# О ГЛАВНЫХ ФАКТОРАХ ПАРАБОЛИЧЕСКИХ МАКСИМАЛЬНЫХ ПОДГРУПП СПЕЦИАЛЬНЫХ КОНЕЧНЫХ ПРОСТЫХ ГРУПП ИСКЛЮЧИТЕЛЬНОГО ЛИЕВА ТИПА

## В. В. Кораблева

Аннотация. Для конечных простых групп  $F_4(2^n)$  и  $G_2(p^n)$  при  $p \leq 3$  приводится описание главных факторов параболической максимальной подгруппы, входящих в ее унипотентный радикал. Для каждой параболической максимальной подгруппы групп  $F_4(2^n)$ ,  $G_2(2^n)$  и  $G_2(3^n)$  дается фрагмент ее главного ряда, входящий в унипотентный радикал этой параболической подгруппы. Приводятся три таблицы, в которых указываются порождающие элементы соответствующих главных факторов.

 $DOI\,10.17377/smzh.2017.58.612$ 

**Ключевые слова:** конечная группа лиева типа, параболическая подгруппа, главный фактор, унипотентный радикал.

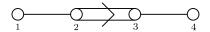
#### Введение

Пусть G — конечная простая группа нормального лиева типа (группа Шевалле) над конечным полем K характеристики p и P=UL — параболическая максимальная подгруппа в G, где U — унипотентный радикал и L — дополнение Леви в P. Группа лиева типа над полем характеристики p называется специальной, если p=2 для групп типа  $B_l$ ,  $C_l$ ,  $F_4$  и  $p\leq 3$  для групп типа  $G_2$ . Из результатов работы [1] следует, что для неспециальных групп G факторы нижнего центрального ряда группы U являются главными факторами группы P и неприводимыми KL-модулями. Число этих факторов не зависит от поля K, а зависит только от лиева типа группы G. В исключаемых случаях коммутаторные соотношения, влияющие на структуру унипотентных подгрупп группы G, ведут себя специальным образом и требуют отдельного рассмотрения.

Эта статья является продолжением работ [2–5], в которых было получено уточненное описание главных факторов параболической максимальной подгруппы, входящих в ее унипотентный радикал, для всех конечных простых групп лиева типа (нормальных и скрученных), за исключением специальных групп. В настоящей работе мы приводим такое описание для специальных групп исключительных лиевых типов  $F_4$  и  $G_2$ . Наша цель — доказать следующие две теоремы.

Работа выполнена при финансовой поддержке лаборатории квантовой топологии Челя-бинского гос. университета (грант правительства РФ № 14.Z50.31.0020).

**Теорема 1.** Пусть  $G = F_4(2^n)$  и  $P_k = U_k L_k$  — параболическая максимальная подгруппа в G, полученная удалением k-й вершины ее диаграммы Дынкина в стандартном упорядочении вершин



Тогла

- (1) нижний центральный ряд группы  $U_k$  имеет вид  $U_k > Y_1 > 1$  при  $k \in \{1,4\}$  и  $U_k > Y_3 > Y_1 > 1$  при  $k \in \{2,3\}$ ;
- (2) фрагмент главного ряда группы  $P_k$ , полученный уплотнением нижнего центрального ряда ее унипотентного радикала, при  $k\in\{1,4\}$  имеет вид  $U_k=Y_3>Y_2>Y_1>1$ , где  $|Y_3/Y_2|=2^{8n},\,|Y_2/Y_1|=2^{6n},\,|Y_1|=2^n,$  а при  $k\in\{2,3\}$  вид  $U_k=Y_5>Y_4>Y_3>Y_2>Y_1>1$ , где  $|Y_5/Y_4|=|Y_4/Y_3|=2^{6n},\,|Y_3/Y_2|=|Y_2/Y_1|=2^{3n},\,|Y_1|=2^{2n};$
- (3) главные факторы  $Y_5/Y_4$ ,  $Y_4/Y_3$ ,  $Y_3/Y_2$ ,  $Y_2/Y_1$  и  $Y_1$  являются неприводимыми  $GF(2^n)L_k$ -модулями, старший вес и размерность которых указаны в табл. 1.

**Теорема 2.** Пусть  $G = G_2(p^n)$  и  $P_k = U_k L_k$  — параболическая максимальная подгруппа группы G, полученная удалением k-й вершины ее диаграммы Дынкина в стандартном упорядочении вершин



Тогда

- (1) нижний центральный ряд группы  $U_k$  для  $k \in \{1,2\}$  имеет вид  $U_k > Y_1 > 1$ ;
- (2) при p=2
- (а) фрагмент главного ряда группы  $P_k$ , полученный уплотнением нижнего центрального ряда ее унипотентного радикала, для k=1 имеет вид  $U_1=Y_3>Y_2>Y_1>1$ , где  $|Y_3/Y_2|=|Y_1|=2^{2n}$ ,  $|Y_2/Y_1|=2^n$ , а для k=2— вид  $U_2=Y_2>Y_1>1$ , где  $|Y_2/Y_1|=2^{4n}$ ,  $|Y_1|=2^n$ ,
- (b) главные факторы  $Y_3/Y_2, Y_2/Y_1$  и  $Y_1$  являются неприводимыми  $GF(2^n)L_k$ -модулями, старший вес и размерность которых указаны в табл. 2;
  - (3) при p = 3 и любом  $k \in \{1, 2\}$
- (а) фрагмент главного ряда группы  $P_k$ , полученный уплотнением нижнего центрального ряда ее унипотентного радикала, имеет вид  $U_k = Y_3 > Y_2 > Y_1 > 1$ , где  $|Y_3/Y_2| = |Y_2/Y_1| = 3^{2n}$  и  $|Y_1| = 3^n$ ,
- (b) главные факторы  $Y_3/Y_2$ ,  $Y_2/Y_1$  и  $Y_1$  являются неприводимыми  $GF(3^n)L_k$ -модулями, старший вес и размерность которых указаны в табл. 3.

Полезные следствия из доказательства этих теорем составляют содержание трех таблиц, которые приведены в тексте работы.

