоподобных множеств класс канторовских множеств $\{S_{\alpha}\}_{0<\alpha<1/2}$ на отрезке [-1/2,1/2] пространства (\mathbb{R},ρ) , где $\rho(x,y)=|x-y|$. Множество S_{α} определяется двумя преобразованиями подобия $T_1(x)=\alpha x+\alpha/2-1/2$ и $T_2(x)=\alpha x-\alpha/2+1/2$ такими, что $S_{\alpha}=T_1(S_{\alpha})\cup T_2(S_{\alpha})$ и $T_1(S_{\alpha})\cap T_2(S_{\alpha})=\emptyset$. Размерность Хаусдорфа множества Кантора равна $d=-\ln 2/\ln \alpha$, при этом $\mu^d(K)=1$, где μ^d — соответствующая мера Хаусдорфа (см., например, [9]). Множество $S_{1/2}$ совпадает с отрезком [-1/2,1/2]. В дальнейшем E будем выбирать из класса множеств $\{S_{\alpha}\}_{0<\alpha<1/2}$.

Лемма 1. Отображение Φ пространства (Σ,d) на множество $S_{\alpha},\ 0<\alpha\leq 1/2,$ имеет вид

$$\Phi(\sigma_1, \sigma_2, \dots) = (1 - \alpha) \sum_{j=0}^{\infty} \alpha^j (\sigma_{j+1} - 1) - \frac{1}{2}.$$
 (2)

Из (1) и (2) выводим, что преобразование Z_n множества S_α можно представить в виде случайной величины

$$Z_{n,\alpha} = (1 - \alpha) \sum_{j=0}^{\infty} \alpha^{j} (\xi_{n+j}^{(\alpha)} - 1) - \frac{1}{2},$$

где $0<\alpha\leq 1/2,\ \left(\xi_n^{(\alpha)}\right)$ — независимые одинаково распределенные случайные величины (индексом α будем подчеркивать, что случайные величины заданы на вероятностном пространстве $(S_\alpha,\mu_\alpha,\mathscr{B}^*(S_\alpha))$, напомним, что $\mu_\alpha=\mu^d,\ d=-\ln 2/\ln \alpha)$. Из предложения 2 следует, что $\mu_\alpha\big(\xi_0^{(\alpha)}=1\big)=\mu_\alpha\big(\xi_0^{(\alpha)}=2\big)=1/2$. Представим $Z_{n,\alpha}$ в виде

$$Z_{n,\alpha} = \frac{1-\alpha}{2} \sum_{j=0}^{\infty} \alpha^{j} \varepsilon_{n+j}^{(\alpha)}, \tag{3}$$

где $\varepsilon_n^{(\alpha)}=2\xi_n^{(\alpha)}-3$, и отметим, что $\mu_{\alpha}\big(\varepsilon_0^{(\alpha)}=-1\big)=\mu_{\alpha}\big(\varepsilon_0^{(\alpha)}=1\big)=1/2$. Последовательность $\big(\varepsilon_n^{(\alpha)}\big)$, в частности, является белым шумом, т. е. последовательностью некоррелированных случайных величин с нулевыми средними и единичной дисперсией.

Для каждого $1/2 < \alpha < 1$ рассмотрим последовательности вида (3)

$$\frac{1-\alpha}{2} \sum_{j=0}^{\infty} \alpha^j \varepsilon_{n+j}^{(\alpha)}, \quad n \ge 0, \tag{4}$$

заданные на некоторых вероятностных пространствах, где $(\varepsilon_n^{(\alpha)})$ — последовательность, являющаяся белым шумом. Формально обозначим эти последовательности также через $(Z_{n,\alpha})$.

Отметим, что $(Z_{n,\alpha})_{n\geq 0}$ является стационарной последовательностью случайных величин (см., например, [11]).

Приведем следующий общий результат. Пусть (X_n) — стационарная последовательность случайных величин с нулевым средним. Напомним, что найдется такая конечная мера $G = G(\Delta)$ на $([-\pi,\pi],\mathcal{B}([-\pi,\pi]))$, что ковариационная функция $R(n) = \mathbf{cov}(X_0,X_n)$ допускает спектральное представление (см., например, [11])

$$R(n) = \int\limits_{-}^{\pi} e^{i\lambda n}\,G(d\lambda).$$

Плотность меры G, если таковая существует, называется спектральной плотностью, обозначим ее через $g(\lambda)$. Отметим, что $R(0) = \mathbf{D} X_0 = \int\limits_{-\pi}^{\pi} g(\lambda) \, d\lambda$.

Заметим, что спектральная плотность последовательности $(Z_{n,\alpha})$ (см. (3)) существует (см. ниже теорему 2).

Величину

$$E = \varsigma^2 \mathbf{D} X_0, \tag{5}$$

где ς — некоторая положительная константа, смысл которой разъяснится позже, будем интерпретировать как энергию процесса (X_n) (см. замечание 1), при этом $f(\lambda) = \varsigma^2 g(\lambda)$ является плотностью распределения энергии процесса по частотам, поскольку $E = \int\limits_{-\pi}^{\pi} f(\lambda) \, d\lambda$. Всюду в дальнейшем константу ς будем считать универсальной для всех встречающихся в данной работе процессов.

Замечание 1. Сделаем некоторые пояснения приведенной интерпретации энергии процесса как величины, пропорциональной дисперсии этого процесса (см., например, [12, гл. 3, \S 7]).

Рассмотрим некоторое вероятностное пространство, меру на нем обозначим через P. Пусть (X_n) — стационарная последовательность на этом пространстве. Существует такая ортогональная стохастическая мера $H = H(\Delta)$, $\Delta \in \mathcal{B}([-\pi,\pi])$, что для каждого $n \geq 0$ (почти всюду относительно меры P)

$$X_n = \int_{-\pi}^{\pi} e^{i\lambda n} H(d\lambda), \tag{6}$$

при этом $\mathbf{E}|H(\Delta)|^2=G(\Delta)$ (см., например, [13]). Рассмотрим дискретное представление интеграла (6), а именно $X_n^{(d)}=\sum\limits_k e^{i\lambda_k n}\Phi_k$, где $\Phi_k=H([\lambda_k,\lambda_{k+1}])$.

Процесс $(X_n^{(d)})_{n\geq 0}$ имеет своими составляющими элементарные гармонические колебания $e^{i\lambda_k n}\Phi_k$ со случайными амплитудами Φ_k . Как известно, полная энергия гармонических колебаний пропорциональна квадрату амплитуды этих колебаний. В этом смысле естественно, что $\mathbf{D}X_n^{(d)} = \sum_k \mathbf{E}|\Phi_k|^2$ интерпретируется как

энергия процесса $(X_n^{(d)})$ (с точностью до некоторой константы) и соответственно $\mathbf{D}X_n$ интерпретируется как энергия процесса (X_n) (с точностью до некоторой константы).

Для каждого $0<\alpha<1$ определим процесс $\left(Z_n^{(\alpha)}:=\frac{2\sqrt{2\pi\alpha}}{1-\alpha}Z_{n,\alpha}\right)_{n\geq 0}$, где случайная величина $Z_{n,\alpha}$ определена в (3) или (4). В дальнейшем будем рассматривать семейство

$$\Gamma = \left\{ \left(Z_n^{(\alpha)} = \sqrt{2\pi/\alpha} \sum_{j=0}^{\infty} \alpha^{j+1} \varepsilon_{n+j}^{(\alpha)} \right)_{n \ge 0} : 0 < \alpha < 1 \right\}.$$
 (7)

Замечание 2. Почти для каждого $\omega \in E = S_{\alpha}, \ 0 < \alpha \leq 1/2$, (относительно меры μ_{α}) последовательность $\left(Z_{n}^{(\alpha)}(\omega)\right)$ является всюду плотной на множестве $\frac{2\sqrt{2\pi\alpha}}{1-\alpha}\cdot S_{\alpha}$ (см. предложение 3).

