ПРОСТЫЕ АЛГЕБРЫ ПУАССОНА — ФАРКАСА И ТЕРНАРНЫЕ АЛГЕБРЫ ФИЛИППОВА

А. П. Пожидаев

Аннотация. Установлена связь между дифференциально простыми ассоциативными коммутативными алгебрами с единицей и простыми алгебрами Филиппова.

 $DOI\,10.17377/smzh.2017.58.616$

Ключевые слова: алгебра Пуассона, алгебра Филиппова, (супер)алгебра Фаркаса, дифференциально простая алгебра.

Посвящается 70-летию И. П. Шестакова

Введение

Напомним, что супералгебра $A = A_{\bar{0}} \oplus A_{\bar{1}}$ — это \mathbb{Z}_2 -градуированная алгебра $(A_{\bar{i}} \cdot A_{\bar{j}} \subseteq A_{\bar{i}+\bar{j}})$. Элементы из $A_{\bar{0}}$ называются *четными*, а элементы из $A_{\bar{1}}$ — *нечетными*; при этом пишут p(a) = i, если $a \in A_{\bar{i}}$. В данной статье мы изучаем (тернарные) алгебры, однако большинство результатов легко переносятся на случай супералгебр, поэтому определения сразу даем в общем (супер)случае.

Пусть A — супералгебра Пуассона $(A;\{\,,\,\},\cdot)$, где $(A;\{\,,\,\})$ — супералгебра Ли, а \cdot — ассоциативная суперкоммутативная операция такая, что на A выполнено супертождество Лейбница $\{a\cdot b,c\}=a\cdot\{b,c\}+(-1)^{p(b)p(c)}\{a,c\}\cdot b$. В выражениях вида $(-1)^{p(a)p(b)}$ и т. п. условимся опускать символ p, т. е. $(-1)^{ab}:=(-1)^{p(a)p(b)}$. Пусть D либо однородное $(D(A_{\bar{i}})\subseteq A_{\bar{i}+p})$ дифференцирование четности p=p(D) в A относительно обеих операций (т. е. для любых однородных $a,b\in A$ выполнены равенства

$$D(a \cdot b) = D(a) \cdot b + (-1)^{aD} a \cdot D(b), \quad D\{a,b\} = \{D(a),b\} + (-1)^{aD} \{a,D(b)\},$$

здесь и далее обозначаем $(-1)^{aD}:=(-1)^{p(a)p(D)})$, либо тождественное отображение на A (при этом D(a)=a). Заметим, что если $A_{\bar{1}}=0$, то приходим к определению алгебры Пуассона.

Определим на векторном пространстве супералгебры A новую тернарную операцию $[\, , \, , \,]$ правилом

$$[x,y,z] = (-1)^{(x+y)D} \{x,y\} \cdot D(z) - (-1)^{(x+z)D+yz} \{x,z\} \cdot D(y) + D(x) \cdot \{y,z\} \ \ (1)$$

для любых однородных $x,y,z\in A$, а далее продолжим ее по линейности. Обозначим получившуюся тернарную супералгебру через A_D (A_E при $D:=E:=\mathrm{id}$).

Тернарная антикоммутативная алгебра \mathscr{F} называется алгеброй Φ илиппова, если все ее операторы правого умножения являются дифференцированиями данной алгебры (см. детальное определение ниже). В 1997 г. И. П. Шестаков поставил вопрос: если A — алгебра Пуассона, то будет ли A_D являться алгеброй Филиппова? Автор показал, что в общем случае ответ на этот вопрос отрицателен, но при некоторых дополнительных естественных предположениях на алгебру A (выполнение в A тождества Фаркаса) вопрос решается положительно [1].

В настоящей работе продолжаем изучать связь между алгебрами Пуассона — Фаркаса и тернарными алгебрами Филиппова. В § 2 теорема 3 дает широкий класс алгебр Фаркаса $A_F[z;d]$, а предложение 1 показывает эквивалентность дифференциальной d-простоты алгебры A и простоты соответствующей алгебры Пуассона. В § 3 доказывается основная теорема данной работы о связи простых алгебр Пуассона — Фаркаса $A_F[z;d]$ и простых алгебр Филиппова. В § 4 рассматриваем вопрос дифференциальной простоты алгебр усеченных многочленов в некоторых специальных случаях.

В дальнейшем через $\langle w_v; v \in \Upsilon \rangle_F$ будем обозначать линейное пространство над полем F, порожденное семейством векторов $\{w_v; v \in \Upsilon\}$. Символ := означает равенство по определению.