#### 1. Обозначения и вспомогательные результаты

Будем использовать определения и обозначения, связанные с группами лиева типа, из [6]. Пусть  $\Phi$  — система корней группы G,  $\pi = \{p_1, \ldots, p_l\}$  — ее множество простых корней и  $\Phi^+$  — множество положительных корней в  $\Phi$  относительно  $\pi$ . Известно, что  $G = \langle x_r(a) \mid a \in K, r \in \Phi \rangle$  и для любого корня  $r \in \Phi$  корневая подгруппа  $X_r = \{x_r(a) \mid a \in K\}$  изоморфна полю K. Для любого  $k \in \{1, \ldots, l\}$  обозначим через  $\Phi_k$  множество корней из  $\Phi$ , натянутых на

 $\pi \setminus \{p_k\}$ , и положим  $\Phi_k^+ = \Phi^+ \cap \Phi_k$ . В группе G имеется с точностью до сопряжения l параболических максимальных подгрупп  $P_k$ . Известно разложение Леви группы  $P_k$ :  $P_k = U_k L_k$ , где  $U_k = \langle X_r \mid r \in \Phi^+ \setminus \Phi_k^+ \rangle$  — унипотентный радикал,  $L_k = \langle H, X_r \mid r \in \Phi_k \rangle$  — дополнение Леви в  $P_k$ , а H — подгруппа Картана в G.

Пусть  $I \subset J \subseteq \Phi^+ \setminus \Phi_k^+$  и  $Y = \langle X_r \mid r \in J \rangle$ ,  $Z = \langle X_r \mid r \in I \rangle$  — нормальные в  $P_k$  подгруппы. Тогда фактор-группа Y/Z изоморфна  $\prod X_r$ , где произведение берется в некотором фиксированном порядке по всем положительным корням  $r \in J \setminus I$ . Подгруппа Леви  $L_k$  действует сопряжениями на фактор-группе Y/Z. Если  $r \in J \setminus I$ , то положим  $cx_r(a)Z = x_r(ca)Z$  для элементов  $a, c \in K$ . Таким образом, фактор-группа Y/Z становится  $KL_k$ -модулем.

Рассмотрим сначала систему корней  $\Phi$  типа  $F_4$  и поле  $K=GF(2^n)$ . Множество  $\Phi^+$  состоит из элементов

$$\begin{array}{lllll} & r_1=p_1, & r_9=p_2+2p_3, & r_{17}=p_1+2p_2+2p_3+p_4, \\ & r_2=p_2, & r_{10}=p_2+p_3+p_4, & r_{18}=p_1+p_2+2p_3+2p_4, \\ & r_3=p_3, & r_{11}=p_1+p_2+2p_3, & r_{19}=p_1+2p_2+3p_3+p_4, \\ & r_4=p_4, & r_{12}=p_1+p_2+p_3+p_4, & r_{20}=p_1+2p_2+2p_3+2p_4, \\ & r_5=p_1+p_2, & r_{13}=p_2+2p_3+p_4, & r_{21}=p_1+2p_2+3p_3+2p_4, \\ & r_6=p_2+p_3, & r_{14}=p_1+2p_2+2p_3, & r_{22}=p_1+2p_2+4p_3+2p_4, \\ & r_7=p_3+p_4, & r_{15}=p_1+p_2+2p_3+p_4, & r_{23}=p_1+3p_2+4p_3+2p_4, \\ & r_8=p_1+p_2+p_3, & r_{16}=p_2+2p_3+2p_4, & r_{24}=2p_1+3p_2+4p_3+2p_4. \end{array}$$

Занумеруем корни r из  $\Phi$  числами от 1 до 48 так: присвоим номер i положительному корню  $r_i$ , соответствующему отрицательному корню  $-r_i$  присвоим номер 24+i, а элементы  $x_{r_i}(a)$  и  $x_{-r_i}(a)$  из  $F_4(2^n)$  обозначим через  $x_i(a)$  и  $x_{i+24}(a)$  соответственно,  $1 \le i \le 24$ . Корневую подгруппу  $\{x_j(a) \mid t \in GF(2^n)\}$  обозначаем через  $X_j$ ,  $1 \le j \le 48$ .

В случае системы корней типа  $G_2$  множество  $\Phi^+$  состоит из элементов  $r_1=p_1,\ r_2=p_2,\ r_3=p_1+p_2,\ r_4=2p_1+p_2,\ r_5=3p_1+p_2,\ r_6=3p_1+2p_2.$  Нумеруем корни, корневые элементы и корневые подгруппы для группы  $G_2(p^n)$  аналогично предыдущему абзацу.

### 2. Доказательство теоремы 1

Для параболической максимальной подгруппы  $P_1 = U_1L_1$ , где  $U_1 = \langle X_j \mid j \in \{1, 5, 8, 11, 12, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24\}\rangle$  и  $L_1 = \langle H, X_j \mid j \in \{2, 26, 3, 27, 4, 28, 6, 30, 7, 31, 9, 33, 10, 34, 13, 37, 16, 40\}\rangle$ , приведем все нетривиальные коммутаторные соотношения для корневых порождающих унипотентного радикала  $U_1$ , вытекающие (см. [6, теорема 5.22]) из коммутаторной формулы Шевалле  $(a, b \in K)$ :

$$[x_1(a), x_{23}(b)] = x_{24}(ab), \quad [x_5(a), x_{22}(b)] = x_{24}(ab),$$

$$[x_{11}(a), x_{20}(b)] = x_{24}(ab), \quad [x_{14}(a), x_{18}(b)] = x_{24}(ab).$$

Пусть  $Y_1 = X_{24}$  и  $Y_2 = \langle X_8, X_{12}, X_{15}, X_{17}, X_{19}, X_{21}, X_{24} \rangle$ . Тогда  $Y_1$  является минимальной нормальной подгруппой, а  $Y_2$  — нормальной подгруппой в  $P_1$ . Действие (сопряжениями)  $L_1$  на  $Y_2/Y_1$  задается следующими коммутаторными