Предложение 4. Пусть f_{α} и f_{β} — плотности энергии некоторых процессов из семейства Γ . Тогда при всех $\lambda \in [-\pi,\pi]$ выполняется соотношение

$$\frac{1}{\varsigma^{2}}(|f_{\alpha}(\lambda) - f_{\beta}(\lambda)| + \mu\varsigma^{2})^{2} - \left(\left(\frac{f_{\alpha}(\lambda)}{\varsigma}\right)^{2} + \left(\frac{f_{\beta}(\lambda)}{\varsigma}\right)^{2} - \frac{2\Delta f_{\alpha}(\lambda)f_{\beta}(\lambda)}{\varsigma^{2}}\right) = \mu^{2}\varsigma^{2}, \quad (8)$$

где $\mu = \frac{\min\{\beta,\alpha\}}{1-\alpha\beta}$, $\Delta = \min\{\frac{\beta}{\alpha},\frac{\alpha}{\beta}\}$. Кроме того, функция $|f_{\alpha}(\lambda) - f_{\beta}(\lambda)| + \mu\varsigma^2$, $\lambda \in [-\pi,\pi]$, является плотностью энергии стационарного процесса, заданного на некотором вероятностном пространстве

$$\frac{d}{\sqrt{2\pi\alpha\beta}} \sum_{j=0}^{\infty} c_j \varepsilon_{n+j} + \sqrt{2\pi\mu\eta_n}, \quad n \ge 0, \tag{9}$$

где $(\eta_n)_{n\geq 0}$ и $(\varepsilon_n)_{n\geq 0}$ — некоррелируемые последовательности, являющиеся белым шумом, $d=\sqrt{(1-\Delta)/\mu}$ и $c_j=\sum\limits_{k=0}^{j}(\max\{\alpha,\beta\})^{j-k+1}(\min\{\beta,\alpha\})^{k+1},\ j\geq 0.$

Замечание 3. Отметим, что плотности энергии $|f_{\alpha}(\lambda) - f_{\beta}(\lambda)| + \mu \varsigma^2$, $\lambda \in [-\pi, \pi]$, где $\mu = \frac{\min\{\alpha, \beta\}}{1 - \alpha \beta}$, соответствует целый класс стационарных процессов. Через $(B_n^{(\alpha, \beta)})$ в дальнейшем будем обозначать некоторый представитель этого класса.

3. Представление стационарных процессов в гильбертовом пространстве с индефинитной метрикой

Рассмотрим гильбертово пространство вещественнозначных последовательностей $l_2=\left\{\vec{x}=(x_0,x_1,\dots):\sum_{i=0}^\infty x_i^2<+\infty\right\}$. Для всех $\vec{x},\vec{y}\in l_2$ определены скалярное произведение $(\vec{x},\vec{y}):=\sum_{i=0}^\infty x_iy_i$ и норма $\|\vec{x}\|:=\sqrt{(\vec{x},\vec{x})}$.

В пространстве l_2 определим также индефинитное скалярное произведение $\langle \vec{x}, \vec{y} \rangle := \frac{1}{\varsigma^2} x_0 y_0 - \sum_{i=1}^{+\infty} x_i y_i$, где ς — константа, определенная в (5). В дальнейшем

пространство l_2 с так определенным индефинитным скалярным произведением будем обозначать через l_2^i .

Введем в рассмотрение псевдоевклидово пространство $\mathscr{R}_{1,m}^{m+1} = \{ \vec{u} = (u_0, 0) \}$ $\{\ldots, u_m, 0, \ldots, 0, \ldots\}$, являющееся подпространством пространства l_2^i .

Пусть $\vec{u} = (u_0, u_1, \dots) \in l_2^i$ — произвольный вектор. Определим отображения $\pi:l_2^i\to l_2$ и $\pi_0:l_2^i\to\mathbb{R}$, положив для этого $\pi(\vec{u})=(u_1,u_2,\dots)$ и $\pi_0(\vec{u})=u_0$. В некоторых случаях координаты вектора \vec{u} будем представлять в виде пары

$$\vec{u} = (\pi_0(\vec{u}), \pi(\vec{u})).$$
 (10)

Лемма 2. Для любых $\vec{u}, \vec{w} \in \mathscr{R}^{m+1}_{1,m}$ таких, что $\langle \vec{u}, \vec{u} \rangle = 0, \; \langle \vec{w}, \vec{w} \rangle = 0$ и $\pi_0(\vec{u}) \neq \pi_0(\vec{w})$, выполняется равенство

$$\langle \vec{u} - \vec{w} + \mu \varsigma^2 \vec{e}, \vec{u} - \vec{w} + \mu \varsigma^2 \vec{e} \rangle = \mu^2 \varsigma^2, \tag{11}$$

где
$$\vec{e}=(1,0,0,\dots),\, \mu=rac{\pi_0(\vec{u})\pi_0(\vec{w})(1-\cos\varphi)}{\varsigma^2(\pi_0(\vec{u})-\pi_0(\vec{w}))},\, \cos\varphi=rac{(\pi(\vec{u}),\pi(\vec{w}))}{\|\pi(\vec{u})\|\cdot\|\pi(\vec{w})\|}.$$

Введем обозначения.

- I. Значение $\cos \varphi$ в лемме 2 будем обозначать через $\Delta(\vec{u}, \vec{w})$, кроме того, положим $\mu(\vec{u}, \vec{w}) := |\mu|$, где μ также определен в лемме 2.
- II. Положим $\mu(\alpha,\beta) := \min\{\beta,\alpha\}/(1-\alpha\beta)$ и $\Delta(\alpha,\beta) := \min\{\beta/\alpha,\alpha/\beta\}$. Отметим, что функции $\mu(\cdot,\cdot)$ и $\Delta(\cdot,\cdot)$ соответствуют параметрам μ и Δ в предложении 4.

В дальнейшем будет установлена связь между функциями $\Delta(\cdot, \cdot)$ (между функциями $\mu(\cdot,\cdot)$) векторных и скалярных аргументов (см. ниже предложения 5 и 6).

III. Класс всех отображений $u:[-\pi,\pi] \to \mathscr{R}^{m+1}_{1,m},$ удовлетворяющих равенству $\langle u(\lambda), u(\lambda) \rangle = 0$ при всех $\lambda \in [-\pi, \pi]$, будем обозначать через \mathscr{K}_m .

Пусть $d_1, d_2, \ldots, d_m, \ m \geq 2,$ — некоторые различные действительные числа такие, что $0 < d_1, d_2, \ldots, d_m < 1$. Для каждого $i = 1, \ldots, m$ рассмотрим случайный процесс $Z_n^{(d_i)} = \sqrt{2\pi/d_i} \sum_{j=0}^\infty d_i^{j+1} \varepsilon_{n+j}^{(d_i)}$, где $n \geq 0$, пусть f_{d_i} — плотность

энергии этого процесса. Каждой паре процессов $(Z_n^{(d_i)})$ и $(Z_n^{(d_j)})$ соответствуют значения $\Delta(d_i, d_j)$ и $\mu(d_i, d_j)$.

Обозначим $Z_m:=\left\{\left(Z_n^{(d_i)}\right):i=1,\ldots,m\right\}.$ Для двух отображений g и f, определенных на $[-\pi,\pi]$, будем писать $g\equiv f,$ опуская аргумент и подразумевая, что $g(\lambda) = f(\lambda)$ при всех $\lambda \in [-\pi, \pi]$. Под обозначением $g \equiv f$ будем понимать, что отображение g определяется через отображение f.

Предложение 5. Существует отображение $Q: Z_m \to \mathscr{K}_m$ такое, что при всех $1 \le i \le m$ выполняются соотношения $\pi_0\big(Q\big(Z_n^{(d_i)}\big)\big) \equiv f_{d_i}$. Кроме того, при всех $1 \le i \ne j \le m$ имеют место равенства $\Delta\big(Q\big(Z_n^{(d_i)}\big),Q\big(Z_n^{(d_j)}\big)\big) \equiv \Delta(d_i,d_j)$ и $\mu(Q(Z_n^{(d_i)}), Q(Z_n^{(d_j)})) \equiv \mu(d_i, d_i).$

Рассмотрим процесс $(Z_n^{(\beta)}), \beta \notin \{d_1, \dots, d_m\}$. Пусть f_{β} — плотность энергии процесса $(Z_n^{(\beta)})$. Обозначим $Z_{m+1} := Z_m \cup \{(Z_n^{(\beta)})\}$.