$\S 1$. Супералгебры Пуассона — Фаркаса и Филиппова

Предположим, что на A выполняется тождество

$$\{x,y\} \cdot \{z,u\} + (-1)^{z(x+y)}\{z,x\} \cdot \{y,u\} + (-1)^{x(y+z)}\{y,z\} \cdot \{x,u\} = 0.$$
 (2)

Алгебры Пуассона с данным тождеством (без знаков четностей) рассматривались Фаркасом (см., например, [2]), поэтому супералгебры Пуассона с данным тождеством будем называть супералгебрами Пуассона — Фаркаса, само тождество (2) — (cynep)moжdecmbom Фаркаса, а (cynep)anrefpamu Супералгебрами Фаркаса. Если нечетная часть A нулевая, то приходим к понятию алгебры Пуассона — Фаркаса.

Пусть $(A = A_{\bar{0}} \oplus A_{\bar{1}}; \{,\},\cdot)$ — супералгебра Пуассона, а Γ — супералгебра Грассмана от нечетных порождающих x_1,x_2,\ldots Тогда грассманова оболочка $\Gamma(A) := (A_{\bar{0}} \otimes \Gamma_{\bar{0}}) \oplus (A_{\bar{1}} \otimes \Gamma_{\bar{1}})$ является алгеброй Пуассона относительно операций (для однородных элементов $a,b \in A,\ f,g \in \Gamma$)

$$(a \otimes f) \cdot (b \otimes g) = (-1)^{ab} (a \cdot b \otimes fg), \quad \{a \otimes f, b \otimes g\} = (-1)^{ab} \{a, b\} \otimes fg.$$

Если D — супердифференцирование на A относительно обеих операций, то отображение $a\otimes f\mapsto D(a)\otimes f$ является дифференцированием алгебры $\Gamma(A)$ относительно обеих операций, которое также обозначим через D. Легко видеть, что если A — супералгебра Пуассона — Фаркаса, то $\Gamma(A)$ является алгеброй Пуассона — Фаркаса.

Напомним, что тернарной супералгеброй над полем F называется \mathbb{Z}_2 -градуированная тернарная алгебра $A=A_{\bar{0}}\oplus A_{\bar{1}}$ над F (с операцией (\cdot,\cdot,\cdot)), т. е. если $x_i\in A_{\alpha_i}$, то $(x_1,x_2,x_3)\in A_{\alpha_1+\alpha_2+\alpha_3}$. Тернарная супералгебра Филиппова над F — это тернарная антикоммутативная супералгебра $\mathscr{F}=\mathscr{F}_{\bar{0}}\oplus\mathscr{F}_{\bar{1}}$ над F с одной тернарной операцией $[\cdot,\cdot,\cdot]$, удовлетворяющей тождеству

$$[[x_1, x_2, x_3], y, z] = (-1)^{pp_1}[[x_1, y, z], x_2, x_3] + (-1)^{pp_2}[x_1, [x_2, y, z], x_3] + [x_1, x_2, [x_3, y, z]], (3)$$

где $p=p(y)+p(z), p_1=p(x_2)+p(x_3), p_2=p(x_3)$. Другими словами, грассманова оболочка тернарной супералгебры $\mathscr F$ является тернарной алгеброй Филиппова, где грассманова оболочка определяется аналогично предыдущему.

Как известно (см., например, [3]), один из примеров алгебр Пуассона дают скобки Пуассона — Ли на пространстве многочленов от n переменных. При этом из алгебр такого типа можно построить примеры алгебр Пуассона — Фаркаса и соответственно тернарных алгебр Филиппова [1]. В [1] автором были доказаны следующие теоремы.

Теорема 1. Пусть $(A; \{,\},\cdot)$ — супералгебра Пуассона — Фаркаса с дифференцированием D. Тогда $(A_D; [\,,\,])$ является супералгеброй Филиппова.

Теорема 2. Пусть $(A; \{,\},\cdot)$ либо супералгебра Пуассона над полем F характеристики 2, либо супералгебра Пуассона — Фаркаса. Тогда $(A_E; [\,,\,])$ является супералгеброй Филиппова.

§ 2. Координатное кольцо симплектической плоскости

Первоисточником объектов данного параграфа является координатное кольцо симплектической плоскости — хорошо известный пример простой алгебры Пуассона. А именно, это алгебра многочленов $A = \mathbb{C}[x,y]$ со скобкой Пуассона $\{x,y\} = 1$. Данной алгебре соответствует алгебра Вейля $A_1(\mathbb{C})$ от порождающих x,y с соотношением xy - yx = 1.