соотношениями  $(a, b \in K)$ :

```
 [x_4(a), x_8(b)]Y_1 = x_{12}(ab)Y_1, \quad [x_7(a), x_8(b)]Y_1 = x_{15}(ab)Y_1, \\ [x_{10}(a), x_8(b)]Y_1 = x_{17}(ab)Y_1, \quad [x_{13}(a), x_8(b)]Y_1 = x_{19}(ab)Y_1, \\ [x_{16}(a), x_8(b)]Y_1 = x_{21}(ab)Y_1, \quad [x_{3}(a), x_{12}(b)]Y_1 = x_{15}(ab)Y_1, \\ [x_{28}(a), x_{12}(b)]Y_1 = x_8(ab)Y_1, \quad [x_9(a), x_{12}(b)]Y_1 = x_{19}(ab)Y_1, \\ [x_{13}(a), x_{12}(b)]Y_1 = x_{21}(ab)Y_1, \quad [x_2(a), x_{15}(b)]Y_1 = x_{17}(ab)Y_1, \\ [x_{27}(a), x_{15}(b)]Y_1 = x_{12}(ab)Y_1, \quad [x_6(a), x_{15}(b)]Y_1 = x_{19}(ab)Y_1, \\ [x_{27}(a), x_{15}(b)]Y_1 = x_{12}(ab)Y_1, \quad [x_{10}(a), x_{15}(b)]Y_1 = x_{21}(ab)Y_1, \\ [x_{26}(a), x_{17}(b)]Y_1 = x_{15}(ab)Y_1, \quad [x_3(a), x_{17}(b)]Y_1 = x_{19}(ab)Y_1, \\ [x_{30}(a), x_{17}(b)]Y_1 = x_{12}(ab)Y_1, \quad [x_{27}(a), x_{17}(b)]Y_1 = x_{21}(ab)Y_1, \\ [x_{34}(a), x_{17}(b)]Y_1 = x_{21}(ab)Y_1, \quad [x_{30}(a), x_{19}(b)]Y_1 = x_{15}(ab)Y_1, \\ [x_{33}(a), x_{19}(b)]Y_1 = x_{12}(ab)Y_1, \quad [x_{37}(a), x_{19}(b)]Y_1 = x_{8}(ab)Y_1, \\ [x_{28}(a), x_{21}(b)]Y_1 = x_{19}(ab)Y_1, \quad [x_{31}(a), x_{21}(b)]Y_1 = x_{17}(ab)Y_1, \\ [x_{34}(a), x_{21}(b)]Y_1 = x_{15}(ab)Y_1, \quad [x_{37}(a), x_{21}(b)]Y_1 = x_{12}(ab)Y_1, \\ [x_{40}(a), x_{21}(b)]Y_1 = x_{8}(ab)Y_1, \quad [x_{6}(a), x_{12}(b)]Y_1 = x_{17}(ab)Y_1, \\ [x_{40}(a), x_{21}(b)]Y_1 = x_{8}(ab)Y_1, \quad [x_{6}(a), x_{12}(b)]Y_1 = x_{17}(ab)Y_1, \\ [x_{40}(a), x_{21}(b)]Y_1 = x_{8}(ab)Y_1, \quad [x_{6}(a), x_{12}(b)]Y_1 = x_{17}(ab)Y_1, \\ [x_{40}(a), x_{21}(b)]Y_1 = x_{8}(ab)Y_1, \quad [x_{6}(a), x_{12}(b)]Y_1 = x_{17}(ab)Y_1, \\ [x_{40}(a), x_{21}(b)]Y_1 = x_{8}(ab)Y_1, \quad [x_{6}(a), x_{12}(b)]Y_1 = x_{17}(ab)Y_1, \\ [x_{40}(a), x_{21}(b)]Y_1 = x_{8}(ab)Y_1, \quad [x_{6}(a), x_{12}(b)]Y_1 = x_{17}(ab)Y_1, \\ [x_{40}(a), x_{21}(b)]Y_1 = x_{8}(ab)Y_1, \quad [x_{6}(a), x_{12}(b)]Y_1 = x_{17}(ab)Y_1, \\ [x_{40}(a), x_{21}(b)]Y_1 = x_{40}(ab)Y_1, \quad [x_{40}(a), x_{21}(b)]Y_1
```

поэтому  $L_1$  действует неприводимо на  $Y_2/Y_1$ . Получаем фрагмент  $Y_2>Y_1>1$  главного ряда группы  $P_1$ .