Предложение 6. Отображение Q может быть продолжено $c \ Z_m$ на Z_{m+1} так, что $Q(Z_n^{(\beta)}) \in \mathscr{K}_{m+1} \setminus \mathscr{K}_m$, выполняется равенство $\pi_0(Q(Z_n^{(\beta)})) \equiv f_\beta$ и для всех $i=1,\ldots,m$ имеют место соотношения $\Delta\big(Q\big(Z_n^{(\beta)}\big),Q\big(Z_n^{(d_i)}\big)\big)\equiv \Delta(\beta,d_i)$ и $\mu\big(Q\big(Z_n^{(\beta)}\big),Q\big(Z_n^{(d_i)}\big)\big)\equiv \mu(\beta,d_i).$

3.1. Операции над векторами и процессами. Определим операцию * над векторами \vec{u} и \vec{w} , удовлетворяющими условиям леммы 2. Если $\pi_0(\vec{u}) > \pi_0(\vec{w})$, то

$$\vec{u} * \vec{w} := \vec{u} - \vec{w} + \mu \varsigma^2 \vec{e},\tag{12}$$

если $\pi_0(\vec{w}) > \pi_0(\vec{u})$, то

$$\vec{u} * \vec{w} := \vec{w} - \vec{u} + \mu \varsigma^2 \vec{e},$$

где $\vec{e} = (1, 0, 0, \dots), \ \mu = \mu(\vec{u}, \vec{w}).$ Отметим, что $\vec{u} * \vec{w} = \vec{w} * \vec{u}.$

Через Z обозначим множество всех процессов сдвига, для которых определили отображение Q (соответственно выполняется утверждение предложения 5).

Далее, пусть $(Z_n^{(a)}) \in Z$. Обозначим $w:\equiv Q(Z_n^{(a)})$. Доопределим операцию * для векторов $w(\lambda)$ и $w(\lambda)$. Для любого $\lambda \in [-\pi,\pi]$ положим

$$w(\lambda) * w(\lambda) := \mu(a, a)\varsigma^2 \vec{e}. \tag{13}$$

Прежде чем перейти к процессам, сформулируем следующую лемму.

Лемма 3. Пусть f_{α} и f_{β} — плотности энергии некоторых процессов из класса Γ (см. (7)), при этом $\alpha > \beta$. Тогда при всех $\lambda \in [-\pi, \pi]$ выполняется неравенство $f_{\alpha}(\lambda) > f_{\beta}(\lambda)$.

Рассмотрим семейство стационарных процессов $\Sigma = \{(B_n^{(\alpha,\beta)})_{n\geq 0}: 0 < \beta, \alpha < 1\}$, напомним, что каждый из процессов $(B_n^{(\alpha,\beta)})$ имеет плотность энергии $|f_\alpha(\lambda) - f_\beta(\lambda)| + \mu \varsigma^2$, $\lambda \in [-\pi, \pi]$, где $\mu = \mu(\alpha, \beta)$ (см. предложение 4 и замечание 3).

Определим операцию \star над процессами $(Z_n^{(\alpha)})$ и $(Z_n^{(\beta)})$. Положим

$$\left(Z_n^{(\alpha)}\right)\star\left(Z_n^{(\beta)}\right):=\left(B_n^{(\alpha,\beta)}\right)$$

и отметим, что $\left(Z_n^{(\beta)}\right)\star\left(Z_n^{(\alpha)}\right)=\left(Z_n^{(\alpha)}\right)\star\left(Z_n^{(\beta)}\right)$. Рассмотрим множество процессов

$$\mathscr{L} = Z \cup \left\{ \left(Z_n^{(a)} \right) \star \left(Z_n^{(b)} \right) : \left(Z_n^{(a)} \right), \left(Z_n^{(b)} \right) \in Z \right\}.$$

Продолжим отображение Q с множества Z на \mathscr{L} . Пусть сначала $a \neq b$. Выполняются соотношения $\pi_0(Z_n^{(a)}) \equiv f_a$ и $\pi_0(Z_n^{(b)}) \equiv f_b$, при этом $f_a(\lambda) \neq f_b(\lambda)$ для всех $\lambda \in [-\pi, \pi]$, поэтому определено $Q(Z_n^{(a)}) * Q(Z_n^{(b)})$ (см. (12) и лемму 3). Положим

$$Q\big(\big(Z_n^{(a)}\big)\star\big(Z_n^{(b)}\big)\big):\equiv Q\big(Z_n^{(a)}\big)*Q\big(Z_n^{(b)}\big).$$

В случае, когда a=b, полагаем $Q\left(\left(Z_n^{(a)}\right)\star\left(Z_n^{(a)}\right)\right):\equiv Q\left(Z_n^{(a)}\right)*Q\left(Z_n^{(a)}\right)$ (см. соотношение (13)).

Прежде чем сформулировать следующее утверждение, напомним, что процесс $(B_n^{(\alpha,\beta)})$ совпадает с $(Z_n^{(\alpha)}) \star (Z_n^{(\beta)})$.

Теорема 1. Пусть μ — произвольное положительное число, $\alpha \in [2\mu/(1+\sqrt{1+4\mu^2}),1)$ и $\beta=\frac{1}{\alpha+\frac{1}{\mu}}$. Пусть для процессов $(Z_n^{(\alpha)})$, $(Z_n^{(\beta)})$ определено отображение Q. Тогда выполняется равенство

$$\langle Q(B_n^{(\alpha,\beta)}), Q(B_n^{(\alpha,\beta)}) \rangle \equiv \mu^2 \varsigma^2,$$
 (14)

при этом $\pi_0(Q(B_n^{(\alpha,\beta)})) \equiv f_\alpha - f_\beta + \mu \varsigma^2$ и $\pi(Q(B_n^{(\alpha,\beta)})) \equiv \pi(Q(Z_n^{(\alpha)})) - \pi(Q(Z_n^{(\beta)}))$. Также имеет место соотношение

$$Q(Z_n^{(\alpha)}) + Q(B_n^{(e,e)}) \equiv Q(Z_n^{(\beta)}) + Q(B_n^{(\alpha,\beta)}), \tag{15}$$

где $e=2\mu/(1+\sqrt{1+4\mu^2}).$

Замечание 4. Пусть $0<\alpha<1,\ \mu$ — произвольное положительное действительное число. Пусть $\beta=\frac{1}{\alpha+\frac{1}{\mu}},$ тогда для всех $\alpha\in(2\mu/(1+\sqrt{1+4\mu^2}),1),$ и только для них, выполняется неравенство $\beta<\alpha$. Равенство $\alpha=\beta$ выполняется при $\alpha=2\mu/(1+\sqrt{1+4\mu^2}).$

Отметим, что если имеются два произвольных $0 < \beta < \alpha < 1$, то β представляется в виде $\frac{1}{\alpha + \frac{1}{\alpha}}$, для этого достаточно взять $\mu = \beta/(1 - \alpha\beta)$.

Заметим, что $B_n^{(e,e)}=\sqrt{2\pi e/(1-e^2)}\eta_n,\;n\geq 0.$ Если $e=2\mu/(1+\sqrt{1+4\mu^2}),$ то $e/(1-e^2)=\mu$ (см. замечание 4).