В 1995 г. Фаркас построил пример простой алгебры Пуассона на $A=\mathbb{C}[x,y,z]$ со скобкой Пуассона: $\{x,y\}=0$, а $\{z,-\}$ действует на $\mathbb{C}[x,y]$ как дифференцирование $\partial_x+(1-xy)\partial_y$ [4]. Несложно показать, что A является алгеброй Пуассона — Фаркаса (далее это докажем в более общем случае); при этом A_E — простая алгебра Филиппова. Похожий пример построил Бергман для дифференцирования $\partial_x+(1+xy)\partial_y$ (см. [5]), а Джордан заметил, что аналогично простота доказывается и для случая $\partial_x+(1+\lambda xy)\partial_y$, $\lambda\in\mathbb{C}^*$ [6].

Дифференцирование d на $\mathbb{C}[x,y]$ называется npocmым, если определяемая им алгебра Пуассона на $\mathbb{C}[x,y,z]$ ($\{x,y\}=0$, а $\{z,-\}$ действует на $\mathbb{C}[x,y]$ как d) простая.

В 2008 г. Новицки показал, что $d = \partial_x + (y^s + \alpha x)\partial_y$, где $s \ge 2$ и α — ненулевой элемент поля $\mathcal K$ характеристики 0, является простым дифференцированием на $\mathcal K[x,y]$ [7]. Примеры простых дифференцирований строились в работах многих авторов (см., например, [5, 8–12]).

Пусть $(A;\cdot)$ — ассоциативная коммутативная алгебра над полем $F, f \in \operatorname{End}_F(A)$. На алгебре (усеченных) многочленов A[z] $(A_p[z])$ над A от неизвестной z определим скобку $\{\,,\,\}$ правилом

$$\{az^n,bz^k\}=(naf(b)-kbf(a))z^{n+k-1}$$

для любых $a,b\in A,\,n,k\in\mathbb{N}\cup\{0\}\;(z^0:=1;\,z^{-1}:=0).$ В частности, $\{A,A\}=0$, и $\{z,a\}=f(a)$ для любого $a\in A.$ Полученную алгебраическую систему $(A;\cdot,\{\,,\})$ обозначим через $A_F[z;f].$ Пусть Ann $A:=\{x\in A:xa=0\;\forall a\in A\}$ — аннулятор алгебры A.

Теорема 3. $A_F[z;f]$ является антикоммутативной алгеброй Фаркаса. При этом $A_F[z;f]$ — алгебра Пуассона — Фаркаса тогда и только тогда, когда f(ab) — $f(a)b - af(b) \in \text{Ann } A$. В частности, это справедливо, если $f \in \text{Der}(A)$.

Доказательство. Пусть
$$x=az^n,\,y=bz^k,\,z=cz^m,\,u=dz^r.$$
 Тогда

$${az^n, bz^k}{cz^m, dz^r} = (naf(b) - kbf(a))(mcf(d) - rdf(c))z^{n+k+m+r-2}.$$

В итоге

$$\{x,y\}\{z,u\}+\{z,x\}\{y,u\}+\{y,z\}\{x,u\}=((naf(b)-kbf(a))(mcf(d)-rdf(c))-(naf(c)-mcf(a))(kbf(d)-rdf(b))-(mcf(b)-kbf(c))(naf(d)-rdf(a)))z^q=0,$$
 где $q=n+k+m+r-2.$

Для доказательства второго утверждения достаточно заметить следующие равенства:

$$\begin{split} \{az^n \cdot cz^s, bz^k\} &= \{acz^{n+s}, bz^k\} = ((n+s)acf(b) - kbf(ac))z^{n+s+k-1}; \\ \{az^n, bz^k\} \cdot cz^s &= (naf(b) - kbf(a)) \cdot cz^{n+s+k-1}; \\ az^n \cdot \{cz^s, bz^k\} &= a \cdot (scf(b) - kbf(c))z^{n+s+k-1}. \quad \Box \end{split}$$

Пусть A — алгебра, d — дифференцирование алгебры A. Напомним, что A называется d-npocmoй, если A не содержит собственных идеалов, инвариантных относительно дифференцирования d.

Предложение 1. Пусть A — ассоциативная коммутативная алгебра c 1 над полем F, d — дифференцирование алгебры A. Тогда d-простота A эквивалентна простоте алгебры Пуассона $A_F[z;d]$.

