ПРОСТЫЕ 5-МЕРНЫЕ ПРАВОАЛЬТЕРНАТИВНЫЕ СУПЕРАЛГЕБРЫ С ТРИВИАЛЬНОЙ ЧЕТНОЙ ЧАСТЬЮ

С. В. Пчелинцев, О. В. Шашков

Аннотация. Изучаются простые правоальтернативные супералгебры, четные части которых тривиальны, т. е. имеют нулевое умножение. Простую правоальтернативную супералгебру с тривиальной четной частью назовем сингулярной. Первый пример сингулярной супералгебры приведен в [1]. Наименьшая размерность сингулярной супералгебры равна 5. Доказано, что сингулярные 5-мерные супералгебры изоморфны тогда и только тогда, когда эквивалентны подходящие квадратичные формы. В частности, над алгебраически замкнутым полем имеется единственная с точностью до изоморфизма сингулярная 5-мерная супералгебра.

 $DOI\,10.17377/smzh.2017.58.617$

Ключевые слова: простая супералгебра, сингулярная супералгебра, правоальтернативная супералгебра.

Введение

Под супералгеброй $A=A_0\oplus A_1$ понимается ${\bf Z}_2$ -градуированная алгебра, в которой $A_0\neq 0,\ A_1\neq 0$ и справедливы включения $A_i\cdot A_j\subseteq A_{i+j\pmod 2}.$

Супералгебра называется npocmoй, если она не имеет собственных градуированных идеалов. Заметим, что $A_1^2 \neq 0$, иначе A_1 является собственным идеалом в $A = A_0 \oplus A_1$.

Супералгебра $A=A_0\oplus A_1$ правоальтернативная тогда и только тогда, когда для однородных элементов $x,y,z\in A_0\cup A_1$ выполнено тождество

$$(x,y,z) + (-1)^{|y|\cdot|z|}(x,z,y) = 0, (1)$$

где (x,y,z)=(xy)z-x(yz) — ассоциатор элементов x,y,z,|x| — четность однородного элемента $x\in A_0\cup A_1$, т. е. |x|=i, если $x\in A_i$ (i=0,1).

В [1] построен пример 5-мерной простой правоальтернативной супералгебры $B_{2|3}$, четная часть которой — двумерная алгебра с нулевым умножением, а нечетная часть является неприводимым бимодулем над четной частью. Супералгебра $B_{2|3}$ имеет своим прототипом правонильпотентную, но не нильпотентную алгебру Дорофеева [2].

Напомним, что $B_{2|3} = A \oplus M$, где $A = \operatorname{span}(a_1, a_2)$, $M = \operatorname{span}(m_1, m_2, m_3)$ — линейные пространства, порожденные указанными элементами, и ненулевыми являются только следующие произведения базисных элементов:

$$m_1a_1 = -a_1m_1 = m_3a_2 = -a_2m_3 = m_2, \quad m_1m_2 = a_1, \ a_1m_2 = m_3, \quad a_2m_2 = -m_1, \quad m_3m_2 = a_2.$$

Заметим, что A — четная часть, а M — нечетная часть супералгебры $B_{2|3}$. Пусть R_a, L_a — операторы умножения на элемент $a, T \in \{R, L\}, T^M(A)$ — подалгебра в алгебре $\operatorname{End}_{\Phi}(M)$, порожденная множеством $\{R_i, L_i \mid i=1,2, T_i=T_{a_i}\}$. Легко понять, что $T^M(A) \simeq \operatorname{M}_3(\Phi)$, в частности, M — неприводимый A-бимодуль.

В [3] доказано, что для супералгебр с единицей не существует примеров, аналогичных супералгебре $B_{2|3}$. Более точно, в [3] доказана

Теорема. Пусть $B=A\oplus M$ — простая конечномерная правоальтернативная супералгебра над полем Φ характеристики 0. Если ее четная часть A унитарна, т. е. $A=\Phi\cdot 1\oplus \mathrm{Nil}(A)$, и ее единица 1 является единицей в супералгебре B, то супералгебра B ассоциативна и $\mathrm{Nil}(A)=0$.

В [4] классифицированы простые конечномерные правоальтернативные унитальные супералгебры абелева типа над полем характеристики нуль. Недавно авторами было анонсировано описание простых конечномерных правоальтернативных унитальных супералгебр с ассоциативно-коммутативной четной частью над полем характеристики нуль [5].

В данной работе, состоящей из четырех параграфов, рассматриваются только простые правоальтернативные супералгебры $B=A\oplus M$ над полем Φ характеристики, отличной от 2. Супералгебру $B=A\oplus M$ назовем $\mathit{сингулярной}$, если ее четная часть A имеет нулевое умножение.

В § 1 даны предварительные сведения. В § 2 доказано, что не существует супералгебр $B=A\oplus M$, в которых $A^2=0$ и выполнено одно из ограничений: $d_A=1,\,d_M\leq 2$, где $d_A=\dim A,\,d_M=\dim M.$ Значит, наименьшая размерность сингулярной супералгебры равна 5.

Рассмотрим супералгебру $B_{2|3}(\varphi,\xi,\psi)=A\oplus M$, в которой a_1,a_2 — базис $A,\,m_1,m_2,m_3$ — базис M и ненулевыми являются следующие произведения:

$$a_1m_1=m_2$$
, $m_1a_1=-m_2$, $a_1m_2=m_3$, $a_2m_2=m_1$,

$$a_2m_3=-m_2,\quad m_3a_2=m_2,\quad m_1m_2=arphi a_1+\xi a_2,\quad m_3m_2=-\xi a_1+\psi a_2.$$

Легко видеть, что супералгебра $B_{2|3}(\varphi,\xi,\psi)$ простая тогда и только тогда, когда $\xi^2+\varphi\psi\neq 0$. Кроме того, $B_{2|3}(-1,0,1)=B_{2|3}$.

В § 3 доказана

Теорема 1. Всякая простая правоальтернативная сингулярная супералгебра размерности не выше 5 изоморфна супералгебре вида $B_{2|3}(\varphi, \xi, \psi)$.

Схема доказательства теоремы 1 такова. В силу известной леммы Алберта для любого $a\in A$ оператор L_a действует на M нильпотентно. Поскольку $d_M=3$, то $L_a^3=0$. Затем доказывается, что существует $a\in A$ такой, что $L_a^2\neq 0$. Значит, в M существует жорданов базис x_1,x_2,x_3 оператора L_a , т. е. $ax_1=x_2,\ ax_2=x_3,\ ax_3=0$. Далее, доказывается, что оператор R_a в этом базисе действует по правилу

$$x_1a = -x_2 + \gamma x_3, \quad x_2a = x_3, \quad x_3a = 0.$$

Переходя к новому базису, можно добиться выполнения следующих свойств:

$$ax_1 = x_2$$
, $ax_2 = x_3$, $ax_3 = 0$, $x_1a = -x_2$, $x_2a = x_3a = 0$.

Далее, можно подобрать элемент $b \in A$, не пропорциональный a, для которого операторы L_b и R_b вместе с операторами L_a и R_a имеют наиболее простой

вид в подходящем базисе x_1, x_2, x_3 :

$$ax_1 = x_2$$
, $ax_2 = x_3$, $ax_3 = 0$, $x_1a = -x_2$, $x_2a = 0$, $x_3a = 0$, $bx_1 = 0$, $bx_2 = x_1$, $bx_3 = -x_2$, $x_1b = 0$, $x_2b = 0$, $x_3b = x_2$.