В дальнейшем будем обозначать $B_n^{(\mu)} := \sqrt{2\pi\mu}\eta_n, \ n \ge 0.$

4. Квазичастицы

Семейство процессов $\Gamma = \left\{ \left(Z_n^{(\alpha)} \right)_{n \geq 0} : 0 < \alpha < 1 \right\}$ назовем γ -квазичастичей, а семейство процессов $\Sigma(\mu) = \left\{ \left(B_n^{(\alpha,\beta)} \right)_{n \geq 0} : 0 < \alpha, \beta < 1, \ \mu(\alpha,\beta) = \mu \right\} - \varepsilon$ -квазичастицей c параметром μ . Будем говорить, что каждый процесс из этих семейств является состоянием соответствующей квазичастицы.

Рассмотрим процесс $B_n^{(\mu_0)} = \sqrt{2\pi\mu_0}\eta_n$, $n \ge 0$, где $\mu_0 > 0$. Поскольку $\left(B_n^{(\mu_0)}\right)$ совпадает с $\left(B_n^{(\alpha,\alpha)}\right)$ при $\alpha = 2\mu_0/\left(1+\sqrt{1+4\mu_0^2}\right)$, имеем $\left(B_n^{(\mu_0)}\right) \in \Sigma(\mu_0)$. Зафиксируем $d_0 \in \left(2\mu_0/\left(1+\sqrt{1+4\mu_0^2}\right),1\right)$ и вычислим

$$d_{-1} := \frac{1}{d_0 + \frac{1}{\mu_0}} \tag{16}$$

(отметим, что $d_0 > d_{-1}$, см. замечание 4). В соответствии с предложением 5 построим отображение $Q: Z_2 \to \mathscr{K}_2$, где $Z_2 = \{(Z_n^{(d_0)}), (Z_n^{(d_{-1})})\}$. Обозначим $f_0 :\equiv \pi_0(Q(Z_n^{(d_0)})), \ f_{-1} :\equiv \pi_0(Q(Z_n^{(d_{-1})}))$ и $p_0 :\equiv \pi(Q(Z_n^{(d_0)})), \ p_{-1} :\equiv \pi(Q(Z_n^{(d_{-1})}))$. Из теоремы 1 получаем, что $\pi_0(Q(B_n^{(d_0,d_{-1})})) \equiv f_0 - f_{-1} + \mu_0 \zeta^2$ и $\pi(Q(B_n^{(d_0,d_{-1})})) \equiv p_0 - p_{-1}$, кроме того, $\pi_0(Q(B_n^{(\mu_0)})) \equiv \mu_0 \zeta^2$ и $\pi(Q(B_n^{(\mu_0)})) \equiv \vec{0}$.

Представим отображения $Q(B_n^{(\mu_0)})$, $Q(Z_n^{(d_0)})$, $Q(Z_n^{(d_{-1})})$, $Q(B_n^{(d_0,d_{-1})})$ в виде пар (см. (10)) ($\mu_0\varsigma^2$, $\vec{0}$), (f_0 , p_0), (f_{-1} , p_{-1}), (f_0 – f_{-1} + $\mu_0\varsigma^2$, p_0 – p_{-1}) соответственно. Первая компонента этих пар является плотностью распределения энергии процесса, представляющего состояние соответствующей квазичастицы. Второй компоненте придадим смысл плотности распределения импульса квазичастицы. Если у квазичастицы вторая (импульсная) компонента равна $\vec{0}$, то будем называть ее *покоящейся*. Заметим, что покоящейся может быть только ε -квазичастица.

Выполняется равенство (см. теорему 1)

$$Q(Z_n^{(d_0)}) + Q(B_n^{(\mu_0)}) \equiv Q(Z_n^{(d_{-1})}) + Q(B_n^{(d_0, d_{-1})}), \tag{17}$$

а также следующие соотношения:

$$\langle Q(Z_n^{(d_0)}), Q(Z_n^{(d_0)}) \rangle \equiv \langle Q(Z_n^{(d_{-1})}), Q(Z_n^{(d_{-1})}) \rangle \equiv 0,$$

$$\langle Q(B_n^{(\mu_0)}), Q(B_n^{(\mu_0)}) \rangle \equiv \langle Q(B_n^{(d_0, d_{-1})}), Q(B_n^{(d_0, d_{-1})}) \rangle \equiv \mu_0^2 \varsigma^2.$$
(18)

Равенство (17) объединяет в себе закон сохранения энергии и импульса взаимодействия γ -частицы и покоящейся ε -квазичастицы с параметром μ_0 . Кроме того, равенства (18) выражают аналог связи энергии и импульса в релятивистской механике (γ -квазичастица является аналогом фотона, а ε -квазичастица — аналогом некоторой частицы, обладающей массой покоя).

Результатом взаимодействия γ -квазичастицы, находящейся в состоянии $(Z_n^{(d_0)})$, с покоящейся ε -квазичастицей, находящейся в состоянии $(B_n^{(\mu_0)})$, являются изменение состояния γ -квазичастицы и переход ее в состояние $(Z_n^{(d_{-1})})$, при этом ε -квазичастица переходит в состояние $(B_n^{(d_0,d_{-1})})$.

Отметим, что динамические соотношения, возникающие при описании взаимодействия фотона с покоящимся электроном (эффект Комптона), аналогичны приведенным соотношениям (17) и (18) (см., например, [6, гл. 4]).

Далее, для d_{-1} выберем $\mu_{-1}>0$ такое, что $d_{-1}\in \left(2\mu_{-1}/\left(1+\sqrt{1+4\mu_{-1}^2}\right),1\right),$ и определим

$$d_{-2} = \frac{1}{d_{-1} + \frac{1}{\mu_{-1}}}. (19)$$

Выполняется неравенство $d_{-1} > d_{-2}$. Как и ранее, квазичастицы, находящиеся в состоянии $(B_n^{(\mu_{-1})} = \sqrt{2\pi\mu_{-1}}\eta_n)$ и $(Z_n^{(d_{-1})})$, после взаимодействия изменяют свое состояние на $(B_n^{(d_{-2},d_{-1})})$ и $(Z_n^{(d_{-2})})$ соответственно. Отметим, что из предложения 6 следует, что отображение Q можно продолжить с Z_2 на $Z_3 = \{(Z_n^{(d_0)}), (Z_n^{(d_{-1})}), (Z_n^{(d_{-2})})\}$. Через f_{-2} обозначим плотность энергии процесса $(Z_n^{(d_{-2})})$.

Отображения $Q(B_n^{(\mu_{-1})}), Q(Z_n^{(d_{-1})}), Q(Z_n^{(d_{-2})}), Q(B_n^{(d_{-1},d_{-2})})$ представляем в виде пар $(\mu_{-1}\varsigma^2,\vec{0}), (f_{-1},p_{-1}), (f_{-2},p_{-2}), (f_{-1}-f_{-2}+\mu_{-1}\varsigma^2,p_{-1}-p_{-2})$ соответственно, где первая компонента пары энергетическая, а вторая — импульсная. Для отображений $Q(B_n^{(\mu_{-1})}), Q(Z_n^{(d_{-1})}), Q(Z_n^{(d_{-2})}), Q(B_n^{(d_{-1},d_{-2})})$ выполняются соотношения (17) и (18) с точностью до замены d_0, d_{-1}, μ_0 на d_{-1}, d_{-2}, μ_{-1} соответственно.

Предложение 7. Для построенных параметров μ_{-1} и μ_0 выполняется неравенство $\mu_{-1} < \mu_0$.

Описанный процесс взаимодействия γ - и ε -квазичастиц можно продолжать сколь угодно большое число раз.

В итоге можем получить цепочку $(Z_n^{(d_0)}) \to (Z_n^{(d_{-1})}) \to (Z_n^{(d_{-2})}) \to \dots$ переходов γ -квазичастицы из одного состояния в другое. Из предложения 7 следует, что необходимым условием возникновения цепочки переходов γ -квазичастицы является появление на каждом следующем шаге ε -квазичастицы с параметром меньшим, чем на предыдущем шаге.