Доказательство. Пусть алгебра Пуассона $\mathscr{A}:=A_F[z;d]$ проста. Покажем, что A d-простая. Действительно, если I — ненулевой собственный d-идеал в A, то $I_z:=\sum_t Iz^t$ — ненулевой собственный идеал в алгебре Пуассона \mathscr{A} :

$$\{Iz^t,az^m\}\subseteq\{Iz^t,a\}z^m+a\{Iz^t,z^m\}\subseteq I\{z^t,a\}z^m+aIz^{t+m-1}\subseteq I_z,$$

где $a \in A, m \in \mathbb{N} \cup \{0\}.$

Обратно, если A d-простая, то и алгебра Пуассона $\mathscr A$ простая.

Действительно, пусть I — идеал в \mathscr{A} . Возьмем такой $a=\sum_{i=0}^n a_i z^i \in I,$ $a_i \in A$, что n минимально и $a_n \neq 0$. Так как $\{a,z\} \in I$, вместо a_n можно также рассматривать $d^k(a_n)$ для любого $k \in \mathbb{N}$, а также $a_n c$ для любого $c \in A$. Поскольку $\sum_k d^k(a_n)A$ — ненулевой d-идеал в A, можно считать, что $a_n = 1$.

Тогда $\{a,b\}\in I$ для любого $b\in A$ и $\{a,b\}=\sum\limits_{i=1}^n ia_id(b)z^{i-1}$. Выбирая $b\in A$ так, что $d(b)\neq 0$, можно считать, что в $I\cap A$ лежит ненулевой элемент. Поскольку $\{z,a\}=d(a)\in I$, как и ранее, $J=\sum\limits_k d^k(a)A$ — ненулевой d-идеал в A. Значит, $J=A,\,A\subseteq I$, и $Az^n\subseteq I$ для любого $n\in \mathbb{N}$, т. е. $I=\mathscr{A}$. \square

Лемма 1. Пусть A — ассоциативная коммутативная алгебра над полем характеристики не 2, d — дифференцирование алгебры A и $I:=\langle ad(b)-d(a)b:a,b\in A\rangle_F$. Тогда I — d-идеал в A.

Доказательство. Заметим, что для любых $a, b, c \in A$ выполняется

$$2d(a)bc = bd(ac) - acd(b) + cd(ab) - abd(c) \in I.$$

Пусть $c \in A$. Тогда $c(ad(b) - d(a)b) \in I$. Окончательно

$$d(ad(b) - d(a)b) = cd(b) + ad(e) - d(c)b - d(a)e \in I,$$

где
$$c := d(a), e := d(b)$$
. \square

\S 3. Алгебры Филиппова и алгебры $A_F[z;d]$

Теорема 4. Пусть $\mathscr{A} := A_F[z;d]$ — алгебра Пуассона — Фаркаса с 1 над полем F характеристики не 2,3, где d — простое дифференцирование алгебры A. Тогда $\mathscr{F} := (\mathscr{A}_E; [\, , \, ,])$ является простой алгеброй Филиппова. В случае поля характеристики 3 подпространство $A \oplus Az \oplus A^dz^2$ является идеалом в \mathscr{F} .

Доказательство. Покажем, что $1 \not\in I$ для любого собственного идеала I алгебры \mathscr{F} . Предположим противное. Пусть $I \triangleleft \mathscr{F}$, $1 \in I$. Тогда по (1) имеем $\{\mathscr{F},\mathscr{F}\} \subseteq I$. Следовательно, $\{bz^n,a\} = nbd(a)z^{n-1} \in I$ для любых $a,b \in A, n \in \mathbb{N}$. Так как $A \cdot d(A)$ — ненулевой d-идеал в A, то $A \cdot d(A) = A$. Значит, в случае поля характеристики 0 будет $az^n \in I$ для любых $a \in A, n \in \mathbb{N} \cup \{0\}$, т. е. $I = \mathscr{F}$.

Пусть основное поле имеет характеристику p>0. В этом случае, как и выше, $az^k\in I$ для любых $a\in A,\ 0\le k< p-1$. Покажем, что az^{p-1} также лежит в I для любого $a\in A$. Имеем

$${az, bz^{p-1}} = d(ab)z^{p-1} \in I$$
 (4)

для любых $a, b \in A$.