Рассмотрим нормальную подгруппу  $U_1/Y_2$  в группе  $P_1/Y_2$ . Действие  $L_1$  на нее задается следующими коммутаторными соотношениями  $(a, b \in K)$ :

```
[x_2(a), x_1(b)]Y_2 = x_5(ab)Y_2, [x_6(a), x_1(b)]Y_2 = x_{14}(a^2b)Y_2,
   [x_9(a), x_1(b)]Y_2 = x_{11}(ab)Y_2, \quad [x_{10}(a), x_1(b)]Y_2 = x_{20}(a^2b)Y_2,
 [x_{13}(a), x_1(b)]Y_2 = x_{22}(a^2b)Y_2, \quad [x_{16}(a), x_1(b)]Y_2 = x_{18}(ab)Y_2,
   [x_{26}(a), x_5(b)]Y_2 = x_1(ab)Y_2, [x_3(a), x_5(b)]Y_2 = x_{11}(a^2b)Y_2,
  [x_7(a), x_5(b)]Y_2 = x_{18}(a^2b)Y_2, \quad [x_9(a), x_5(b)]Y_2 = x_{14}(ab)Y_2,
 [x_{13}(a), x_5(b)]Y_2 = x_{23}(a^2b)Y_2, \quad [x_{16}(a), x_5(b)]Y_2 = x_{20}(ab)Y_2,
  [x_2(a), x_{11}(b)]Y_2 = x_{14}(ab)Y_2, \quad [x_{27}(a), x_{11}(b)]Y_2 = x_5(a^2b)Y_2,
 [x_4(a), x_{11}(b)]Y_2 = x_{18}(a^2b)Y_2, \quad [x_{33}(a), x_{11}(b)]Y_2 = x_1(ab)Y_2,
[x_{10}(a), x_{11}(b)]Y_2 = x_{23}(a^2b)Y_2, \quad [x_{16}(a), x_{11}(b)]Y_2 = x_{22}(ab)Y_2,
 [x_{26}(a), x_{14}(b)]Y_2 = x_{11}(ab)Y_2, \quad [x_{4}(a), x_{14}(b)]Y_2 = x_{20}(a^2b)Y_2,
 [x_{30}(a), x_{14}(b)]Y_2 = x_1(a^2b)Y_2, \quad [x_7(a), x_{14}(b)]Y_2 = x_{22}(a^2b)Y_2,
  [x_{33}(a), x_{14}(b)]Y_2 = x_5(ab)Y_2, \quad [x_{16}(a), x_{14}(b)]Y_2 = x_{23}(ab)Y_2,
 [x_2(a), x_{18}(b)]Y_2 = x_{20}(ab)Y_2, \quad [x_{28}(a), x_{18}(b)]Y_2 = x_{11}(a^2b)Y_2,
 [x_6(a), x_{18}(b)]Y_2 = x_{23}(a^2b)Y_2, \quad [x_{31}(a), x_{18}(b)]Y_2 = x_5(a^2b)Y_2,
  [x_9(a), x_{18}(b)]Y_2 = x_{22}(ab)Y_2, \quad [x_{40}(a), x_{18}(b)]Y_2 = x_1(ab)Y_2,
[x_{26}(a), x_{20}](b)]Y_2 = x_{18}(ab)Y_2, \quad [x_3(a), x_{20}(b)]Y_2 = x_{22}(a^2b)Y_2,
[x_{28}(a), x_{20}(b)]Y_2 = x_{14}(a^2b)Y_2, \quad [x_{9}(a), x_{20}(b)]Y_2 = x_{23}(ab)Y_2,
 [x_{34}(a), x_{20}(b)]Y_2 = x_1(a^2b)Y_2, \quad [x_{40}(a), x_{20}(b)]Y_2 = x_5(ab)Y_2,
```

$$\begin{split} &[x_2(a),x_{22}(b)]Y_2=x_{23}(ab)Y_2,\quad [x_{27}(a),x_{22}(b)]Y_2=x_{20}(a^2b)Y_2,\\ &[x_{31}(a),x_{22}(b)]Y_2=x_{14}(a^2b)Y_2,\quad [x_{33}(a),x_{22}(b)]Y_2=x_{18}(ab)Y_2,\\ &[x_{37}(a),x_{22}(b)]Y_2=x_1(a^2b)Y_2,\quad [x_{40}(a),x_{22}(b)]Y_2=x_{11}(ab)Y_2,\\ &[x_{26}(a),x_{23}(b)]Y_2=x_{22}(ab)Y_2,\quad [x_{30}(a),x_{23}(b)]Y_2=x_{18}(a^2b)Y_2,\\ &[x_{33}(a),x_{23}(b)]Y_2=x_{20}(ab)Y_2,\quad [x_{37}(a),x_{23}(b)]Y_2=x_{5}(a^2b)Y_2,\\ &[x_{40}(a),x_{23}(b)]Y_2=x_{14}(ab)Y_2,\quad [x_{34}(a),x_{23}(b)]Y_2=x_{11}(a^2b)Y_2, \end{split}$$

поэтому  $L_1$  действует неприводимо на  $U_1/Y_2$ . Получаем другой фрагмент  $U_1 > Y_2$  главного ряда группы  $P_1$ .

Рассмотрим в группе  $F_4(2^n)$  другую параболическую максимальную подгруппу  $P_2=U_2L_2$ , где  $U_2=\langle X_j\mid 2\leq j\leq 24, j\neq 3,4,7\rangle$  и  $L_2=\langle H,X_1,X_{25},X_3,X_{27},X_4,X_{28},X_7,X_{31}\rangle$ . Приведем все нетривиальные коммутаторные соотношения для корневых порождающих унипотентного радикала  $U_2$ , вытекающие из коммутаторной формулы Шевалле  $(a,b\in K)$ :

$$[x_2(a), x_{11}(b)] = x_{14}(ab), \quad [x_2(a), x_{15}(b)] = x_{17}(ab)x_{24}(ab^2),$$

$$[x_2(a), x_{18}(b)] = x_{20}(ab), \quad [x_2(a), x_{22}(b)] = x_{23}(ab),$$

$$[x_5(a), x_9(b)] = x_{14}(ab), \quad [x_5(a), x_{13}(b)] = x_{17}(ab)x_{23}(ab^2),$$

$$[x_5(a), x_{16}(b)] = x_{20}(ab), \quad [x_5(a), x_{22}(b)] = x_{24}(ab),$$

$$[x_6(a), x_{12}(b)] = x_{17}(ab), \quad [x_6(a), x_{15}(b)] = x_{19}(ab),$$

$$[x_6(a), x_{18}(b)] = x_{21}(ab)x_{23}(a^2b), \quad [x_8(a), x_{10}(b)] = x_{17}(ab),$$

$$[x_8(a), x_{13}(b)] = x_{19}(ab), \quad [x_8(a), x_{16}(b)] = x_{21}(ab)x_{24}(a^2b),$$

$$[x_9(a), x_{12}(b)] = x_{19}(ab)x_{24}(ab^2), \quad [x_9(a), x_{18}(b)] = x_{22}(ab),$$

$$[x_9(a), x_{20}(b)] = x_{23}(ab), \quad [x_{10}(a), x_{11}(b)] = x_{19}(ab)x_{23}(a^2b),$$

$$[x_{10}(a), x_{15}(b)] = x_{21}(ab), \quad [x_{11}(a), x_{16}(b)] = x_{22}(ab),$$

$$[x_{11}(a), x_{20}(b)] = x_{24}(ab), \quad [x_{12}(a), x_{13}(b)] = x_{21}(ab),$$

$$[x_{14}(a), x_{16}(b)] = x_{23}(ab), \quad [x_{14}(a), x_{18}(b)] = x_{24}(ab).$$