После того как восстановлены умножения нечетных элементов на четные, удается вычислить произведения нечетных элементов. Оказывается, что ненулевыми являются только произведения x_1x_2 и x_3x_2 . Тем самым возникают супералгебры вида $B_{2|3}(\varphi,\xi,\psi)$.

Пока остается неизвестным ответ на вопрос: существуют ли простые правоальтернативные сингулярные супералгебры размерности, большей 5?

В § 4 доказан следующий критерий.

Теорема 2. Простые супералгебры $B_{2|3}(\varphi,\xi,\psi)$ и $B_{2|3}(\varphi',\xi',\psi')$ изоморфны тогда и только тогда, когда эквивалентны квадратичные формы, заданные матрицами $\begin{pmatrix} \varphi & \xi \\ \xi & -\psi \end{pmatrix}$ и $\begin{pmatrix} \varphi' & \xi' \\ \xi' & -\psi' \end{pmatrix}$.

Отсюда вытекает, что над полем рациональных чисел \mathbb{Q} простые супералгебры вида $B_{2|3}(p,0,1)$, где p — простое целое число, попарно не изоморфны, а также что всякая простая правоальтернативная сингулярная супералгебра размерности не выше 5 над алгебраически замкнутым полем изоморфна супералгебре $B_{2|3}$.

Отметим также, что при изучении первичных альтернативных алгебр, а также простых правоальтернативных супералгебр абелева типа возникают квадратичные формы, определяющие их структуру (см. [2, 4, 6, 7]).

§ 1. Обозначения, тождества и замечания

1.1. Обозначения. Всюду ниже $B = A \oplus M$ — простая сингулярная правоальтернативная супералгебра над полем Φ . Положим $d_A = \dim A$, $d_M = \dim M$. Если не оговорено противное, то указанные латинские буквы, возможно, с индексами, обозначают однородные элементы:

$$a, b, c \in A, \quad x, y \in M, \quad p, q, r \in A \cup M.$$

Как обычно, если $p,q,r \in B$, то [p,q] = pq - qp — коммутатор элементов p,q; $p \circ q = pq + qp$ — йорданово произведение и (p,q,r) = (pq)r - p(qr) — ассоциатор.

Если одно из двух множеств $X,Y\subseteq B$ является подпространством, то положим

$$XY = igg\{ \sum_{i=1}^n x_i y_i \mid x_i \in X, \; y_i \in Y, \; n \in \mathbb{N} igg\}, \quad X st Y = XY + YX.$$

1.2. Основные тождества. Напомним основные тождества, выполняющиеся в правоальтернативных супералгебрах. Тождество (1) равносильно следующим двум условным тождествам:

$$(pa)q + (pq)a = p(a \circ q), \tag{2}$$

$$(px)y - (py)x = p[x, y]. \tag{3}$$

Кроме того, в правоальтернативной алгебре справедливо правое тождество Муфанг:

$$(p, a, bq) + (p, b, aq) = (p, a, q)b + (p, b, q)a,$$
 (4)

которое выполнено и в правоальтернативной супералгебре для четных элементов a, b и любых элементов p, q.

1.3. Предварительные замечания. Нам потребуются следующие две леммы.

Лемма 1. Справедливы свойства: (a) $M^2 = A$, (б) M = A * M.

ДОКАЗАТЕЛЬСТВО. (а) Допустим, что $M^2 \neq A$. Поскольку $M^2 \subseteq A$, то $M^2 \triangleleft A$ и $M^2 + M \triangleleft B$, откуда $M^2 = 0$, значит, $M \triangleleft B$; противоречие.

(б) Достаточно заметить, что $A + A * M \triangleleft B$. Лемма доказана.

Как обычно, через R_a и L_a обозначаются операторы правого и левого умножений на элемент a соответственно, т. е. $xR_a=xa,\,xL_a=ax.$

Хорошо известна

Лемма Алберта [6]. В правоальтернативной алгебре элемент a нильпотентен тогда и только тогда, когда нильпотентен оператор L_a .

Точно так же, но значительно проще, доказывается

Лемма 2. Если $a^2=0,\ {
m ro}\ T_1\dots T_4=0,\ {
m rge}\ T_i\in\{L,R\}\ (i=\overline{1,4}),\ R=R_a,$ $L=L_a.$

\S 2. Оценки снизу на размерности d_A и d_M

2.1. Ни один из случаев $d_A=1$ или $d_M=1$ невозможен. Пусть, от противного, $d_A=1$; тогда $A=\Phi a$ и $a^2=0$. Ввиду лемм 1(б) и 2 имеют место равенства $M=A*M=MT^M(A)=\cdots=M(T^M(A))^4=0$.

Покажем, что $d_M \geq 2$. Если $d_M = 1$, то $M = \Phi x$ и в силу леммы 1(a) верно $A = M^2 = \Phi a$, где $a = x^2$. Следовательно, $d_A = 1$, что невозможно ввиду предыдущего.

2.2. Случай $(\forall a \in A)L_a^2 = 0$ невозможен. Допустим, что $L_a^2 = 0$ для любого $a \in A$; тогда $(\forall a,b \in A)L_a \circ L_b = 0$. Поскольку всякое операторное слово в правоальтернативной алгебре S ввиду тождества (2) является линейной комбинацией элементов вида

$$L_{a_1} \dots L_{a_m} R_{b_1} \dots R_{b_n}$$
, где $a_1, \dots, a_m, b_1, \dots, b_n \in S$,

с сохранением состава, то алгебра умножений $T^M(A)$ нильпотентна индекса $\leq 2d_A+1$. Тогда по лемме 1(б) справедливы равенства

$$M = A * M = MT^{M}(A) = M(T^{M}(A))^{2} = \dots = M(T^{M}(A))^{2d_{A}+1} = 0,$$

что невозможно.

2.3. Случай $d_M=2$ невозможен. Если $d_M=2$, то $(\forall a\in A)$ $L_a^2=0$, поскольку индекс нильпотентности линейного оператора, действующего на M, не превосходит размерности d_M , что невозможно ввиду п. 2.2.

Из пп. 2.1 и 2.2 вытекает следующее

Предложение 1. Справедливы неравенства $d_A \ge 2$, $d_M \ge 3$. В частности, размерность сингулярной супералгебры не менее 5.

§ 3. Доказательство теоремы 1

Далее предполагается, что супералгебра $B=A\oplus M$ сингулярна и $d_A=2,$ $d_M=3.$

3.1. Восстановление оператора R_a по L_a , если $L_a^2 \neq 0$. В силу п. 2.2 существует $a \in A$ такой, что $L_a^2 \neq 0$; тогда ввиду нильпотентности оператора L_a (лемма 2) получаем $L_a^3 = 0$, значит, для оператора L_a в M существует жорданов базис x_1, x_2, x_3 , т. е.

$$ax_1 = x_2, \quad ax_2 = x_3, \quad ax_3 = 0.$$
 (5)

Лемма 3. Если выполнены равенства (5), то для подходящих скаляров $\gamma, \delta \in \Phi$ справедливы равенства

$$x_1 a = (\delta - 1)x_2 + \gamma x_3, \quad x_2 a = \delta x_3, \quad x_3 a = 0.$$
 (6)

Более того, $\delta=0$ или $\delta=1$.

Доказательство. Записав $x_3a=\lambda_1x_1+\lambda_2x_2+\lambda_3x_3$ и умножив обе части этого равенства слева на a, в силу (5) получаем $a(x_3a)=\lambda_1x_2+\lambda_2x_3$. Покажем, что $a(x_3a)=0$. В самом деле, $a(x_3a)=a(x_3\circ a)=(ax_3)a=0$. Значит, $\lambda_1=\lambda_2=0$ и $x_3a=\lambda_3x_3$. Тогда $\lambda_3=0$, ибо нильпотентный оператор R_a имеет только нулевые собственные значения. Следовательно, $x_3a=0$.