С другой стороны, так как любой $a\in A$ лежит в I, то $[a,bz^n,cz^k]\in I$ для любых $a,b,c\in A$. Имеем

$$[a, bz^{n}, cz^{k}] = ((k-n)d(a)bc + nabd(c) - kad(b)c)z^{n+k-1} \in I.$$
 (5)

В частности, при n=1, k=p-1 из (5) получаем $(-2d(a)bc+ad(bc))z^{p-1} \in I$. Так как $A=A^2$, для любого $e\in A$ справедливо $(-2d(a)e+ad(e))z^{p-1}\in I$. Учитывая (4), приходим к включению $-3d(a)ez^{p-1}\in I$. Поскольку характеристика поля не равна 3, то $d(a)ez^{p-1}\in I$ для любых $a,e\in A$, и так как Ad(A)— ненулевой d-идеал в A, то $Az^{p-1}\subseteq I$. В итоге опять $I=\mathscr{F}$, что противоречит собственности идеала I.

Докажем простоту алгебры \mathscr{F} . Предположим, что \mathscr{F} не является простой. Тогда \mathscr{F} содержит ненулевой максимальный идеал I. По определению операции в \mathscr{F} (см. (1)) имеем равенство $[1,a,b]=\{a,b\}$ для любых $a,b\in\mathscr{F}$. Тогда $\{I,\mathscr{F}\}\subseteq I$. Волее того, $[I\cdot\mathscr{F},\mathscr{F},\mathscr{F}]\subseteq I\cdot\mathscr{F}$ откуда $I\cdot\mathscr{F}$ — идеал в \mathscr{F} и $I\subseteq I\cdot\mathscr{F}$ (так как $1\in\mathscr{F}$). Из максимальности I получаем либо $I=I\cdot\mathscr{F}$, т. е. I — ненулевой идеал в алгебре Пуассона — Фаркаса \mathscr{A} , либо $I\cdot\mathscr{F}=\mathscr{F}$. По условию \mathscr{A} проста. Следовательно, $I\cdot\mathscr{F}=\mathscr{F}$. В случае поля характеристики 0 отсюда следует, что существует ненулевой $a\in A\cap I$. Действительно, $I\cdot\mathscr{F}=\mathscr{F}$ влечет существование $u=\sum_{i=0}^n a_iz^i\in I$ такого, что $a_i\in A, a_0\neq 0$. Если n>0, то

 $\{u,b\}\in I$ для любого $b\in A$, откуда $\sum\limits_{i=1}^n ia_id(b)z^{i-1}\in I$. Осталось заметить, что $b\in A$ можно выбрать так, что $a_nd(b)\neq 0$. Действительно, если $a_nd(A)=0$, то $a_nAd(A)=0$ и $a_nA=0$, что невозможно.

В случае поля ненулевой характеристики также получаем существование ненулевого $a\in A\cap I$. Действительно, если $a\not\in A$, то $a=\sum\limits_{i=0}^{p-1}a_iz^i,\,a_i\in A,\,a_k\neq 0$ при некотором $1\leq k\leq p-1$ и $a_s=0$ для любого s>k. Тогда $\{a,b\}\in I$ для любого $b\in A$ и $\{a,b\}=\sum\limits_{i=1}^k ia_id(b)z^{i-1}$. Так как Ad(A)=A, существует $b\in A$ такой, что $a_kd(b)\neq 0$. Таким образом, можно считать, что в $A\cap I$ лежит ненулевой элемент.

Далее, заметим, что если $a\in A\cap I$ ненулевой, то (5) верно и, полагая в (5) $n=1,\ k=0,$ получаем $-d(a)bc+abd(c)\in I.$ С другой стороны, взяв $n=0,\ k=1,$ приходим к включению $d(a)bc-ad(b)c\in I,$ откуда $a(bd(c)-d(b)c)\in I$ для любых $b,c\in A.$ Применяя лемму 1, имеем $aA\subseteq I.$

Полагая в (5) $b=c=1,\,k=1,\,n=0,$ получаем $d(a)\in I,$ откуда $d^k(a)\in I$ и $d^k(a)A\subseteq I$ для любого $k\in\mathbb{N}.$ Тогда $J:=\sum_{k=0}^\infty d^k(a)A$ — ненулевой d-идеал в A, откуда J=A и $A\subseteq I.$ В этом случае $1\in I$ и, как показано выше, $I=\mathscr{F}.$

Осталось показать, что в случае поля характеристики 3 подпространство $I:=A\oplus Az\oplus A^dz^2$ является идеалом в $\mathscr{F}.$