Замечание 5. Для каждого $i=0,1,\dots$ обозначим $h_i:=1/\mu_{-i}$ и $\psi_i(x):=\frac{1}{h_i+x},\ x\in\mathbb{R}.$ Имея в виду (16) и (19), значение $d_{-k},\ k=1,2,\dots$, можно представить в виде композиции дробно-линейных преобразований

$$d_{-k} = \psi_{k-1} \circ \psi_{k-2} \circ \cdots \circ \psi_0(d_0),$$

при этом из предложения 7 следует, что $h_{k-1} > h_{k-2} > \cdots > h_0$.

Если при некотором $i_0 \geq 0$ окажется, что $d_{-i_0} \leq 1/2$, то при всех $i \geq i_0$ для почти всех ω множество $\left(Z_n^{(d_{-i})}(\omega)\right)_{n\geq 0}$ всюду плотно в множестве Кантора $\frac{2\sqrt{2\pi d_{-i}}}{1-d_{-i}}\cdot S_{d_{-i}}$ (см. замечание 2), размерность которого равна $-\frac{\ln 2}{\ln d_{-i}}$,

 $i=i_0,i_0+1,\ldots$ Это означает, что с каждым переходом множество, на котором сосредоточены траектории процесса, становится менее плотным в том смысле, что размерность Хаусдорфа этого множества уменьшается, кроме того, уменьшается диаметр этого множества.

Замечание 6. Отметим, что $\lambda=0$ является точкой максимума плотности энергии процессов $(Z_n^{(d_0)}), (Z_n^{(d_{-1})})$ и $(B_n^{(d_0,d_{-1})})$ (см. лемму 6 и соотношение (26)). Это означает, что в этих процессах преобладают «элементарные колебания» с параметрами λ , близкими к 0 (см. замечание 1). Взяв в соотношениях (17) и (18) значение $\lambda=0$, получим классические динамические соотношения, возникающие при описании эффекта Комптона. В частности, последнее равенство в (18) примет вид

$$\frac{1}{\varsigma^2}(f_0(0) + \mu_0\varsigma^2 - f_{-1}(0))^2 - \|p_0(0) - p_{-1}(0)\|^2 = \mu_0^2\varsigma^2,$$

при этом $\|p_0(0)\| = f_0(0)/\varsigma$, $\|p_{-1}(0)\| = f_{-1}(0)/\varsigma$ и $\cos \angle (p_0(0), p_{-1}(0)) = d_{-1}/d_0$.

5. Доказательство основных результатов

Предложение 8 [10, предложение 2]. Для любого множества $A \in \mathscr{B}^*(E)$ выполняется соотношение

$$\Pi^{-1}(A) \in \mathscr{B}^*(E).$$

Лемма 4 [8, теорема 6.1.9]. Пусть $T: X \to X$ — преобразование подобия c коэффициентом r, пусть также d — действительное положительное число. Тогда $\mu^d(T(A)) = r^d \mu^d(A)$ для всех $A \subseteq X$.

Доказательство предложения 2. Докажем, что $\xi_n, n \geq 0$, — измеримая функция, для этого достаточно доказать измеримость функции η (поскольку измеримость отображения Π сразу вытекает из предложения 8). Пусть j — произвольное число из множества $\{1,2,\ldots,N\}$. Из определения η следует, что $T_j(E)\setminus B_0\subseteq \{\omega:\eta(\omega)=j\}\subseteq T_j(E)$, откуда получаем, что $\{\omega:\eta(\omega)=j\}\in \mathscr{B}^*(E)$. Этим и завершается доказательство измеримости ξ_n .

 $\mathscr{B}^*(E)$. Этим и завершается доказательство измеримости ξ_n . Поскольку $E\in\mathscr{S}$, то $E=\bigcup_{i=1}^N T_i(E)$, где T_1,\ldots,T_N — сжимающие преобразования подобия с коэффициентом r и, кроме того, $\mu^{\dim(E)}(E)=1$. Следовательно, используя лемму 4, получаем, что $\dim(E)=-\ln N/\ln r$. Стало быть, $\mu(T(A))=\frac{1}{N}\mu(A)$ для любого $A\subseteq X$. Воспользовавшись этим фактом, найдем вероятность $\mu(\omega:\xi_{n_1}(\omega)=k_1,\ldots,\xi_{n_m}(\omega)=k_m)$ (напомним, что верхний индекс $\dim(E)$ в обозначении меры $\mu^{\dim(E)}$ опускаем). Пусть для определенности $n_1< n_2<\cdots< n_m$. Тогда

$$\mu(\omega) : \xi_{n_1}(\omega) = k_1, \dots, \xi_{n_m}(\omega) = k_m)$$

$$= \mu \left(\bigcup_{i_1 = 1, \dots, i_{n_1 - 1} = 1, \dots, i_{n_m - 1} = 1}^{N} (T_{i_1} \dots T_{i_{n_1 - 1}} T_{k_1} \dots T_{i_{n_m - 1}} T_{k_m}(E)) \right)$$

$$= \frac{1}{N^m} \sum_{i_1 = 1, \dots, i_{n_1 - 1} = 1, \dots, i_{n_m - 1} = 1}^{N} \frac{1}{N^{n_m - m}} = \frac{1}{N^m}. \quad (20)$$

В частности получаем, что $\mu(\omega:\xi_{n_j}(\omega)=k_j)=1/N$, откуда и из (20) следуют независимость $(\xi_n)_{n\geq 0}$, а также равномерность распределения случайной величины ξ_0 на множестве $\{1,2,\ldots,N\}$.

Обозначим $\Phi^{-1}(E \backslash B_0)$ через $\Sigma_{E \backslash B_0}$. Покажем, что

$$S(\Sigma_{E \setminus B_0}) \subseteq \Sigma_{E \setminus B_0}. \tag{21}$$

Пусть существует последовательность $\sigma=(\sigma_1,\sigma_2,\dots)\in \Sigma_{E\backslash B_0}$ такая, что $\tau:=S(\sigma)\notin \Sigma_{E\backslash B_0}$. Тогда существует последовательность $\tau'=(\tau'_1,\tau'_2,\dots)\in \Phi^{-1}(\Phi(\tau))$ и $\tau\neq\tau'$. Рассмотрим последовательность $\sigma'=(\sigma_1,\tau'_1,\tau'_2,\dots)$. Из предложения 1 следует, что $\Phi(\sigma')=T_{\sigma_1}\circ\Phi(\tau')=T_{\sigma_1}\circ\Phi(\tau)=\Phi(\sigma)$; получаем противоречие, так как $\sigma\neq\sigma'$ и $\sigma\in\Sigma_{E\backslash B_0}$. Стало быть, имеет место (21). Следовательно, для всех $\omega\in E\setminus B_0$ выполняется равенство $\Pi^n(\omega)=\Phi\circ S^n\circ\Phi^{-1}(\omega)$, осталось заметить, что $S^n\circ\Phi^{-1}(\omega)=(\xi_n(\omega),\xi_{n+1}(\omega),\dots)$. Предложение доказано.

Доказательство леммы 1. Покажем, что Φ , определенное в условии леммы, удовлетворяет предложению 1. Пусть сначала $\sigma_1=1$. Нужно доказать, что

$$\Phi(\sigma_1,\sigma_2,\dots) = T_{\sigma_1}(\Phi(\sigma_2,\sigma_3,\dots))$$

или, что то же самое.

$$q \cdot \left(\Phi(\sigma_1, \sigma_2, \dots) + \frac{1}{2}\right) - \frac{1}{2} = \Phi(\sigma_2, \sigma_3, \dots). \tag{22}$$

Поскольку имеет место равенство

$$\Phi(\sigma_2,\sigma_3,\dots) = \sum_{j=0}^{\infty} rac{q-1}{q^{j+1}} (\sigma_{j+2}-1) - rac{1}{2},$$

сразу получаем (22). Аналогично рассматривается случай $\sigma_1=2$. Лемма доказана.

Отметим следующий общий результат (см. [11]).