Записав $x_2a=\lambda_1x_1+\lambda_2x_2+\delta x_3$ и умножив обе части этого равенства слева на a, получаем $a(x_2a)=\lambda_1x_2+\lambda_2x_3$. Поскольку

$$a(x_2a) = -a(ax_2) + a(x_2 \circ a) = a(x_2 \circ a) = (ax_2)a = x_3a = 0,$$

то $\lambda_1 = \lambda_2 = 0$ и $x_2 a = \delta x_3$.

Аналогично, считая $x_1a=\lambda_1x_1+\lambda_2x_2+\gamma x_3$, имеем $a(x_1a)=\lambda_1x_2+\lambda_2x_3$. Так как

$$a(x_1a) = -a(ax_1) + a(x_1 \circ a) = -x_3 + (ax_1)a = -x_3 + x_2a = (\delta - 1)x_3$$

то $\lambda_1=0,\ \lambda_2=\delta-1,$ следовательно, $x_1a=(\delta-1)x_2+\gamma x_3.$ Это доказывает равенства (6).

Умножая обе части первого из равенств (6) справа на a и учитывая остальные два равенства, получаем $0=(\delta-1)x_2a+\gamma x_3a=(\delta-1)\delta x_3$, откуда $(\delta-1)\delta=0$ и δ совпадает либо с нулем, либо с единицей. Лемма доказана.

3.2. Случай $\delta = 1$ в лемме 3 невозможен.

Лемма 4. Следующая система равенств:

$$ax_1 = x_2$$
, $ax_2 = x_3$, $ax_3 = 0$, $x_1a = \gamma x_3$, $x_2a = x_3$, $x_3a = 0$, (7)

несовместна.

Доказательство. Допустим, что b — произвольный элемент из A, не пропорциональный a. Дальнейшие рассуждения представим в виде последовательности пунктов.

 1^0 . Докажем, что $(bx_1)a=bx_2$, $(bx_2)a=bx_3=0$. Заметим, что ввиду (7) и (2) верно

$$2bx_3 = b(a \circ x_2) = (bx_2)a, (8)$$

значит,

$$(bx_3)a = 0. (9)$$

Кроме того, из (7) следует $x_1 \circ a = x_2 + \gamma x_3$. Стало быть, ввиду (2) имеем

$$(bx_1)a = b(x_1 \circ a) = bx_2 + \gamma bx_3. \tag{10}$$

После умножения справа на a обеих частей этого равенства с учетом (9) и (8) получаем

$$0 = (bx_2)a + \gamma(bx_3)a = (bx_2)a = 2bx_3,$$

значит, $bx_3=0$, откуда в силу (10) вытекает $(bx_1)a=bx_2$, что и требовалось в п. 1^0 .

 2^0 . Докажем, что $bx_1=\mu_2x_2+\mu_3x_3,\ bx_2=\mu_2x_3,\ bx_3=0$ для подходящих $\mu_2,\mu_3\in\Phi$. Рассмотрим разложение $bx_1=\mu_1x_1+\mu_2x_2+\mu_3x_3$ и докажем, что $\mu_1=0$. Поскольку в силу п. 1^0 верно $(bx_1)a=bx_2$ и $(bx_1)a=\mu_1\gamma x_3+\mu_2x_3$ ввиду (7), имеем

$$bx_2 = (\mu_1 \gamma + \mu_2)x_3. \tag{11}$$

Положим $M'=\mathrm{span}(x_2,x_3)$. Тогда $bM'\subseteq M'$ в силу п. 1^0 и (11). Кроме того, так как $bx_1\equiv \mu_1x_1\pmod{M'}$, то $\mu_1=0$ (нильпотентный оператор L_b имеет только нулевые собственные значения) и $bx_1=\mu_2x_2+\mu_3x_3$. Отсюда, из п. 1^0 и (11) получаем требуемое в п. 2^0 .

 3^{0} . Докажем, что $x_{3}*A=0$. В силу п. 1^{0} осталось понять, что $x_{3}b=0$.

Пусть $x_3b=\lambda_1x_1+\lambda_2x_2+\lambda_3x_3$. Тогда $0=(x_3b)a=(\gamma\lambda_1+\lambda_2)x_3$ по (7), откуда $\lambda_2=-\gamma\lambda_1$ и $x_3b=\lambda_1v+\lambda_3x_3$, где $v=x_1-\gamma x_2$. Далее, ввиду (2), (7) и п. 1^0

$$a(x_3b) = a(x_3 \circ b) = (ax_3)b + (ab)x_3 = 0,$$

следовательно, $0=\lambda_1 av=\lambda_1 a(x_1-\gamma x_2)=\lambda_1(x_2-\gamma x_3)$ и $\lambda_1=0,\ \lambda_2=0.$ Тогда $x_3b=\lambda_3 x_3.$ Отсюда вытекает $\lambda_3=0$ и $x_3b=0.$

 4^{0} . Докажем, что по модулю Φx_{3} имеет место система сравнений

$$bx_1 \equiv \mu_2 x_2$$
, $bx_2 \equiv 0$, $bx_3 = 0$, $x_1 b \equiv \gamma \rho_1 v$, $x_2 b \equiv \rho_1 v$, $x_3 b = 0$,

где $v = x_1 - \gamma x_2$.

Пусть $x_2b=\rho_1x_1+\rho_2x_2+\rho_3x_3$. Тогда $(x_2b)a=-(x_2a)b=-x_3b=0$ и $0=\rho_1x_1a+\rho_2x_2a+\rho_3x_3=\rho_1\gamma x_3+\rho_2x_3$, значит, $\rho_2=-\rho_1\gamma$ и $x_2b=\rho_1v+\rho_3x_3$. Пусть $x_1b=\zeta_1x_1+\zeta_2x_2+\zeta_3x_3$. Тогда $(x_1b)a=-(x_1a)b=-\gamma x_3b=0$ и $0=\zeta_1x_1a+\zeta_2x_2a=\zeta_1\gamma x_3+\zeta_2x_3$, откуда $\zeta_2=-\zeta_1\gamma$ и $x_1b=\zeta_1v+\zeta_3x_3$. Следовательно,

$$x_1b = \zeta_1 v + \zeta_3 x_3, \quad x_2b = \rho_1 v + \rho_3 x_3.$$
 (12)

Поскольку $vb=x_1b-\gamma x_2b\equiv \zeta_1v-\gamma\rho_1v=(\zeta_1-\gamma\rho_1)v\pmod{\Phi x_3},$ то $\zeta_1=\gamma\rho_1$ и $vb\equiv 0\pmod{\Phi x_3}.$ Отсюда ввиду (12) и пп. $2^0,\,3^0$ получаем требуемое в п. $4^0.\,5^0.$ Докажем, что $\gamma=0.$ Предположим, что $\gamma\neq 0.$

С одной стороны, $a(x_1 \circ b) = (ax_1)b = x_2b$, а с другой стороны, на основании п. 4^0

$$a(x_1 \circ b) = a(\mu_2 x_2 + \gamma \rho_1 v) = \mu_2 x_3 + \gamma \rho_1 (x_2 - \gamma x_3) \equiv \gamma \rho_1 x_2 \pmod{\Phi x_3}.$$

Значит, $\gamma \rho_1 = 0$, $\rho_1 = 0$ и $x_1 b \equiv 0$, $x_2 b \equiv 0$ ввиду п. 4^0 .