Достаточно заметить, что $I=\mathscr{F}^{(1)}:=[\mathscr{F},\mathscr{F},\mathscr{F}]$. Действительно, получить $az^2\in\mathscr{F}^{(1)}$ можно только из произведений $[az^s,bz^n,cz^k]$, где s+n+k=3. Без ограничений общности можно считать, что имеем только два варианта: $(s,n,k)\in\{(0,1,2),(1,1,1)\}$. В первом случае по (5) получаем $[a,bz,cz^2]=d(abc)z^2\in I$. Во втором случае

$$[az,bz,cz]=(ad(b)-bd(a))c-(ad(c)-cd(a))b-(cd(b)-bd(c))a=0,$$

что и доказывает теорему.

Следствие 1. Пусть $A_F[z;d]$ — алгебра Пуассона — Фаркаса c 1, где A=F[x,y] — алгебра (усеченных) многочленов над полем F характеристики не 2,3, а d — простое дифференцирование алгебры A. Тогда $\mathscr{F}:=(\mathscr{A}_E;[\,,\,])$ является простой алгеброй Филиппова.

§ 4. О дифференциальной простоте алгебры усеченных многочленов

В связи с результатами § 3 для построения простых алгебр Филиппова характеристики p>0 нас интересуют примеры дифференциально простых ассоциативных коммутативных алгебр с единицей характеристики p>0. Заметим, что получаемые алгебры Филиппова тесно связаны с простыми тернарными алгебрами Филиппова $A(h,t), E(h,t,\mathcal{J}), A_4$, которые получаются как подалгебры и фактор-алгебры алгебры $\bar{A}(h,t)$ (см. [13,14,1]). Отметим также, что классификация простых конечномерных n-лиевых алгебр (Филиппова) над алгебраически замкнутым полем характеристики 0 получена в [15], и известно, что над такими полями конечномерных простых нетривиальных супералгебр Филиппова не существует [16].

Пусть $A_p = F[x,y]$ — алгебра усеченных многочленов над произвольным полем F характеристики p. Известно, что $\mathbb{C}[x,y]$ d-простая для некоторых дифференцирований d определенных видов (см. § 2). В частности, это верно при $d=\partial_x+\partial_y+xy\partial_y$. Для A_p в самом общем случае это утверждение неверно, так как оно неверно при p=2: идеал, порожденный элементами x+y и xy, является d-инвариантным идеалом (напомним, что $d=\partial_x+\partial_y+xy\partial_y$). Однако следующая лемма позволяет сформулировать гипотезу, что это так при p>2.

Лемма 2. Алгебра
$$A_p$$
 d-простая при $2 , и $d = \partial_x + \partial_y + xy\partial_y$.$

Доказательство (для всех p из условия леммы) однообразно и состоит в следующем. Предполагаем, что A_p содержит ненулевой d-инвариантный идеал I. Тогда, выбирая в I ненулевой элемент a и домножая его на подходящий моном x^ky^m , $0 \le k$, $m \le p-1$, можно считать, что $a = x^{p-1}y^{p-1}$. Далее, последовательно применяя d к a, получаем, что $x^{p-1}y^i \in I$ при всех $i = p-1, \ldots, 0$.

В частности, $x^{p-1} \in I$, откуда легко видно (опять же после применения d), что $1 \in I$, т. е. $I = A_p$. Приводить все вычисления в данном доказательстве автор не считает разумным. Поэтому приведем полное доказательство для случаев p=3,5, а также покажем переход от $x^6y^6 \in I$ к включению $x^6y^5 \in I$ при p=7. Итак, пусть p=3 и $a=x^2y^2$. Обозначим $d^k(a)$ через $a^{(k)},\ k\in\mathbb{N},\ a$ сумму $\sum_{k=1}^k x^{k-i}y^i$ — через s_k . Тогда

$$a^{(1)}=2s_3,\quad a^{(2)}=2s_2+x^2y^2,\quad a^{(3)}=x^2y:=b,$$
 $b^{(1)}=2xy+x^2,\quad b^{(2)}=2y+x+2x^2y,\quad b^{(3)}=2x^2.$