Теорема 2. Спектральная плотность $g(\lambda)$ стационарной последовательности $(X_n)_{n\geq 0}$ существует тогда и только тогда, когда X_n получается с помощью скользящего суммирования, т. е. если

$$X_n = \sum_{m=-\infty}^{\infty} a_m \varepsilon_{n+m},$$

где последовательность (ε_n) является белым шумом и (a_n) — неслучайная последовательность такая, что $\sum_{m=-\infty}^{\infty}|a_m|^2<\infty$, при этом $g(\lambda)=\frac{1}{2\pi}|\varphi(\lambda)|^2$, где

$$arphi(\lambda) = \sum_{m=-\infty}^{\infty} e^{i\lambda m} a_m.$$

Лемма 5. Пусть (a_n) и (b_n) — последовательности суммируемых c квадратом действительных чисел таких, что для всех целых n сумма

$$c_n = \sum_{m \in \mathbb{Z}} a_{n-m} b_m \tag{23}$$

существует и конечна, кроме того, $\sum\limits_{n\in\mathbb{Z}}|c_n|^2<\infty$. Пусть $g_a(\lambda)$ и $g_b(\lambda)$ — спек-

тральные плотности последовательностей $\left(\sum_{m=-\infty}^{\infty}a_m\varepsilon_{n+m}\right)$ и $\left(\sum_{m=-\infty}^{\infty}b_m\varepsilon_{n+m}\right)$ соответственно.

Тогда спектральная плотность последовательности $\left(\sum_{m=-\infty}^{\infty}c_m\varepsilon_{n+m}\right)$ имеет вид $2\pi g_a(\lambda)g_b(\lambda)$.

Доказательство. Пусть $\varphi_a(\lambda) = \sum_{m=-\infty}^{\infty} e^{i\lambda m} a_m, \ \varphi_b(\lambda) = \sum_{m=-\infty}^{\infty} e^{i\lambda m} b_m$ и $\varphi_c(\lambda) = \sum_{m=-\infty}^{\infty} e^{i\lambda m} c_m$. Поскольку выражение (23) является сверткой последовательностей (a_n) и (b_n) , для всех $\lambda \in [-\pi,\pi]$ выполняется соотношение $\varphi_c(\lambda) = \varphi_a(\lambda)\varphi_b(\lambda)$. Из теоремы 2 следует, что спектральная плотность $g_c(\lambda)$ последовательности $\left(\sum_{m=-\infty}^{\infty} c_m \varepsilon_{n+m}\right)$ равна $\frac{1}{2\pi} |\varphi_a(\lambda)\varphi_b(\lambda)|^2$. С другой стороны, $g_a(\lambda) = \frac{1}{2\pi} |\varphi_a(\lambda)|^2$ и $g_b(\lambda) = \frac{1}{2\pi} |\varphi_b(\lambda)|^2$, откуда и из найденного представления для g_c сразу получаем утверждение леммы.

Лемма 6. Спектральная плотность процесса $(Z_n^{(\alpha)})$ имеет вид

$$g_{lpha}(\lambda) = rac{lpha}{1 + lpha^2 - 2lpha\cos\lambda}.$$

Доказательство. Из теоремы 2 следует, что

$$arphi(\lambda) = \sqrt{2\pi/lpha} \sum_{m=0}^{\infty} e^{i\lambda m} lpha^{m+1} = \sqrt{2\pilpha} rac{1}{1-lpha e^{i\lambda}}.$$

Из того, что $g_{\alpha}(\lambda)=\frac{1}{2\pi}|\varphi(\lambda)|^2$, сразу получаем утверждение леммы.

Лемма 7. Спектральные плотности g_{α} и g_{β} процессов $(Z_n^{(\alpha)})$ и $(Z_n^{(\beta)})$ соответственно связаны между собой дробно-линейным преобразованием

$$g_{eta}(\lambda) = rac{g_{lpha}(\lambda)}{(1-eta/lpha)((1-lphaeta)/eta)g_{lpha}(\lambda)+1}$$

при всех $\lambda \in [-\pi, \pi]$.

ДОКАЗАТЕЛЬСТВО. Из леммы 6 следует, что $g_{\alpha}(\lambda) = \frac{\alpha}{1+\alpha^2-2\alpha\cos\lambda}$ и $g_{\beta}(\lambda) = \frac{\beta}{1+\beta^2-2\beta\cos\lambda}$. Исключая из этих двух равенств $\cos\lambda$, получаем утверждение леммы.

Лемма 8. Для спектральных плотностей g_{α} и g_{β} процессов $\left(Z_{n}^{(\alpha)}\right)$ и $\left(Z_{n}^{(\beta)}\right)$ соответственно при всех $\lambda \in [-\pi,\pi]$ выполняется соотношение

$$(g_{\alpha}(\lambda) + \mu - g_{\beta}(\lambda))^2 - (g_{\alpha}^2(\lambda) + g_{\beta}^2(\lambda) - 2(\beta/\alpha)g_{\alpha}(\lambda)g_{\beta}(\lambda)) = \mu^2, \tag{24}$$

где $\mu = \beta/(1 - \alpha\beta)$. Кроме того, если $\alpha \ge \beta$, то функция $g_{\alpha}(\lambda) + \mu - g_{\beta}(\lambda)$, $\lambda \in [-\pi, \pi]$, является спектральной плотностью последовательности

$$\frac{d}{\sqrt{2\pi\alpha\beta}} \sum_{j=0}^{\infty} c_j \varepsilon_{n+j} + \sqrt{2\pi\mu\eta_n}, \quad n \ge 0,$$
 (25)

где $(\eta_n)_{n\geq 0}$ и $(\varepsilon_n)_{n\geq 0}$ — некоррелируемые последовательности, являющиеся белым шумом, $d=\sqrt{(1-\beta/\alpha)/\mu}$ и $c_j=\sum\limits_{k=0}^j\alpha^{j-k+1}\beta^{k+1},\ j\geq 0.$

Доказательство. Прежде всего непосредственно проверяется, что соотношение (24) эквивалентно соотношению, доказанному в лемме 7.

Пусть $\beta \leq \alpha$. Используя явный вид g_{α} и g_{β} (см. лемму 6), выводим, что для всех $\lambda \in [-\pi,\pi]$ выполняется равенство

$$g_{\alpha}(\lambda) - g_{\beta}(\lambda) = d^2 g_{\alpha}(\lambda) g_{\beta}(\lambda). \tag{26}$$

Из леммы 5 следует, что $2\pi g_{\alpha}(\lambda)g_{\beta}(\lambda)$ — спектральная плотность процесса $\frac{2\pi}{\sqrt{\alpha\beta}}\sum_{i=0}^{\infty}c_{j}\varepsilon_{n+j}$. Тогда спектральной плотностью процесса

$$\frac{d}{\sqrt{2\pi}} \frac{2\pi}{\sqrt{\alpha\beta}} \sum_{j=0}^{\infty} c_j \varepsilon_{n+j} \tag{27}$$

является правая часть соотношения (26). Спектральной же плотностью процесса $\sqrt{2\pi\mu}\eta_n$ будет μ , откуда и из (27) получаем, что $g_{\alpha}(\lambda)+\mu-g_{\beta}(\lambda)$, $\lambda\in[-\pi,\pi]$, — спектральная плотность процесса, определенного в (25). Лемма доказана.

Доказательство леммы 3. Из соотношения (26) следует, что $g_{\alpha}(\lambda) > g_{\beta}(\lambda)$ при всех $\lambda \in [-\pi, \pi]$. Осталось вспомнить, что $f_{\alpha}(\lambda) = \varsigma^2 g_{\alpha}(\lambda)$ и $f_{\beta}(\lambda) = \varsigma^2 g_{\beta}(\lambda)$ при всех $\lambda \in [-\pi, \pi]$. Лемма доказана.

Доказательство предложения 4. Рассмотрим случай $\alpha \geq \beta$ (противоположный случай рассматривается аналогично). Используя равенства $f_{\alpha}(\lambda) = \varsigma^2 g_{\alpha}(\lambda)$ и $f_{\beta}(\lambda) = \varsigma^2 g_{\beta}(\lambda)$, имеющие место при всех $\lambda \in [-\pi, \pi]$, а также то, что в силу леммы 3 для любого $\lambda \in [-\pi, \pi]$ выполняется неравенство $f_{\alpha}(\lambda) \geq f_{\beta}(\lambda)$, сразу получаем, что соотношение (8) эквивалентно соотношению (24).