Итак, доказано, что $M*A\subseteq M'$, откуда в силу леммы 1 вытекает $M\subseteq M'$; противоречие. Значит, $\gamma=0$.

 6^{0} . В силу пп. $1^{0}-5^{0}$ справедливы равенства

$$ax_1 = x_2$$
, $ax_2 = x_3$, $ax_3 = 0$, $x_1a = 0$, $x_2a = x_3$, $x_3a = 0$, $bx_2 = \mu_2 x_3$, $bx_3 = x_3b = 0$, $x_1b = \xi_3 x_3$, $x_2b = \rho_1 x_1 + \rho_3 x_3$.

Учитывая эти равенства, имеем

$$(a,b,x_2) = -a(bx_2) = -a\mu_2x_3 = 0,$$

$$(a, x_2, b) = (ax_2)b - a(x_2b) = -a(x_2b) = -a\rho_1x_1 = -\rho_1x_2.$$

Отсюда в силу (2) $\rho_1 = 0$ и $M * A \subseteq M'$, что невозможно. Лемма доказана.

Из лемм 3 и 4 вытекает, что справедлива система равенств

$$ax_1 = x_2$$
, $ax_2 = x_3$, $ax_3 = 0$, $x_1a = -x_2 + \gamma x_3$, $x_2a = x_3a = 0$. (13)

3.3. Редукция к случаю $\gamma=0$ в системе (13). Введем новый базис в M:

$$y_1 = x_1 - \gamma x_2$$
, $y_2 = x_2 - \gamma x_3$, $y_3 = x_3$.

Имеем

$$ay_1 = ax_1 - \gamma ax_2 = y_2$$
, $ay_2 = ax_2 - \gamma ax_3 = x_3 = y_3$, $ay_3 = 0$, $y_1a = (x_1 - \gamma x_2)a = -x_2 + \gamma x_3 = -y_2$, $y_2a = (x_2 - \gamma x_3)a = 0$, $y_3a = 0$,

т. е.

$$ay_1 = y_2$$
, $ay_2 = y_3$, $ay_3 = 0$, $y_1a = -y_2$, $y_2a = y_3a = 0$,

значит, с точностью до обозначений получаются формулы (13) при $\gamma=0$. Итак, справедлива

Лемма 5. В пространстве M существует базис x_1 , x_2 , x_3 такой, что выполнена следующая система равенств:

$$ax_1 = x_2$$
, $ax_2 = x_3$, $ax_3 = 0$, $x_1a = -x_2$, $x_2a = x_3a = 0$. (14)

Попытаемся подобрать элемент $b \in A$, не пропорциональный a, для которого операторы L_b и R_b (действующие на M) имеют наиболее простой вид в подходящем жордановом базисе оператора L_a .

3.4. Действие оператора L_b в базисе x_1, x_2, x_3 . Положим

$$bx_1 = \mu_1x_1 + \mu_2x_2 + \mu_3x_3, \quad bx_2 = \xi_1x_1 + \xi_2x_2 + \xi_3x_3.$$

Поскольку $0 = b(x_1 \circ a) = (bx_1)a = \mu_1 x_1 a = -\mu_1 x_2$ в силу (14) и (2), то $\mu_1 = 0$. Учитывая, что $(bx_2)a = b(x_2 \circ a) = bx_3$, имеем $bx_3 = (bx_2)a = \xi_1 x_1 a = -\xi_1 x_2$. Значит, выполняется следующая система равенств:

$$ax_1 = x_2, \quad ax_2 = x_3, \quad ax_3 = 0, \quad x_1a = -x_2, \quad x_2a = x_3a = 0, bx_1 = \mu_2 x_2 + \mu_3 x_3, \quad bx_2 = \xi_1 x_1 + \xi_2 x_2 + \xi_3 x_3, \quad bx_3 = -\xi_1 x_2.$$
 (15)

3.5. Одно замечание об элементе bx_3 .

Лемма 6. Параметр ξ_1 , участвующий в системе (15), отличен от нуля.

Доказательство. Допустим, что $\xi_1=0$; тогда система (15) принимает вид

$$ax_1 = x_2$$
, $ax_2 = x_3$, $ax_3 = 0$, $x_1a = -x_2$, $x_2a = x_3a = 0$, $bx_1 = \mu_2 x_2 + \mu_3 x_3$, $bx_2 = \xi_2 x_2 + \xi_3 x_3$, $bx_3 = 0$.

Поскольку $bx_2=\xi_2x_2+\xi_3x_3, bx_3=0$ и оператор L_b нильпотентен, $\xi_2=0$ и $bx_2=\xi_3x_3$, т. е.

$$ax_1 = x_2$$
, $ax_2 = x_3$, $ax_3 = 0$, $x_1a = -x_2$, $x_2a = 0$, $x_3a = 0$, $bx_1 = \mu_2x_2 + \mu_3x_3$, $bx_2 = \xi_3x_3$, $bx_3 = 0$.

В силу правого тождества Муфанг (4)

$$(a, a, bx_1) + (a, b, ax_1) = (a, a, x_1)b + (a, b, x_1)a.$$

Вычислим последовательно все ассоциаторы, входящие в это равенство:

$$egin{aligned} (a,a,bx_1)&=-a(a(bx_1))=-a(a(\mu_2x_2+\mu_3x_3))=0,\ &(a,b,ax_1)=-a(bx_2)=-\xi_3ax_3=0,\ &(a,a,x_1)b=-x_3b,\quad (a,b,x_1)a=-(a(bx_1))a=0, \end{aligned}$$

значит, $x_3*A=0$. Рассмотрим представление $x_2b=\rho_1x_1+\rho_2x_2+\rho_3x_3$. Поскольку

$$(x_2b)a = -(x_2a)b = 0,$$

то

$$0 = \rho_1 x_1 a + \rho_2 x_2 a + \rho_3 x_3 a = -\rho_1 x_2,$$

т. е. $\rho_1 = 0$ и $x_2b = \rho_2x_2 + \rho_3x_3$.

Тем самым доказано, что пространство $M' = \mathrm{span}(x_2, x_3)$ инвариантно относительно действий T_b для любого $b \in A$, т. е. $M' * A \subseteq M'$, откуда следует $M * A \subseteq M'$ и в силу леммы $1 \ M \subseteq M'$; противоречие. Лемма доказана.

3.6. Подходящие замены базисов. Из последнего равенства системы (15) вытекает

$$b(bx_3) = -\xi_1(bx_2) = -\xi_1(\xi_1x_1 + \xi_2x_2 + \xi_3x_3) = -\xi_1^2x_1 - \xi_1\xi_2x_2 - \xi_1\xi_3x_3,$$

значит, с учетом равенства $L_b^3=0$ имеем

$$0 = -\xi_1^2 b x_1 - \xi_1 \xi_2 b x_2 - \xi_1 \xi_3 b x_3 = -\xi_1^2 (\mu_2 x_2 + \mu_3 x_3) - \xi_1 \xi_2 (\xi_1 x_1 + \xi_2 x_2 + \xi_3 x_3) - \xi_1 \xi_3 (-\xi_1 x_2) \equiv -\xi_1^2 \xi_2 x_1 \pmod{M'},$$

откуда $\xi_1^2\xi_2=0$. Отсюда по лемме 6 верно $\xi_2=0$ и справедливы соотношения

$$ax_1 = x_2$$
, $ax_2 = x_3$, $ax_3 = 0$, $x_1a = -x_2$, $x_2a = x_3a = 0$, $bx_1 = \mu_2 x_2 + \mu_3 x_3$, $bx_2 = \xi_1 x_1 + \xi_3 x_3$, $bx_3 = -\xi_1 x_2$, $\xi_1 \neq 0$.