B случае p=5 имеем

$$a^{(1)} = -s_7; \ a^{(2)} = 2s_6 + a; \quad a^{(3)} = -s_5 + 2x^3y^4;$$

$$a^{(4)} = -s_4 - 2x^4y^2 + 2x^2y^4 - 2a; \quad a^{(5)} = 2x^4y^3 := b;$$

$$b^{(1)} = -x^3y^3 - 2x^4y^2; \quad b^{(2)} = 2x^2y^3 - x^3y^2 + x^4y + 2x^4y^3;$$

$$b^{(3)} = x^4 + 2x^3y + 3x^2y^2 - xy^3 - x^4y^2 - x^3y^3;$$

$$b^{(4)} = x^3 + 2x^2y + 3xy^2 - x^3y^2 - x^2y^3 + 2x^4y^3; \quad b^{(5)} = -x^4y^2 := -c;$$

$$c^{(1)} = 2x^4y - x^3y^2; \quad c^{(2)} = 2x^4 + x^3y + 2x^2y^2 - 2x^4y^2;$$

$$c^{(3)} = -x^3 + 2x^2y - xy^2 + 2x^4y + x^3y^2;$$

$$c^{(4)} = -x^2 + 2xy - y^2 + 2x^4 + 2x^3y + x^2y^2 + 2x^4y^2; \quad c^{(5)} = x^4y := d;$$

$$d^{(1)} = -x^3y + x^4; \quad d^{(2)} = -2x^3 + 2x^2y - x^4y; \quad d^{(3)} = x^2y - xy - x^4 + 3x^3y;$$

$$d^{(4)} = x - y - x^3 - 2x^2y + 3x^4y; \quad d^{(5)} = 3x^4.$$

Покажем переход от $a = x^6 y^6 \in I$ к включению $x^6 y^5 \in I$ при p = 7:

$$a^{(1)} = -s_{11}; \quad a^{(2)} = 2s_{10} + a; \quad a^{(3)} = s_9 - 3x^5y^5 + 2x^6y^5;$$
 $a^{(4)} = 3s_8 - 2x^4y^6 - x^5y^5 + 3x^6y^6; \quad a^{(5)} = -s_7 + 3x^3y^6 - 2x^4y^5 + 2x^6y^3 - s_{11};$ $a^{(6)} = -s_6 - 3x^6y^2 + 2x^5y^3 - 2x^3y^5 + 2x^6y^4 + a; \quad a^{(7)} = x^6y^5.$

Далее полагаем $b:=x^6y^5$ и аналогично поступаем с b. В итоге получаем $x^6\in I$ и $I=A_7.$

В случае p=11 доказательство проводится аналогично, только более громоздко, поэтому не будем его приводить. \square

Замечание. Вычисляя $d^k(a)$ $(k \in \mathbb{N})$, можно сокращать слагаемые, используя полученные ранее элементы из I. Но в этом случае придется искать соотношения на полученные элементы, чтобы получить включения $x^{p-1}y^i \in I$. Прямые же вычисления (без сокращений по модулю I) дают эти включения автоматически.

Если лемма 2 показывает хорошее поведение дифференциальной простоты в характеристике p>0, то следующая лемма утверждает, что в случае характеристики p>0 на самом деле ситуация значительно отличается от нулевой характеристики.

Лемма 3. Алгебра A_p d-простая при p=5 и $d=\partial_x+(y^s+\alpha x)\partial_y$, где s=2, $\alpha\in F\setminus\{0\}$. При этом A_p содержит собственный d-инвариантный идеал, если s=4 или p=3, s=2.

Доказательство. Рассмотрим дифференцирование Новицкого $d=\partial_x+(y^s+\alpha x)\partial_y$, где $s\geq 2$ и α — ненулевой элемент поля F характеристики p>0. В этом случае F[x,y] не будет дифференциально простой уже при p=3 (в этом случае s=2): идеал $I=\mathrm{id}\langle f\rangle_F$, порожденный элементом $f:=y^2+2\alpha x^2y$, является собственным d-инвариантным идеалом в F[x,y], так как $d(f)=x^2f$. При этом I имеет нулевое ассоциативное умножение, т. е. определяемая им алгебра Филиппова абелева.

В случае p=5, s=4 рассмотрим идеал $I=\mathrm{id}\langle f,g\rangle_F$, где $f=y^3+3\alpha x^2y^2,$ $g=y^2-\alpha x^2y-\alpha^2x^4.$ Легко видеть, что $d(f)=-\alpha xg,\ d(g)=-2y^2f,$ что доказывает d-инвариантность идеала I.