Далее, поскольку $g_{\alpha}(\lambda) + \mu - g_{\beta}(\lambda)$, $\lambda \in [-\pi, \pi]$, — спектральная плотность процесса, определенного в (25), то $f_{\alpha}(\lambda) + \mu \varsigma^2 - f_{\beta}(\lambda)$, $\lambda \in [-\pi, \pi]$, является плотностью энергии этого процесса. Подчеркнем, что в случае $\alpha \geq \beta$ процесс, определенный в (9), совпадает с процессом, определенным в (25). Предложение доказано.

ДОКАЗАТЕЛЬСТВО ЛЕММЫ 2. Обозначим $u_0 = \pi_0(\vec{u}), \ w_0 = \pi_0(\vec{w})$ и $\vec{p} = \pi(\vec{u}), \ \vec{q} = \pi(\vec{w})$. Из равенств $\langle \vec{u}, \vec{u} \rangle = \langle \vec{w}, \vec{w} \rangle = 0$ получаем $\|\vec{p}\| = u_0/\varsigma$ и $\|\vec{q}\| = w_0/\varsigma$. Следовательно, равенство (11) можно переписать в эквивалентном виде:

$$(u_0 - w_0 + \mu \varsigma^2)^2 - \left(\left(\frac{u_0}{\varsigma} \right)^2 + \left(\frac{w_0}{\varsigma} \right)^2 - 2\cos\varphi \frac{u_0 w_0}{\varsigma^2} \right) = \mu^2 \varsigma^2, \tag{28}$$

где $\cos \varphi = \cos \angle (\vec{p}, \vec{q})$. Равенство (28) также перепишем в эквивалентном виде:

$$w_0 = \frac{u_0}{1 + (u_0/\mu\varsigma^2)(1 - \cos\varphi)}. (29)$$

Подставляя в (29) значения

$$\cos \varphi = \frac{(\pi(\vec{u}), \pi(\vec{w}))}{\|\pi(\vec{u})\| \cdot \|\pi(\vec{w})\|}, \quad \mu = \frac{\pi_0(\vec{u})\pi_0(\vec{w})(1 - \cos \varphi)}{\varsigma^2(\pi_0(\vec{u}) - \pi_0(\vec{w}))}$$

(см. условие леммы 2), получаем верное равенство. Лемма доказана.

Конечномерное подпространство $\{\vec{u}=(u_1,\ldots,u_m,0,\ldots,0,\ldots):(u_1,\ldots,u_m)\in\mathbb{R}^m\}$ пространства l_2 будем обозначать через $\mathscr{R}^m.$

Пусть $d_1, d_2, \dots, d_m, \, m \geq 2, -$ различные действительные числа такие, что $0 < d_1, d_2, \dots, d_m < 1$. В дальнейшем будем считать, что $d_1 < d_2 < \dots < d_m$.

Лемма 9. Пусть d_1, d_2, \ldots, d_m — определенные выше действительные числа. Тогда можно построить базис в \mathscr{R}^m , состоящий из m ортов $\vec{y}_1, \vec{y}_2, \ldots, \vec{y}_m$ таких, что $(\vec{y}_i, \vec{y}_j) = d_i/d_j, \ 1 \le i < j \le m$.

ДОКАЗАТЕЛЬСТВО. Пусть координатное представление вектора \vec{y}_k имеет вид $(y_k^{(1)},\dots,y_k^{(m)},0,\dots)$. В качестве $\vec{y}_1,\vec{y}_2,\dots,\vec{y}_m$ можно взять следующие векторы:

$$ec{y}_1 = (1,0,\ldots,0,\ldots), \quad ec{y}_2 = \left(d_1/d_2,\sqrt{1-d_1^2/d_2^2},0,\ldots,0,\ldots\right),$$

$$\vec{y}_k = \left(y_{k-1}^{(1)} d_{k-1}/d_k, \dots, y_{k-1}^{(k-1)} d_{k-1}/d_k, \sqrt{1 - d_{k-1}^2/d_k^2}, 0, \dots, 0, \dots\right), \ k = 3, \dots, m.$$

Лемма 10. Пусть $Y = \{\vec{y}_1, \dots, \vec{y}_m\}$ и $Z = \{\vec{z}_1, \dots, \vec{z}_m\}$ — две системы линейно независимых ортов в \mathscr{R}^{m+1} такие, что $(\vec{y}_i, \vec{y}_j) = (\vec{z}_i, \vec{z}_j)$ для всех i, j. Тогда существует ортогональное преобразование пространства \mathscr{R}^{m+1} такое, что $S(\vec{y}_i) = \vec{z}_i$ при всех $i = 1, \dots, m$.

Доказательство. Построим векторы \vec{y}_{m+1} и \vec{z}_{m+1} , ортогональные системам Y и Z соответственно. Получим системы векторов $Y'=\{\vec{y}_1,\ldots,\vec{y}_{m+1}\}$ и $Z'=\{\vec{z}_1,\ldots,\vec{z}_{m+1}\}$, являющиеся базисами в пространстве \mathscr{R}^{m+1} . Существует невырожденное линейное преобразование $S:\mathscr{R}^{m+1}\to\mathscr{R}^{m+1}$ такое, что $S(\vec{y}_i)=\vec{z}_i$ для всех $i=1,\ldots,m+1$. По условию $(S(\vec{y}_i),S(\vec{y}_j))=(\vec{y}_i,\vec{y}_j)$ для всех i,j, откуда выводим, что линейное преобразование S сохраняет скалярное произведение. Следовательно, преобразование S ортогонально.

Доказательство предложения 5. Построим m ортов $\vec{y}_1, \vec{y}_2, \ldots, \vec{y}_m$ в пространстве \mathscr{R}^m , удовлетворяющих лемме 9. Для каждого $i=1,\ldots,m$ определим отображение $w_i: [-\pi,\pi] \to \mathscr{R}^{m+1}_{1,m}$ по формуле $w_i(\lambda) = \left(f_{d_i}(\lambda), \frac{f_{d_i}(\lambda)}{\varsigma} \vec{y}_i\right)$. Очевидно, что для всех $i=1,\ldots,m$ выполняется равенство $\langle w_i, w_i \rangle \equiv 0$. Кроме того, непосредственно из определения функции $\Delta(\cdot,\cdot)$ получаем соотношение $\Delta(w_i,w_j)\equiv (\vec{y}_i,\vec{y}_j)$. Из построения ортов $\vec{y}_1,\ldots,\vec{y}_m$ следует, что $(\vec{y}_i,\vec{y}_j)=d_i/d_j$, поэтому $\Delta(w_i,w_j)\equiv d_i/d_j$.

Покажем, что $\mu(w_i,w_j)\equiv\mu(d_i,d_j)$ при всех i< j. Прежде всего выполняется равенство $\mu(w_i,w_j)\equiv\frac{f_{d_i}f_{d_j}(1-d_i/d_j)}{\varsigma^2(f_{d_j}-f_{d_i})}$ (см. обозначение I после формулировки леммы 2). Из явных выражений для f_{d_i} и f_{d_j} (см. лемму 6) выводим соотношение $f_{d_j}-f_{d_i}\equiv \varsigma^{-2}(1-d_i/d_j)((1-d_id_j)/d_i)f_{d_i}f_{d_j}$. Следовательно, $\mu(w_i,w_j)\equiv d_i/(1-d_id_j)$, но правая часть последнего равенства совпадает с $\mu(d_i,d_i)$.

Далее, для каждого $i=1,\dots,m$ положим $Q\!\left(Z_n^{(d_i)}\right):\equiv w_i$. Предложение доказано.