Далее, в силу предыдущего верно равенство $b(bx_3) = -\xi_1^2 x_1 - \xi_1 \xi_3 x_3$. Умножая обе части этого равенства слева на b и сокращая на $(-\xi_1)$, получаем

$$0 = \xi_1 b x_1 + \xi_3 b x_3 = \xi_1 (\mu_2 x_2 + \mu_3 x_3) - \xi_3 \xi_1 x_2,$$

откуда имеем $\xi_3 = \mu_2, \, \mu_3 = 0, \, \text{т. e.}$

$$ax_1 = x_2$$
, $ax_2 = x_3$, $ax_3 = 0$, $x_1a = -x_2$, $x_2a = x_3a = 0$, $bx_1 = \mu_2 x_2$, $bx_2 = \xi_1 x_1 + \mu_2 x_3$, $bx_3 = -\xi_1 x_2$, $\xi_1 \neq 0$.

Заменяя элемент b элементом $\xi_1^{-1}b$ и считая $\mu=\xi_1^{-1}\mu_2$, получаем

$$ax_1 = x_2, \quad ax_2 = x_3, \quad ax_3 = 0, \quad x_1a = -x_2, \quad x_2a = x_3a = 0,$$

 $bx_1 = \mu x_2, \quad bx_2 = x_1 + \mu x_3, \quad bx_3 = -x_2.$ (16)

Сделаем замену базиса $y_1 = x_1 + \mu x_3$, $y_2 = x_2$, $y_3 = x_3$ (это жорданов базис для L_a); тогда в этих обозначениях формулы (16) принимают вид

$$ay_1 = y_2$$
, $ay_2 = y_3$, $ay_3 = 0$, $y_1a = -y_2$, $y_2a = y_3a = 0$, $by_1 = 0$, $by_2 = y_1$, $by_3 = -y_2$.

Следовательно, можно считать, что $A = \operatorname{span}(a, b), M = \operatorname{span}(x_1, x_2, x_3)$ и

$$ax_1 = x_2$$
, $ax_2 = x_3$, $ax_3 = 0$, $x_1a = -x_2$, $x_2a = x_3a = 0$, $bx_1 = 0$, $bx_2 = x_1$, $bx_3 = -x_2$.

3.7. Структура *A*-бимодуля *M*. Пусть $x_1b = \zeta_1x_1 + \zeta_2x_2 + \omega x_3$. Тогда

$$x_2b = (ax_1)b = a(x_1 \circ b) = a(x_1b) = \zeta_1x_2 + \zeta_2x_3$$

$$a(x_3) = a(x_2)b = a(x_2 \circ b) = a(x_2b + bx_2) = a(\zeta_1x_2 + \zeta_2x_3 + x_1) = \zeta_1x_3 + x_2.$$

Поскольку

$$0 = (x_3b)b = (\zeta_1x_3 + x_2)b = \zeta_1x_3b + x_2b$$

= $\zeta_1(\zeta_1x_3 + x_2) + \zeta_1x_2 + \zeta_2x_3 = 2\zeta_1x_2 + (\zeta_1^2 + \zeta_2)x_3$,

то $\zeta_1 = 0 = \zeta_1^2 + \zeta_2,$ значит, $\zeta_1 = \zeta_2 = 0$ и выполнены равенства

$$ax_1 = x_2$$
, $ax_2 = x_3$, $ax_3 = 0$, $x_1a = -x_2$, $x_2a = x_3a = 0$, $bx_1 = 0$, $bx_2 = x_1$, $bx_3 = -x_2$, $x_1b = \omega x_3$, $x_2b = 0$, $x_3b = x_2$.

Аналогично $0=(x_1b)b=\omega x_3b=\omega x_2,$ откуда $\omega=0$ и

$$ax_1 = x_2, \quad ax_2 = x_3, \quad ax_3 = 0, \quad x_1a = -x_2, \quad x_2a = x_3a = 0,$$

 $bx_1 = 0, \quad bx_2 = x_1, \quad bx_3 = -x_2, \quad x_1b = x_2b = 0, \quad x_3b = x_2.$ (17)

Заметим, что в силу (17) M — неприводимый левый A-модуль.

3.8. Произведения нечетных элементов. Вычислим произведения нечетных элементов x_ix_j . Будем говорить, что элемент t из M имеет вес $\{k,l\}$, если t линейно выражается через векторы x_k , x_l . Из табл. (17) следует, что элементы из пространства x_1*A+x_3*A имеют вес $\{2\}$, а элементы из пространства x_2*A — вес $\{1,3\}$.

Докажем, что все произведения x_ix_j равны 0, за исключением x_1x_2 и x_3x_2 . При этом постоянно будет использоваться тождество (3).

- 1. Покажем, что $x_2x_1=0$. Поскольку $ax_2=x_3,bx_2=x_1$, достаточно понять, что $(x_2x_1)x_2=0$. Имеем $(x_2x_1)x_2=x_2^2x_1+x_2[x_1,x_2]=x_2^2x_1$, так как $x_2A=0$. Элемент $(x_2x_1)x_2$ имеет вес $\{1,3\}$, а элемент $x_2^2x_1$ вес $\{2\}$, значит, они оба нулевые. В частности, $x_2x_1=0$ и $x_2^2=\beta_{22}b$.
- 2. Покажем, что $x_2^2=0$ и $x_2x_3=0$. Имеем $x_2^2x_3=(x_2x_3)x_2+x_2[x_2,x_3]=(x_2x_3)x_2$. Элемент $x_2^2x_3$ имеет вес $\{2\}$, а элемент $(x_2x_3)x_2$ вес $\{1,3\}$. Значит, они нулевые. Тогда $0=x_2^2x_3=\beta_{22}bx_3=-\beta_{22}x_2$, т. е. $x_2^2=0$ и $(x_2x_3)x_2=0$. Поскольку

$$(\forall c \in A)cx_2 = 0 \Leftrightarrow c = 0,$$

то $x_2x_3 = 0$.

- 3. Покажем, что $x_1^2=0$. Имеем $x_1^2x_2=(x_1x_2)x_1+x_1[x_1,x_2]$. Элемент $x_1^2x_2$ имеет вес $\{1,3\}$, а элементы из правой части имеют вес $\{2\}$. Значит, они нулевые. Тогда $x_1^2=0$ в силу замечания, приведенного в конце п. 2.
- 4. Покажем, что $x_1x_3=0$. Имеем $(x_1x_2)x_3=(x_1x_3)x_2+x_1[x_2,x_3]$. Крайние элементы имеют вес $\{2\}$, а средний $\{1,3\}$, значит, $(x_1x_3)x_2=0$, откуда и вытекает требуемое.
- 5. Покажем, что $x_3x_1=0$. Поскольку $(x_3x_1)x_2=(x_3x_2)x_1+x_3[x_1,x_2]$ и в левой части элемент имеет вес $\{1,3\}$, а элемент из правой части вес $\{2\}$, то $(x_3x_1)x_2=0$, откуда и следует требуемое равенство.
 - 6. Аналогично предыдущему из $x_3^2x_2=(x_3x_2)x_3+x_3[x_3,x_2]$ вытекает $x_3^2=0$. Тем самым отличными от нуля могут быть только произведения

$$x_1x_2 = \varphi a + \xi b, \quad x_3x_2 = \eta a + \psi b.$$

Покажем, что $\eta = -\xi$. Имеем $x_3(x_1x_2) = x_3[x_1, x_2] = -(x_3x_2)x_1$, значит,

$$x_3(\varphi a + \xi b) = -(\eta a + \psi b)x_1, \quad \xi x_3 b = -\eta ax_1, \quad \xi x_2 = -\eta x_2,$$