Рассмотрим случай p=5, s=2. Пусть I-d-инвариантный идеал в F[x,y]. Тогда, как и в лемме 2,

$$a:=x^4y^4\in I,\quad d(a)=-x^3y^4\in I,$$

$$a^{(2)}=-3x^2y^4+\alpha x^4y^3\in I,\quad a^{(3)}\equiv xy^4+\alpha x^3y^3\in I$$

(здесь и ниже \equiv означает сравнимость по модулю I). Далее, $xa^{(3)}+a^{(2)}$ дает $x^2y^4,\ x^4y^3\in I$. Действуя d на x^2y^4 и прибавляя $a^{(3)},$ получаем $xy^4,\ x^3y^3\in I$. Теперь

$$d(xy^4) = b := y^4 - \alpha x^2 y^3, \quad d(x^3 y^3) \equiv x^2 y^3 + \alpha x^4 y^2.$$

Последовательно действуя d на $y^4-\alpha x^2y^3$ и прибавляя 2b, выводим, что x^4y^2 , x^2y^3 , $y^4\in I$, откуда xy^3 , $x^3y^2\in I$. Далее, $d(xy^3)\equiv y^3+3\alpha x^2y^2$, и, последовательно действуя d, находим, что $c:=y^2-\alpha x^2y-\alpha^2x^4$, $-y^3+3\alpha x^2y^2\in I$, откуда $y^3\in I$ и $x^2y^2\in I$. Действуя на y^3 , приходим к xy^2 , $x^3y\in I$; $d(x^3y)\equiv e:=3x^2y+\alpha x^4$, $2\alpha e+c=f:=y^2+\alpha^2x^4$, и, последовательно действуя на f, получаем $xy\in I$, $x^3\in I$, откуда $1\in I$ и $I=A_p$. \square

В заключение отметим открытый вопрос об условиях изоморфизма получаемых тернарных алгебр Филиппова при выборе различных дифференцирований d для алгебры $A_F[z;d]$ из следствия 1.

ЛИТЕРАТУРА

- Пожидаев А. П. Супералгебры Пуассона и Филиппова // Сиб. мат. журн. 2015. Т. 56, № 3. С. 637–649.
- 2. Farkas D. R. Poisson polynomial identities // Commun. Algebra. 1998. V. 26, N 2. P. 401-416.
- 3. Кантор И. Л. Йорданова и лиева супералгебры, определяемые алгеброй Пуассона // Труды второй сибирской школы «Алгебра и анализ». Томск, 1990. С. 89–125.
- Farkas D. R. Characterizations of Poisson algebras // Commun. Algebra. 1995. V. 23, N 2. P. 4669–4686.
- 5. Coutinho S. C. On the differential simplicity of polynomial rings $/\!/$ J. Algebra. 2003. V. 264. P. 442–468.
- Jordan D. A. Ore extensions and Poisson algebras // Glasgow Math. J. 2014. V. 56, N 2. P. 355–368.
- Nowicki A. An example of a simple derivation in two variables // Colloq. Math. 2008. V. 113. P. 25–31.
- Jordan D. A. Differentially simple rings with no invertible derivatives // Quart. J. Math. Oxford. 1981. V. 32. P. 417–424.
- Coutinho S. C. d-Simple rings and simple D-modules // Math. Proc. Camb. Phil. Soc. 1999.
 V. 125. P. 405–415.

- 10. Coutinho S. C. On the classification of simple quadratic derivations over the affine plane // J. Algebra. 2008. V. 319. P. 4249–4274.
- Maciejewski A., Moulin Ollagnier J., Nowicki A. Simple quadratic derivations in two variables // Commun. Algebra. 2001. V. 29. P. 5095–5113.
- 12. Havran V. S. Simple derivations of higher degree in two variables // Ukrainian J. Math. 2009. V. 61. P. 682–686.
- 13. Пожидаев А. П. О простых n-лиевых алгебрах // Алгебра и логика. 1999. Т. 38, № 3. С. 334—353.
- 14. Pojidaev A. P. Enveloping algebras of Filippov algebras // Commun. Algebra. 2003. V. 31, N 2. P. 883–900.
- 15. Ling W. On the structure of n-Lie algebras // Thes. Siegen Univ.-GHS-Siegen iv.61 p. 1993.
- Cantarini N., Kac V. G. Classification of simple linearly compact n-Lie superalgebras // Commun. Math. Phys. 2010. V. 298. P. 833–853.

Статья поступила 27 апреля 2017 г.

Пожидаев Александр Петрович Институт математики им. С. Л. Соболева СО РАН, пр. Академика Коптюга, 4, Новосибирск 630090; Новосибирский гос. университет, ул. Пирогова, 2, Новосибирск 630090 арр@math.nsc.ru