Из этих соотношений следует, что группа  $Y_2 = \langle X_{17}, X_{19}, X_{21}, X_{23}, X_{24} \rangle$  является нормальной подгруппой в  $P_2$ . Действие  $L_2$  на нее задается следующими соотношениями  $(a,b\in K)$ :

```
\begin{split} &[x_1(a),x_{23}(b)] = x_{24}(ab), \quad [x_3(a),x_{17}(b)] = x_{19}(ab), \\ &[x_4(a),x_{19}(b)] = x_{21}(ab), \quad [x_7(a),x_{17}(b)] = x_{21}(ab), \\ &[x_{25}(a),x_{24}(b)] = x_{23}(ab), \quad [x_{27}(a),x_{19}(b)] = x_{17}(ab), \\ &[x_{28}(a),x_{21}(b)] = x_{19}(ab), \quad [x_{31}(a),x_{21}(b)] = x_{17}(ab). \end{split}
```

Это действие приводимо. Укажем в  $Y_2$  две минимальные нормальные в  $P_2$  подгруппы  $B=\langle X_{17},X_{19},X_{21}\rangle$  и  $Y_1=\langle X_{23},X_{24}\rangle$ . Тогда  $L_2$  действует неприводимо на каждой фактор-группе  $Y_2/B$  и  $Y_2/Y_1$ . Получаем фрагменты  $Y_2>B>1$  и  $Y_2>Y_1>1$  главных рядов группы  $P_2$ .

Приведем нетривиальные коммутаторные соотношения в фактор-группе  $U_2/Y_2$   $(a,b\in K)$ :

$$\begin{split} &[x_2(a),x_{11}(b)]Y_2=x_{14}(ab)Y_2,\quad [x_2(a),x_{18}(b)]Y_2=x_{20}(ab)Y_2,\\ &[x_5(a),x_9(b)]Y_2=x_{14}(ab)Y_2,\quad [x_5(a),x_{16}(b)]Y_2=x_{20}(ab)Y_2,\\ &[x_9(a),x_{18}(b)]Y_2=x_{22}(ab)Y_2,\quad [x_{11}(a),x_{16}(b)]Y_2=x_{22}(ab)Y_2. \end{split}$$

Рассмотрим нормальную в  $P_2$  подгруппу  $Y_3 = \langle X_{14}, X_{20}, X_{22}, X_{17}, X_{19}, X_{21}, X_{23}, X_{24} \rangle$ . Действие  $L_2$  на  $Y_3/Y_2$  задается следующими коммутаторными соотношениями  $(a,b \in K)$ :

$$[x_3(a), x_{20}(b)]Y_2 = x_{22}(a^2b)Y_2, \quad [x_4(a), x_{14}(b)]Y_2 = x_{20}(a^2b)Y_2,$$
$$[x_7(a), x_{14}(b)]Y_2 = x_{22}(a^2b)Y_2, \quad [x_{27}(a), x_{22}(b)]Y_2 = x_{20}(a^2b)Y_2,$$
$$[x_{28}(a), x_{20}(b)]Y_2 = x_{14}(a^2b)Y_2, \quad [x_{31}(a), x_{22}(b)]Y_2 = x_{14}(a^2b)Y_2,$$

это действие неприводимо. Получаем фрагмент  $Y_3 > Y_2$  главного ряда группы  $P_2$ .

Рассмотрим нормальную в  $P_2$  подгруппу  $Y_4 = \langle X_6, X_8, X_{10}, X_{12}, X_{13}, X_{15}, X_{14}, X_{17}, X_{19}, X_{20}, X_{21}, X_{22}, X_{23}, X_{24} \rangle$ . Действие  $L_2$  на группу  $Y_4/Y_3$  задается следующими коммутаторными соотношениями  $(a, b \in K)$ :

$$\begin{split} &[x_4(a),x_6(b)]Y_3 = x_{10}(ab)Y_3, \quad [x_7(a),x_6(b)]Y_3 = x_{13}(ab)Y_3, \\ &[x_4(a),x_8(b)]Y_3 = x_{12}(ab)Y_3, \quad [x_7(a),x_8(b)]Y_3 =_{15}(ab)Y_3, \\ &[x_{25}(a),x_8(b)]Y_3 = x_6(ab)Y_3, \quad [x_1(a),x_{10}(b)]Y_3 = x_{12}(ab)Y_3, \\ &[x_3(a),x_{10}(b)]Y_3 = x_{13}(ab)Y_3, \quad [x_{28}(a),x_{10}(b)]Y_3 = x_6(ab)Y_3, \\ &[x_3(a),x_{12}(b)]Y_3 = x_{15}(ab)Y_3, \quad [x_{25}(a),x_{12}(b)]Y_3 = x_{10}(ab)Y_3, \\ &[x_{28}(a),x_{12}(b)]Y_3 = x_8(ab)Y_3, \quad [x_{1}(a),x_{13}(b)]Y_3 = x_{15}(ab)Y_3, \\ &[x_{27}(a),x_{13}(b)]Y_3 = x_{10}(ab)Y_3, \quad [x_{31}(a),x_{13}(b)]Y_3 = x_{6}(ab)Y_3, \\ &[x_{25}(a),x_{15}(b)]Y_3 = x_{13}(ab)Y_3, \quad [x_{27}(a),x_{15}(b)]Y_3 = x_{12}(ab)Y_3, \\ &[x_{31}(a),x_{15}(b)]Y_3 = x_8(ab)Y_3, \quad [x_{1}(a),x_6(b)]Y_3 = x_8(ab)Y_3, \end{split}$$

и это действие неприводимо на ней. Получаем фрагмент  $Y_4 > Y_3$  главного ряда группы  $P_2$ .