откуда и вытекает равенство $\eta = -\xi$. Тогда $x_1x_2 = \varphi a + \xi b$, $x_3x_2 = -\xi a + \psi b$. Отсюда и из (17) следует таблица умножения супералгебры $B_{2|3}(\varphi, \xi, \psi)$ (указаны только ненулевые произведения):

$$ax_1 = x_2, \quad x_1a = -x_2, \quad ax_2 = x_3,$$

$$bx_2 = x_1, \quad bx_3 = -x_2,$$

$$x_3b = x_2, \quad x_1x_2 = \varphi a + \xi b, \quad x_3x_2 = -\xi a + \psi b.$$
 (18)

- 3.9. Проверка правой альтернативности супералгебры $B_{2|3}(\varphi, \xi, \psi)$.
- **І.** Вычислим ненулевые ассоциаторы от нечетных элементов. Под степенью ассоциатора мы понимаем его полистепень относительно переменных x_1, x_2, x_3 , причем именно в указанном порядке.
 - **1.** Ассоциаторы степени (2,1,0):

$$(x_1, x_2, x_1) = (x_1 x_2) x_1 = (\varphi a + \psi b) x_1 = \varphi x_2,$$

 $(x_1, x_1, x_2) = -x_1 (x_1 x_2) = -x_1 (\varphi a + \psi b) = \varphi x_2.$

2. Ассоциаторы степени (0,1,2):

$$(x_3, x_2, x_3) = (x_3 x_2) x_3 = (-\xi a + \psi b) x_3 = \psi b x_3 = -\psi x_2,$$

 $(x_3, x_3, x_2) = -x_3 (x_3 x_2) = -x_3 (-\xi a + \psi b) = -\psi x_3 b = -\psi x_2.$

3. Ассоциаторы степени (1, 1, 1):

$$\begin{split} (x_3,x_2,x_1) &= (x_3x_2)x_1 = (-\xi a + \psi b)x_1 = -\xi ax_1 = -\xi x_2, \\ (x_3,x_1,x_2) &= -x_3(x_1x_2) = -x_3(\varphi a + \xi b) = -\xi x_3 b = -\xi x_2, \\ (x_1,x_2,x_3) &= (x_1x_2)x_3 = (\varphi a + \xi b)x_3 = -\xi x_2, \\ (x_1,x_3,x_2) &= -x_1(x_3x_2) = -x_1(-\xi a + \psi b) = \xi x_1 a = -\xi x_2, \\ (x_2,x_1,x_3) &= 0, \quad (x_2,x_3,x_1) = 0. \end{split}$$

Ассоциаторы остальных степеней $(2,0,1),\,(0,2,1),\,(1,2,0),\,(1,0,2)$ равны 0.

II. Вычислим ассоциаторы от двух нечетных и одного четного элементов. Сначала рассмотрим ассоциаторы, содержащие элемент a.

1. Степень (2,0,0):

$$(x_1,a,x_1)=-x_2x_1-x_1x_2=-x_1x_2,\quad (x_1,x_1,a)=-x_1(x_1a)=x_1x_2.$$

2. Степень (1,0,1):

$$(a, x_1, x_3) = (a, x_3, x_1) = (x_1, a, x_3) = (x_1, x_3, a) = 0,$$

 $(x_3, a, x_1) = -x_3x_2, \quad (x_3, x_1, a) = x_3x_2.$

Ассоциаторы остальных степеней (0,2,0), (0,0,2), (1,1,0), (0,1,1) равны 0.

III. Вычислим ассоциаторы, содержащие элемент b.

1. Ассоциаторы степени (0,0,2):

$$(x_3,b,x_3)=(x_3b)x_3-x_3(bx_3)=x_3x_2,\quad (x_3,x_3,b)=-x_3x_2.$$

2. Ассоциаторы степени (1, 0, 1):

$$(b, x_1, x_3) = (b, x_3, x_1) = (x_3, b, x_1) = (x_3, x_1, b) = 0,$$

 $(x_1, b, x_3) = (x_1b)x_3 - x_1(bx_3) = x_1x_2, \quad (x_1, x_3, b) = -x_1(x_3b) = -x_1x_2.$

Ассоциаторы остальных степеней $(2,0,0),\,(0,2,0),\,(1,1,0),\,(0,1,1)$ равны 0.

IV. Вычислим ассоциаторы от двух четных и одного нечетного элементов.

1. Сначала выпишем ассоциаторы, содержащие x_1 :

$$(x_1,a,a)=(x_1,a,b)=(x_1,b,a)=(x_1,b,b)\\ =(b,x_1,b)=(b,b,x_1)=(a,x_1,b)=(a,b,x_1)=0,\\ (a,x_1,a)=x_2a-a(-x_2)=ax_2=x_3,\quad (a,a,x_1)=-ax_2=-x_3,\\ (b,x_1,a)=-b(x_1a)=bx_2=x_1,\quad (b,a,x_1)=-b(ax_1)=-bx_2=-x_1.$$

2. Выпишем ассоциаторы, содержащие x_2 :

$$(x_2,a,a)=(a,x_2,a)=(a,a,x_2)=(x_2,a,b) \ =(x_2,b,a)=(x_2,b,b)=(b,x_2,b)=(b,b,x_2)=0, \ (a,x_2,b)=(ax_2)b-a(x_2b)=x_3b=x_2, \quad (a,b,x_2)=-a(bx_2)=-ax_1=-x_2, \ (b,x_2,a)=(bx_2)a=x_1a=-x_2, \quad (b,a,x_2)=-b(ax_2)=-bx_3=x_2.$$

3. Выпишем ассоциаторы, содержащие x_3 :

$$(x_3,a,a)=(a,x_3,a)=(a,a,x_3)=(x_3,a,b)\\ =(x_3,b,a)=(b,x_3,a)=(b,a,x_3)=(x_3,b,b)=0,\\ (a,x_3,b)=-a(x_3b)=-ax_2=-x_3,\quad (a,b,x_3)=-a(bx_3)=ax_2=x_3,\\ (b,x_3,b)=(bx_3)b-b(x_3b)=-x_2b-bx_2=-x_1,\quad (b,b,x_3)=-b(bx_3)=bx_2=x_1.$$

3.10. Реализация супералгебры $B_{2|3}$ **в виде** $B_{2|3}(\varphi, \xi, \psi)$ **.** Формулы (18) при $\xi = 0$ принимают вид

$$ax_1=x_2,\quad x_1a=-x_2,\quad ax_2=x_3,\quad bx_2=x_1,\quad bx_3=-x_2, \ x_3b=x_2,\quad x_1x_2=\varphi a,\quad x_3x_2=\psi b.$$

Вводя обозначения $a_1=a,\,a_2=b,\,m_1=x_1,\,m_2=-x_2,\,m_3=-x_3,\,$ получаем

$$\begin{split} m_1a_1 &= x_1a = -x_2 = m_2, \quad -a_1m_1 = -ax_1 = -x_2 = m_2, \\ m_3a_2 &= -x_3b = -x_2 = m_2, \quad -a_2m_3 = -b(-x_3) = bx_3 = -x_2 = m_2, \\ a_1m_2 &= a(-x_2) = -ax_2 = -x_3 = m_3, \\ a_2m_2 &= b(-x_2) = -bx_2 = -x_1 = -m_1, \\ m_1m_2 &= -x_1x_2 = -\varphi a = -\varphi a_1 = a_1 \Leftrightarrow \varphi = -1, \\ m_3m_2 &= x_3x_2 = \psi b = \psi a_2 = a_2 \Leftrightarrow \psi = 1. \end{split}$$

Следовательно, $B_{2|3} = B_{2|3}(-1,0,1)$.