Доказательство предложения 6. Построим те же орты $\vec{y}_1, \vec{y}_2, \ldots, \vec{y}_m$, что и в предложении 5. Положим $d_0=0$ и $d_{m+1}=1$. Пусть $\beta\in(d_{k-1},d_k)$ при некотором $1\leq k\leq m+1$. Перенумеровав в порядке возрастания $\beta,\,d_1,\ldots,d_m$, получим набор $\delta_1<\delta_2<\cdots<\delta_{m+1}$. В соответствии с леммой 9 построим m+1 ортов $\vec{z}_1,\vec{z}_2,\ldots,\vec{z}_{m+1}$, являющихся базисом в \mathscr{R}^{m+1} , таких, что $(\vec{z}_i,\vec{z}_j)=\delta_i/\delta_j,\,i< j$. Далее, положим $\vec{x}_i:=\vec{z}_i$ для всех $i=1,\ldots,k-1$ и $\vec{x}_{i-1}:=\vec{z}_i$ для всех $i=k+1,\ldots,m+1$. Стало быть, $(\vec{x}_i,\vec{x}_j)=d_i/d_j,\,1\leq i< j\leq m$. Из леммы 10 следует, что существует ортогональное преобразование S пространства \mathscr{R}^{m+1} такое, что $S(\vec{x}_i)=\vec{y}_i,\,i=1,\ldots,m$. Тогда вектор $\vec{z}:=S(\vec{z}_k)$ является ортом,

удовлетворяющим условиям: $(\vec{z}, \vec{y}_i) = \beta/d_i$ при всех $i = k, \ldots, m$ и $(\vec{z}, \vec{y}_j) = d_j/\beta$ при всех $j = 1, \ldots, k-1$.

Определим отображение $u:[-\pi,\pi] o \mathscr{R}^{m+2}_{1,m+1},$ положив

$$u(\lambda) := \left(f_{eta}(\lambda), rac{f_{eta}(\lambda)}{arsigma} ec{z}
ight).$$

В силу построения для отображения u выполняются следующие соотношения: $\Delta(w_i,u) \equiv \Delta(\beta,d_i)$ и $\mu(w_i,u) \equiv \mu(d_i,\beta)$ при всех $i=1,\ldots,m$ (отображения $w_i,\ i=1,\ldots,m$, определены в предложении 5). Доопределим отображение Q, положив $Q(Z_n^{(\beta)}) :\equiv u$, и в итоге получим утверждение предложения.

Доказательство теоремы 1. Пусть μ — произвольное положительное действительное число и $\alpha \in [2\mu/(1+\sqrt{1+4\mu^2}),1)$. Тогда $\beta = \frac{1}{\alpha+\frac{1}{\mu}} \leq \alpha$. Из предыдущего равенства получаем $\mu = \beta/(1-\alpha\beta)$. Это означает, что мы находимся в условиях предложения 4. Выполняются равенства $\|\pi(Q(Z_n^{(\alpha)}))\| \equiv f_{\alpha}/\varsigma$ и $\|\pi(Q(Z_n^{(\beta)}))\| \equiv f_{\beta}/\varsigma$, кроме того, $\Delta(Q(Z_n^{(\alpha)}),Q(Z_n^{(\beta)})) \equiv \Delta(\alpha,\beta)$ и $\mu(Q(Z_n^{(\alpha)}),Q(Z_n^{(\beta)})) \equiv \mu(\alpha,\beta)$. Далее, отметим, что $\Delta(\alpha,\beta) = \beta/\alpha$ и $\mu(\alpha,\beta) = \mu$ (см. замечание 4). Из определения отображения Q на процессе $(B_n^{(\alpha,\beta)})$ получаем

$$\pi_0(Q(B_n^{(\alpha,\beta)})) \equiv f_\alpha - f_\beta + \mu\varsigma^2,\tag{30}$$

$$\pi(Q(B_n^{(\alpha,\beta)})) \equiv \pi(Q(Z_n^{(\alpha)})) - \pi(Q(Z_n^{(\beta)})). \tag{31}$$

Поэтому соотношение (14) эквивалентно соотношению (8), верному при любых $\lambda \in [-\pi,\pi]$, тем самым соотношение (14) доказано.

Выполняются равенства $\pi_0(Q(B_n^{(e,e)})) \equiv \mu \varsigma^2$ и $\pi(Q(B_n^{(e,e)})) \equiv \vec{0}$. Используя эти равенства, а также равенства (30) и (31), получаем

$$egin{aligned} \pi_0ig(Qig(Z_n^{(lpha)}ig)ig) + \pi_0ig(Qig(B_n^{(e,e)}ig)ig) &\equiv \pi_0ig(Qig(Z_n^{(eta)}ig)ig) + \pi_0ig(Qig(B_n^{(lpha,eta)}ig)ig), \ \piig(Qig(Z_n^{(lpha)}ig)ig) + \piig(Qig(B_n^{(lpha,eta)}ig)ig) &\equiv \piig(Qig(Z_n^{(eta)}ig)ig) + \piig(Qig(B_n^{(lpha,eta)}ig)ig). \end{aligned}$$

Из последних двух соотношений выводим (15). Теорема доказана.

Доказательство предложения 7. Так как $d_0 \in (2\mu_0/(1+\sqrt{1+4\mu_0^2}),1)$, выполняется следующее очевидное неравенство:

$$d_{-1} = \frac{1}{d_0 + 1/\mu_0} < \frac{2\mu_0}{1 + \sqrt{1 + 4\mu_0^2}}.$$
 (32)

Далее, μ_{-1} выбрано так, что $d_{-1} \in \left(2\mu_{-1}/\left(1+\sqrt{1+4\mu_{-1}^2}\right),1\right)$, следовательно, из (32) получаем $2\mu_{-1}/\left(1+\sqrt{1+4\mu_{-1}^2}\right) < 2\mu_0/\left(1+\sqrt{1+4\mu_0^2}\right)$. Поскольку функция $2x/(1+\sqrt{1+4x^2})$ возрастающая на $[0,+\infty)$, стало быть, $\mu_{-1} < \mu_0$. Предложение доказано.

ЛИТЕРАТУРА

- **1.** Φ едер E. Φ ракталы. М.: Мир, 1991.
- 2. Зеленый Л. М., Милованов А. В. Фрактальная топология и странная кинетика: от теории перколяции к проблемам космической электродинамики // Успехи физ. наук. 2004. Т. 174, № 8. С. 819—852.

- **3.** Заславский Г. М. Гамильтонов хаос и фрактальная динамика. М.; Ижевск: НИЦ «Регулярная и хаотическая динамика», 2010.
- Учайкин В. В. Автомодельная аномальная диффузия и устойчивые законы // Успехи физ. наук. 2003. Т. 173, № 8. С. 847–876.
- 5. Нитецки З. Введение в дифференциальную динамику. М.: Мир, 1975.
- 6. Вихман Э. Квантовая физика. М.: Наука, 1977.
- **7.** *Халмош П.* Теория меры. М.: Мир, 1953.
- 8. Edgar G. Measure, topology, and fractal geometry. New York: Springer-Verl., 2008.
- Falconer K. Fractal geometry mathematical foundations and applications. London: Wiley, 2008
- 10. Аркашов Н. С. Эргодические свойства одного преобразования на пространстве с мерой Хаусдорфа и самоподобной структурой // Мат. заметки. 2015. Т. 97, № 2. С. 163–173.
- **11.** *Ибрагимов И. А., Линник Ю. В.* Независимые и стационарно связанные величины. М.: Наука, 1965.
- 12. Розанов Ю. А. Случайные процессы. М.: Наука, 1971.
- 13. Ширяев А. Н. Вероятность. М.: Наука, 1980.

Статья поступила 14 января 2016 г.

Аркашов Николай Сергеевич Новосибирский гос. технический университет, пр. Карла Маркса, 20, Новосибирск 630073; Новосибирский гос. университет, ул. Пирогова, 2, Новосибирск 630090 nicky1978@mail.ru

Селезнев Вадим Александрович Новосибирский гос. технический университет, пр. Карла Маркса, 20, Новосибирск 630073 selvad@ngs.ru