Подгруппа  $U_2/Y_4$  нормальна в  $P_2/Y_4$ . Неприводимое действие  $L_2$  на эту подгруппу задается следующими коммутаторными соотношениями  $(a, b \in K)$ :

$$\begin{split} &[x_1(a),x_2(b)]Y_4=x_5(ab)Y_4,\quad [x_3(a),x_2(b)]Y_4=x_9(a^2b)Y_4,\\ &[x_7(a),x_2(b)]Y_4=x_{16}(a^2b)Y_4,\quad [x_3(a),x_5(b)]Y_4=x_{11}(a^2b)Y_4,\\ &[x_7(a),x_5(b)]Y_4=x_{18}(a^2b)Y_4,\quad [x_{25}(a),x_5(b)]Y_4=x_2(ab)Y_4,\\ &[x_1(a),x_9(b)]Y_4=x_{11}(ab)Y_4,\quad [x_4(a),x_9(b)]Y_4=x_{16}(a^2b)Y_4,\\ &[x_{27}(a),x_9(b)]Y_4=x_2(a^2b)Y_4,\quad [x_4(a),x_{11}(b)]Y_4=x_{18}(a^2b)Y_4,\\ &[x_{25}(a),x_{11}(b)]Y_4=x_9(ab)Y_4,\quad [x_{27}(a),x_{11}(b)]Y_4=x_5(a^2b)Y_4,\\ &[x_1(a),x_{16}(b)]Y_4=x_{18}(ab)Y_4,\quad [x_{28}(a),x_{16}(b)]Y_4=x_{16}(ab)Y_4,\\ &[x_{28}(a),x_{18}(b)]Y_4=x_{11}(a^2b)Y_4,\quad [x_{31}(a),x_{18}(b)]Y_4=x_5(a^2b)Y_4,\\ &[x_{28}(a),x_{18}(b)]Y_4=x_{11}(a^2b)Y_4,\quad [x_{31}(a),x_{18}(b)]Y_4=x_5(a^2b)Y_4. \end{split}$$

Получаем последний фрагмент  $U_2 = Y_5 > Y_4$  главного ряда группы  $P_2$ . Существует [6, лемма 12.3.2] подстановка

$$(1,4)(2,3)(5,7)(6,9)(8,16)(10,11)(12,18)(13,14)(15,20)(17,22)(19,23)(21,24)\\$$

множества положительных корней  $\Phi^+,$  индуцированная симметрией диаграммы Дынкина типа  $F_4$ 



Соответствующий этой подстановке графовый автоморфизм группы  $F_4(2^n)$  отображает параболические максимальные подгруппы  $P_1$  и  $P_2$  в параболические максимальные подгруппы  $P_4$  и  $P_3$  соответственно (см. [6, предложение 12.3.3]). Это позволяет выписать главные факторы и соответствующие главные ряды для параболических максимальных подгрупп  $P_3$  и  $P_4$ . Теорема 1 доказана.

Занесем полученные при доказательстве теоремы 1 результаты в табл. 1. Во втором столбце таблицы укажем главные факторы  $Y_{i+1}/Y_i$  фрагмента главного ряда, входящего в унипотентный радикал, каждой параболической максимальной подгруппы  $P_k$ , указанной в первом столбце. Третий столбец нашей таблицы содержит корни r для порождающих элементов  $x_r(a)Y_i$  главного фактора  $Y_{i+1}/Y_i = \prod_r X_r Y_i/Y_i$ . Для каждого  $i \geq 1$  главный фактор  $Y_{i+1}/Y_i$  изоморфен в аддитивной записи прямой сумме корневых подгрупп  $X_r$  и является неприводимым  $GF(2^n)L_k$ -модулем. Старший вес и размерность этого модуля  $\bigoplus_r X_r$  укажем в четвертом и пятом столбцах табл. 1 соответственно. Будем обозначать (в табл. 1) произвольный корень  $c_1p_1+c_2p_2+c_3p_3+c_4p_4$  из  $\Phi$  через  $c_1c_2c_3c_4$   $(0 \leq c_i \in \mathbb{Z})$ .

**Таблица 1.** Главные факторы параболических максимальных подгрупп в  $F_4(2^n)$ 

| $P_k$ | $Y_{i+1}/Y_i$ | корни $r$ : $Y_{i+1}/Y_i = \prod\limits_r X_r Y_i/Y_i \cong \bigoplus\limits_r X_r$ | вес  | разм. |
|-------|---------------|-------------------------------------------------------------------------------------|------|-------|
| $P_1$ | $Y_3/Y_2$     | 1000, 1100, 1120, 1220, 1122, 1222, 1242, 1342                                      | 1342 | 8     |
| $P_1$ | $Y_2/Y_1$     | 1110,1111,1121,1221,1231,1232                                                       | 1232 | 6     |
| $P_1$ | $Y_1/1$       | 2342                                                                                | 2342 | 1     |
| $P_2$ | $Y_5/Y_4$     | 0100, 1100, 0120, 1120, 0122, 1122                                                  | 1122 | 6     |
| $P_2$ | $Y_4/Y_3$     | 0110, 1110, 0111, 1111, 0121, 1121                                                  | 1121 | 6     |
| $P_2$ | $Y_3/Y_2$     | 1220, 1222, 1242                                                                    | 1242 | 3     |
| $P_2$ | $Y_2/Y_1$     | 1221, 1231, 1232                                                                    | 1232 | 3     |
| $P_2$ | $Y_1/1$       | 1342, 2342                                                                          | 2342 | 2     |
| $P_3$ | $Y_5/Y_4$     | 0010, 0011, 0110, 0111, 1110, 1111                                                  | 1111 | 6     |
| $P_3$ | $Y_4/Y_3$     | 0120, 0122, 1120, 1122, 1220, 1222                                                  | 1222 | 6     |
| $P_3$ | $Y_3/Y_2$     | 0121, 1121, 1221                                                                    | 1221 | 3     |
| $P_3$ | $Y_2/Y_1$     | 1242, 1342, 2342                                                                    | 2342 | 3     |
| $P_3$ | $Y_1/1$       | 1231, 1232                                                                          | 1232 | 2     |
| $P_4$ | $Y_3/Y_2$     | 0001, 0011, 0111, 0121, 1111, 1121, 1221, 1231                                      | 1231 | 8     |
| $P_4$ | $Y_2/Y_1$     | 0122, 1122, 1222, 1242, 1342, 2342                                                  | 2342 | 6     |
| $P_4$ | $Y_1/1$       | 1232                                                                                | 1232 | 1     |