\S 4. Супералгебры вида $B_{2|3}(arphi, \xi, \psi)$

В этом параграфе докажем, что над алгебраически замкнутым полем всякая сингулярная 5-мерная супералгебра изоморфна $B_{2|3}$. Над полем рациональных чисел существует бесконечно много неизоморфных сингулярных 5-мерных супералгебр.

4.1. Критерий изоморфизма супералгебр $B=B(\varphi,\xi,\psi)$ и $B'=B(\varphi',\xi',\psi')$. Рассмотрим супералгебру $B(\varphi,\xi,\psi)=A\oplus M$ (для сокращения записи опускаем нижний индекс $_{2|3}$), в которой $a_1,\,a_2$ и $x_1,\,x_2,\,x_3$ — базисы в A и M соответственно, и таблицу умножения (указаны только ненулевые произведения базисных элементов):

$$a_1x_1 = x_2, \quad x_1a_1 = -x_2, \quad a_1x_2 = x_3, \quad a_2x_2 = x_1, \quad a_2x_3 = -x_2,$$

 $x_3a_2 = x_2, \quad x_1x_2 = \varphi a_1 + \xi a_2, \quad x_3x_2 = -\xi a_1 + \psi a_2.$ (19)

Лемма 7. Простые супералгебры $B=B(\varphi,\xi,\psi)$ и $B'=B(\varphi',\xi',\psi')$ изоморфны тогда и только тогда, когда верно равенство

$$\omega^2 \begin{pmatrix} \beta_2 & \beta_1 \\ \alpha_2 & \alpha_1 \end{pmatrix} \begin{pmatrix} \varphi & -\xi \\ -\xi & -\psi \end{pmatrix} \begin{pmatrix} \beta_2 & \alpha_2 \\ \beta_1 & \alpha_1 \end{pmatrix} = \begin{pmatrix} \varphi' & -\xi' \\ -\xi' & -\psi' \end{pmatrix}$$
(20)

для подходящих скаляров $\alpha_1,\ \alpha_2,\ \beta_1,\ \beta_2,\ \omega$ таких, что $\begin{vmatrix} \alpha_1 & \alpha_2 \\ \beta_1 & \beta_2 \end{vmatrix} = 1$ и $\omega \neq 0$.

Доказательство. Пусть супералгебры B и B' изоморфны. Тогда в супералгебре B с таблицей умножения (19) имеется базис b_1 , b_2 , y_1 , y_2 , y_3 , в котором таблица умножения имеет вид

$$b_1y_1 = y_2, \quad y_1b_1 = -y_2, \quad b_1y_2 = y_3, \quad b_2y_2 = y_1, \quad b_2y_3 = -y_2,$$

 $y_3b_2 = y_2, \quad y_1y_2 = \varphi'b_1 + \xi'b_2, \quad y_3y_2 = -\xi'b_1 + \psi'b_2.$ (21)

Поскольку

$${n \in M \mid nM = 0} = \Phi x_2, \quad {m \in M \mid Mm = 0} = \operatorname{span}(x_1, x_3),$$

то $\Phi x_2 = \Phi y_2$ и $\mathrm{span}(x_1, x_3) = \mathrm{span}(y_1, y_3)$, т. е.

$$y_2=\omega x_2, \ y_1=\lambda_1 x_1+\lambda_3 x_3, \ y_3=\mu_1 x_1+\mu_3 x_3$$
 и $\omega
eq 0, \ \begin{vmatrix} \lambda_1 & \lambda_3 \\ \mu_1 & \mu_3 \end{vmatrix}
eq 0.$

Пусть $b_1 = \alpha_1 a_1 + \alpha_2 a_2$, $b_2 = \beta_1 a_1 + \beta_2 a_2$. Вычислим координаты векторов y_1 , y_3 . Так как $b_1 y_2 = y_3$, $b_2 y_2 = y_1$, то

$$\mu_1 x_1 + \mu_3 x_3 = y_3 = b_1 y_2 = (\alpha_1 a_1 + \alpha_2 a_2) \omega x_2 = \alpha_1 \omega x_3 + \alpha_2 \omega x_1,$$

 $\lambda_1 x_1 + \lambda_3 x_3 = y_1 = b_2 y_2 = (\beta_1 a_1 + \beta_2 a_2) \omega x_2 = \beta_1 \omega x_3 + \beta_2 \omega x_1,$

откуда

$$\mu_1 = \alpha_2 \omega, \ \mu_3 = \alpha_1 \omega, \quad \lambda_1 = \beta_2 \omega, \ \lambda_3 = \beta_1 \omega.$$

Тогда

$$b_1=lpha_1a_1+lpha_2a_2,\quad b_2=eta_1a_1+eta_2a_2,\ y_1=\omega(eta_2x_1+eta_1x_3),\quad y_2=\omega x_2,\quad y_3=\omega(lpha_2x_1+lpha_1x_3).$$

Аналогично каждое из равенств $b_1y_1=y_2, y_1b_1=-y_2, b_2y_3=-y_2, y_3b_2=y_2,$ как легко проверить, приводит к соотношению

$$\alpha_1 \beta_2 - \alpha_2 \beta_1 = 1. \tag{22}$$

В самом деле,

$$\begin{aligned} b_1 y_1 &= y_2 \Leftrightarrow (\alpha_1 a_1 + \alpha_2 a_2) \omega(\beta_2 x_1 + \beta_1 x_3) = \omega x_2 \\ &\Leftrightarrow (\alpha_1 a_1 + \alpha_2 a_2) (\beta_2 x_1 + \beta_1 x_3) = x_2 \\ &\Leftrightarrow \alpha_1 a_1 \beta_2 x_1 + \alpha_2 a_2 \beta_1 x_3 = x_2 \Leftrightarrow \alpha_1 \beta_2 x_2 - \alpha_2 \beta_1 x_2 = x_2. \end{aligned}$$

Никаких других соотношений, кроме (22), из равенств первых двух типов в (21) не получается (имеются в виду всевозможные произведения вида $b_i * y_j$), следовательно,

$$b_1=lpha_1a_1+lpha_2a_2,\quad b_2=eta_1a_1+eta_2a_2,\ y_1=\omega(eta_2x_1+eta_1x_3),\quad y_2=\omega x_2,\quad y_3=\omega(lpha_2x_1+lpha_1x_3),\quad lpha_1eta_2-lpha_2eta_1=1.$$