# 3. Доказательство теоремы 2 для $G = G_2(2^n)$

В группе  $G_2(p^n)$  имеются с точностью до сопряжения две параболические максимальные подгруппы  $P_1$  и  $P_2$ . Приведем для каждой из них разложение

Леви:

$$P_1 = U_1 L_1 = \langle X_1, X_3, X_4, X_5, X_6 \rangle \langle H, X_2, X_8 \rangle,$$

$$P_2 = U_2 L_2 = \langle X_2, X_3, X_4, X_5, X_6 \rangle \langle H, X_1, X_7 \rangle.$$

При четной характеристике поля K имеем только три нетривиальных коммутаторных соотношения для корневых порождающих группы  $U_1$   $(a, b \in K)$ :

$$[x_1(a), x_3(b)] = x_5(a^2b)x_6(ab^2), \quad [x_1(a), x_4(b)] = x_5(ab), \quad [x_3(a), x_4(b)] = x_6(ab).$$

Группа  $Y_1 = \langle X_5, X_6 \rangle$  является минимальной нормальной подгруппой в  $P_1$ . Соотношения  $(a,b \in K)$ 

$$[x_2(a), x_1(b)]Y_1 = x_3(ab)x_4(ab^2)Y_1, \quad [x_8(a), x_3(b)]Y_1 = x_1(ab)x_4(ab^2)Y_1$$

задают приводимое действие  $L_1$  на фактор-группу  $U_1/Y_1$ . Положим  $Y_2=\langle X_4,X_5,X_6\rangle$ . Тогда подгруппа Леви  $L_1$  действует неприводимо на факторах  $U_1/Y_2$  и  $Y_2/Y_1$ . Получаем фрагмент  $U_1=Y_3>Y_2>Y_1>1$  главного ряда группы  $P_1$ .

Выпишем при четной характеристике поля K все нетривиальные коммутаторные соотношения для корневых порождающих группы  $U_2$ , вытекающие из коммутаторной формулы Шевалле  $(a, b \in K)$ :

$$[x_2(a), x_5(b)] = x_6(ab), \quad [x_3(a), x_4(b)] = x_6(ab).$$

Группа  $Y_1 = X_6$  является минимальной нормальной подгруппой в  $P_2$ . Действие  $L_2$  на группу  $U_2/Y_1$  задается следующими коммутаторными соотношениями  $(a,b\in K)$ :

$$[x_1(a), x_2(b)]Y_1 = x_3(ab)x_4(a^2b)x_5(a^3b)Y_1, \quad [x_1(a), x_3(b)]Y_1 = x_5(a^2b)Y_1,$$

$$[x_7(a), x_5(b)]Y_1 = x_4(ab)x_3(a^2b)x_2(a^3b)Y_1, \quad [x_1(a), x_4(b)]Y_1 = x_5(ab)Y_1,$$

$$[x_7(a), x_4(b)]Y_1 = x_2(a^2b)Y_1, \quad [x_7(a), x_3(b)]Y_1 = x_2(ab)Y_1,$$

поэтому это действие неприводимо на ней. Получаем фрагмент  $U_2 = Y_2 > Y_1 > 1$  главного ряда группы  $P_2$ .

## 4. Доказательство теоремы 2 для $G = G_2(3^n)$

Если p=3, то в  $U_1$  только одно нетривиальное коммутаторное соотношение  $[x_1(a),x_3(b)]=x_4(ab),\ (a,b\in K)$ . Корневая подгруппа  $Y_1=X_4$  является минимальной нормальной подгруппой в  $P_1$ . Коммутаторные соотношения  $(a,b\in K)$ 

$$[x_2(a), x_1(b)]Y_1 = x_3(-ab)x_5(-ab^3)x_6(-a^2b^3)Y_1, \quad [x_2(a), x_5(b)]Y_1 = x_6(-ab)Y_1, \\ [x_8(a), x_3(b)]Y_1 = x_1(-ab)x_6(-ab^3)x_5(-a^2b^3)Y_1, \quad [x_8(a), x_6(b)]Y_1 = x_5(-ab)Y_1, \\ [x_8(a), x_8(b)]Y_1 = x_8(-ab)x_8(-ab^3)x_8(-ab^3)X_1, \quad [x_8(a), x_8(b)]Y_1 = x_8(-ab)Y_1, \\ [x_8(a), x_8(b)]Y_1 = x_8(-ab)x_8(-ab^3)x_8(-ab^3)X_1, \quad [x_8(a), x_8(b)]Y_1 = x_8(-ab)Y_1, \\ [x_8(a), x_8(b)]Y_1 = x_8(-ab)x_8(-ab^3)x_8(-ab^3)X_1, \quad [x_8(a), x_8(b)]Y_1 = x_8(-ab)Y_1, \\ [x_8(a), x_8(b)]Y_1 = x_8(-ab)x_8(-ab^3)x_8(-ab^3)X_1, \quad [x_8(a), x_8(b)]Y_1 = x_8(-ab)Y_1, \\ [x_8(a), x_8(b)]Y_1 = x_8(-ab)x_8(-ab^3)x_8(-ab^3)X_1, \quad [x_8(a), x_8(b)]Y_1 = x_8(-ab)Y_1, \\ [x_8(a), x_8(b)]Y_1 = x_8(-ab)x_8(-ab^3)X_1, \quad [x_8(a), x_8(b)]Y_1 = x_8(-ab)X_1, \\ [x_8(a), x_8(b)]Y_1 = x_8(-ab)x_8(-ab^3)X_1, \quad [x_8(a), x_8(b)]Y_1 = x_8(-ab)X_1, \\ [x_8(a), x_8(b)]Y_1 = x_8(-ab)x_8(-ab^3)X_1, \quad [x_8(a), x_8(b)]Y_1 = x_8(-ab)X_1, \\ [x_8(a), x_8(b)]Y_1 = x_8(-ab)X_1, \quad [x_8(a), x_8(b)]Y_1 = x_8(-ab)X_1, \\ [x_8(a), x_8(b)]Y_1 = x_8(-ab)X_1, \quad [x_8(a), x_8(b)]Y_1 = x_8(-ab)X_1, \\ [x_8(a), x_8(b)]Y_1 = x_8(-ab)X_1, \quad [x_8(a), x_8(b)]Y_1 = x_8(-ab)X_1, \\ [x_8(a), x_8(b)]Y_1 = x_8(-ab)X_1, \quad [x_8(a), x_8(b)]Y_1 = x_8(-ab)X_1, \\ [x_8(a), x_8(b)]Y_1 = x_8(-ab)X_1, \quad [x_8(a), x_8(b)]Y_1 = x_8(-ab)X_1, \\ [x_8(a), x_8(b)]Y_1 = x_8(-ab)X_1, \quad [x_8(a), x_8(b)]Y_1 = x_8(-ab)X_1, \\ [x_8(a), x_8(b)]Y_1 = x_8(-ab)X_1, \quad [x_8(a), x_8(b)]Y_1 = x_8(-ab)X_2, \quad [x_8(a), x_8(a), x_8(b)]Y_1 = x_8(-ab)X_2, \quad [x_8(a), x_8(a), x_8(a), x_8(a), \quad [x_8(a), x_8(a), x_8(a), \quad [x_8(a), x_8(a), x_8(a), \quad [x_$$