Наконец, рассмотрим произведения нечетных элементов:

$$y_{1}y_{2} = \varphi'b_{1} + \xi'b_{2} \Leftrightarrow \omega^{2}(\beta_{2}x_{1} + \beta_{1}x_{3})x_{2} = \varphi'(\alpha_{1}a_{1} + \alpha_{2}a_{2}) + \xi'(\beta_{1}a_{1} + \beta_{2}a_{2})$$

$$\Leftrightarrow \omega^{2}\beta_{2}x_{1}x_{2} + \omega^{2}\beta_{1}x_{3}x_{2} = (\varphi'\alpha_{1} + \xi'\beta_{1})a_{1} + (\varphi'\alpha_{2} + \xi'\beta_{2})a_{2}$$

$$\Leftrightarrow \omega^{2}\beta_{2}(\varphi a_{1} + \xi a_{2}) + \omega^{2}\beta_{1}(-\xi a_{1} + \psi a_{2}) = (\varphi'\alpha_{1} + \xi'\beta_{1})a_{1} + (\varphi'\alpha_{2} + \xi'\beta_{2})a_{2}$$

$$\Leftrightarrow \omega^{2}(\beta_{2}\varphi - \beta_{1}\xi)a_{1} + \omega^{2}(\beta_{2}\xi + \beta_{1}\psi)a_{2} = (\varphi'\alpha_{1} + \xi'\beta_{1})a_{1} + (\varphi'\alpha_{2} + \xi'\beta_{2})a_{2},$$

$$y_{3}y_{2} = -\xi'b_{1} + \psi'b_{2} \Leftrightarrow \omega^{2}(\alpha_{2}x_{1} + \alpha_{1}x_{3})x_{2} = -\xi'(\alpha_{1}a_{1} + \alpha_{2}a_{2}) + \psi'(\beta_{1}a_{1} + \beta_{2}a_{2})$$

$$\Leftrightarrow \omega^{2}\alpha_{2}x_{1}x_{2} + \omega^{2}\alpha_{1}x_{3}x_{2} = -\xi'\alpha_{1}a_{1} - \xi'\alpha_{2}a_{2} + \psi'\beta_{1}a_{1} + \psi'\beta_{2}a_{2}$$

$$\Leftrightarrow \omega^{2}\alpha_{2}(\varphi a_{1} + \xi a_{2}) + \omega^{2}\alpha_{1}(-\xi a_{1} + \psi a_{2}) = -\xi'\alpha_{1}a_{1} - \xi'\alpha_{2}a_{2} + \psi'\beta_{1}a_{1} + \psi'\beta_{2}a_{2}$$

$$\Leftrightarrow \omega^{2}(\alpha_{2}\varphi - \alpha_{1}\xi)a_{1} + \omega^{2}(\alpha_{2}\xi + \alpha_{1}\psi)a_{2} = (-\xi'\alpha_{1} + \psi'\beta_{1})a_{1} + (-\xi'\alpha_{2} + \psi'\beta_{2})a_{2}.$$

Следовательно,

$$\omega^{2}(\beta_{2}\varphi - \beta_{1}\xi) = (\varphi'\alpha_{1} + \xi'\beta_{1}), \quad -\omega^{2}(\beta_{2}\xi + \beta_{1}\psi) = -(\varphi'\alpha_{2} + \xi'\beta_{2}),$$

$$\omega^{2}(\alpha_{2}\varphi - \alpha_{1}\xi) = (-\xi'\alpha_{1} + \psi'\beta_{1}), \quad -\omega^{2}(\alpha_{2}\xi + \alpha_{1}\psi) = (\xi'\alpha_{2} - \psi'\beta_{2}).$$

Эти равенства эквивалентны матричному равенству

$$\omega^2 \begin{pmatrix} \beta_2 & \beta_1 \\ \alpha_2 & \alpha_1 \end{pmatrix} \begin{pmatrix} \varphi & -\xi \\ -\xi & -\psi \end{pmatrix} = \begin{pmatrix} \varphi' & -\xi' \\ -\xi' & -\psi' \end{pmatrix} \begin{pmatrix} \alpha_1 & -\alpha_2 \\ -\beta_1 & \beta_2 \end{pmatrix}, \tag{23}$$

которое эквивалентно равенству (20). Лемма доказана.

4.2. Теорема 2 и следствия из нее. Из леммы 7 и эквивалентности форм $\varphi t^2 + 2\xi ts + \psi s^2$ и $\varphi t^2 - 2\xi ts + \psi s^2$ немедленно вытекает теорема 2 (см. введение). Ее результат является аналогом теоремы Джекобсона для алгебр Кэли — Диксона (см. [6, с. 70]).

Следствие 1. Супералгебры $B(\varphi,0,1), B(\varphi',0,1)$ изоморфны тогда и только тогда, когда уравнение $t^4=\varphi'\varphi^{-1}$ разрешимо в поле Φ . В частности, над

полем рациональных чисел имеется бесконечно много неизоморфных сингулярных 5-мерных супералгебр.

Доказательство. В самом деле, в силу (23) верно

$$\begin{split} B(\varphi,0,1) &\cong B(\varphi',0,1) \\ &\Leftrightarrow \omega^2 \begin{pmatrix} \beta_2 & \beta_1 \\ \alpha_2 & \alpha_1 \end{pmatrix} \begin{pmatrix} \varphi & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} \varphi' & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \alpha_1 & -\alpha_2 \\ -\beta_1 & \beta_2 \end{pmatrix} \\ &\Leftrightarrow \omega^2 \begin{pmatrix} \beta_2 \varphi & -\beta_1 \\ \alpha_2 \varphi & -\alpha_1 \end{pmatrix} = \begin{pmatrix} \alpha_1 \varphi' & -\alpha_2 \varphi' \\ \beta_1 & -\beta_2 \end{pmatrix} \\ &\Leftrightarrow \begin{cases} \omega^2 \beta_2 \varphi = \alpha_1 \varphi', & \omega^2 \beta_1 = \alpha_2 \varphi', \\ \beta_1 = \omega^2 \alpha_2 \varphi, & \beta_2 = \omega^2 \alpha_1. \end{cases} \Leftrightarrow \varphi' = \omega^4 \varphi. \end{split}$$

Следствие 2. Всякая сингулярная 5-мерная супералгебра над алгебраически замкнутым полем изоморфна супералгебре $B_{2|3}$.

Доказательство. Известно [9], что над алгебраически замкнутым полем всякая невырожденная квадратичная форма эквивалентна сумме квадратов, следовательно, с точностью до изоморфизма имеется единственная сингулярная 5-мерная супералгебра.

ЛИТЕРАТУРА

- Silva J. P., Murakami L. S. I., Shestakov I. P. On right alternative superalgebras // Commun. Algebra. 2016. V. 44, N 1. P. 240–252.
- Жевлаков К. А., Слинько А. М., Шестаков И. П., Ширшов А. И. Кольца, близкие к ассоциативным. М.: Наука, 1978.
- 3. Пчелинцев С. В., Шашков О. В. Простые конечномерные правоальтернативные суперал-гебры с унитарной четной частью над полем характеристики 0 // Мат. заметки. 2016. Т. 100, № 4. С. 577–585.
- 4. Пчелинцев С. В., Шашков О. В. Простые конечномерные правоальтернативные суперал-гебры абелева типа характеристики нуль // Изв. РАН. Сер. мат. 2015. Т. 79, № 3. С. 131–158.
- 5. Пчелинцев С. В., Шашков О. В. Простые конечномерные правоальтернативные унитальные супералгебры с ассоциативно-коммутативной четной частью // Исследования по алгебре, теории чисел, функциональному анализу и смежным вопросам. 2016. № 8. С. 82–84.
- 6. Schafer R. D. An introduction to nonassociative algebras. New York: Acad. Press, 1966.
- 7. Пчелинцев С. В. Первичные альтернативные алгебры, близкие к коммутативным // Изв. РАН. Сер. мат. 2004. Т. 68, № 1. С. 183–206.
- 8. Albert A. A. On right alternative algebras // Ann. Math. 1949. V. 50, N 2. P. 318-328.
- 9. Ленг С. Алгебра. М.: Мир, 1968.

Статья поступила 27 февраля 2017 г.

Пчелинцев Сергей Валентинович Финансовый университет при Правительстве РФ, Ленинградский пр., 49, Москва 123468; Институт математики им. С. Л. Соболева СО РАН, пр. Академика Коптюга, 4, Новосибирск 630090 pchelinzev@mail.ru

Шашков Олег Владимирович Финансовый университет при Правительстве РФ, Ленинградский пр., 49, Москва 123468 o.v.shashkov@yandex.ru