задают приводимое действие  $L_1$  на фактор-группу  $U_1/Y_1$ . Положим  $Y_2=\langle X_4,X_5,X_6\rangle$ . Тогда подгруппа Леви  $L_1$  действует неприводимо на фактор-группах  $U_1/Y_2$  и  $Y_2/Y_1$ . Получаем фрагмент  $U_1=Y_3>Y_2>Y_1>1$  главного ряда группы  $P_1$ . Существует подстановка (1,2)(3,5)(4,6) [6, лемма 12.3.2] множества положительных корней  $\Phi^+$ , индуцированная симметрией диаграммы Дынкина типа  $G_2$ 



Соответствующий этой подстановке графовый автоморфизм группы  $G_2(3^n)$  отображает параболическую максимальную подгруппу  $P_1$  в параболическую максимальную подгруппу  $P_2$  (см. [6, предложение 12.3.3]). Это позволяет выписать главные факторы и соответствующие главные ряды для  $P_2$ , если характеристика поля равна 3. Теорема 2 доказана.

Занесем полученные при доказательстве теоремы 2 результаты в табл. 2 и 3.

| Таблица 2. | Главные | факторы | параболических | максимальных | подгрупп н | з $G_2(2^n)$ |
|------------|---------|---------|----------------|--------------|------------|--------------|
|            |         |         |                |              |            |              |

| $P_k$ | $Y_{i+1}/Y_i$ | $r: Y_{i+1}/Y_i = \prod_r X_r Y_i/Y_i \cong \bigoplus_r X_r$ | вес           | разм. |
|-------|---------------|--------------------------------------------------------------|---------------|-------|
| $P_1$ | $Y_3/Y_2$     | $p_1,p_1+p_2$                                                | $p_1+p_2$     | 2     |
| $P_1$ | $Y_2/Y_1$     | $2p_1+p_2$                                                   | $2p_1+p_2$    | 1     |
| $P_1$ | $Y_1/1$       | $3p_1+p_2, 3p_1+2p_2$                                        | $3p_1 + 2p_2$ | 2     |
| $P_2$ | $Y_2/Y_1$     | $p_2, p_1+p_2, 2p_1+p_2, 3p_1+p_2\\$                         | $3p_1+p_2$    | 4     |
| $P_2$ | $Y_1/1$       | $3p_1+2p_2$                                                  | $3p_1 + 2p_2$ | 1     |

**Таблица 3.** Главные факторы параболических максимальных подгрупп в  $G_2(3^n)$ 

| $P_k$ | $Y_{i+1}/Y_i$ | $r: Y_{i+1}/Y_i = \prod_r X_r Y_i/Y_i \cong \bigoplus_r X_r$ | вес         | разм. |
|-------|---------------|--------------------------------------------------------------|-------------|-------|
| $P_1$ | $Y_3/Y_2$     | $p_1,p_1+p_2$                                                | $p_1+p_2$   | 2     |
| $P_1$ | $Y_2/Y_1$     | $3p_1+p_2, 3p_1+2p_2$                                        | $3p_1+2p_2$ | 2     |
| $P_1$ | $Y_1/1$       | $2p_1+p_2$                                                   | $2p_1+p_2$  | 1     |
| $P_2$ | $Y_3/Y_2$     | $p_2,3p_1+p_2$                                               | $3p_1+p_2$  | 2     |
| $P_2$ | $Y_2/Y_1$     | $p_1 + p_2, 2p_1 + p_2 \\$                                   | $2p_1+p_2$  | 2     |
| $P_2$ | $Y_1/1$       | $3p_1+2p_2$                                                  | $3p_1+2p_2$ | 1     |

#### ЛИТЕРАТУРА

- Azad H., Barry M., Seitz G. On the structure of parabolic subgroups // Commun. Algebra. 1990. V. 18, N 2. P. 551–562.
- 2. *Кораблева В. В.* О главных факторах параболических максимальных подгрупп конечных простых групп нормального лиева типа // Сиб. мат. журн. 2014. Т. 55, № 4. С. 764–782.
- 3. Кораблева В. В. О главных факторах параболических максимальных подгрупп группы  $^2E_6(q^2)$  // Тр. Ин-та математики и механики УрО РАН. 2014. Т. 20, № 2. С. 230–237.
- 4. Кораблева В. В. О главных факторах параболических максимальных подгрупп скрученных классических групп // Сиб. мат. журн. 2015. Т. 56, № 5. С. 1100–1110.
- 5. Кораблева В. В. О главных факторах параболических максимальных подгрупп группы  $^3D_4(q^3)$  // Тр. Ин-та математики и механики УрО РАН. 2015. Т. 21, № 3. С. 187–191.
- 6. Carter R. W. Simple groups of Lie type. London: John Wiley and Sons, 1972.

Статья поступила 31 марта 2017 г.

Кораблева Вера Владимировна Челябинский гос. университет, лаборатория квантовой топологии, ул. Братьев Кашириных, 129, Челябинск 454001 vvk@csu.ru